
CENG 3420
Computer Organization & Design

Lecture 20: Multi-Threading & Multi-Core

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapter 6)

Spring 2022

1 Introduction

2 Amdahl’s Law

3 Thread-Level Parallelism (TLP)

4 Multi-Cores

Overview

2/44

Introduction

Doubling issue rates above today’s 3-6 instructions per clock, say to 6 to 12
instructions, probably requires a processor to

• issue 3 or 4 data memory accesses per cycle,

• resolve 2 or 3 branches per cycle,

• rename and access more than 20 registers per cycle, and

• fetch 12 to 24 instructions per cycle.

The complexities of implementing these capabilities is likely to mean sacrifices in the
maximum clock rate

• E.g, widest issue processor is the Itanium 2, but it also has the slowest clock rate,
despite the fact that it consumes the most power

Limits to ILP

4/44

Amdahl’s Law

Speedup due to enhancement E is

Speedup w/ E =
Exec time w/o E
Exec time w/ E

Suppose that enhancement E accelerates a fraction F (F<1) of the task by a factor S
(S>1) and the remainder of the task is unaffected

ExTime w/ E = ExTime w/o E * ((1-F) + F/S)

Speedup w/ E = 1 / ((1-F) + F/S)

Encountering Amdahl’s Law

6/44

Speedup due to enhancement E is

Speedup w/ E =
Exec time w/o E
Exec time w/ E

Suppose that enhancement E accelerates a fraction F (F<1) of the task by a factor S
(S>1) and the remainder of the task is unaffected

ExTime w/ E = ExTime w/o E * ((1-F) + F/S)

Speedup w/ E = 1 / ((1-F) + F/S)

Encountering Amdahl’s Law

6/44

Consider an enhancement which runs 20 times faster but which is only
usable 25% of the time.
Speedup w/ E =

What is its usable only 15% of the time?

Speedup w/ E =

Example 1: Amdahl’s Law

7/44

• A scalar processor processes only one datum at a time.

• A vector processor implements an instruction set containing
instructions that operate on one-dimensional arrays of data called
vectors.

Scalar v.s. Vector

8/44

Consider 10 scalar variable summings and two 10 by 10 matrices (matrix
sum) on 10 processors

Speedup w/ E =

What if there are 100 processors ?

Speedup w/ E =

What if the matrices are100 by 100 (or 10,010 adds in total) on 10
processors?

Speedup w/ E =

What if there are 100 processors ?

Speedup w/ E =

Example 2: Amdahl’s Law

9/44

• To get a speedup of 90 from 100 processors, the percentage of the
original program that could be scalar would have to be 0.1% or less

• Amdahl’s Law tells us that to achieve linear speedup with 100
processors, none of the original computation can be scalar!

10/44

Thread-Level Parallelism (TLP)

• Difficult to continue to extract instruction-level parallelism (ILP) from a single
sequential thread of control

• Many workloads can make use of thread-level parallelism (TLP)

• TLP from multiprogramming (run independent sequential jobs)
• TLP from multithreaded applications (run one job faster using parallel threads)

• Multithreading uses TLP to improve utilization of a single processor

Multi-Threading

12/44

A web browser
• One thread displays images

• One thread retrieves data from network

A word processor
• One thread displays graphics

• One thread reads keystrokes

• One thread performs spell checking in the background

A web server
• One thread accepts requests

• When a request comes in, separate thread is created to service

• Many threads to support thousands of client requests

Examples of Threads

13/44

Find a way to “hide” true data dependency stalls, cache miss stalls, and branch
stalls by finding instructions (from other process threads) that are independent of
those stalling instructions

Hardware Multithreading

Increase the utilization of resources on a chip by allowing multiple processes (threads) to
share the functional units of a single processor

• Processor must duplicate the state hardware for each thread – a separate register file,
PC, instruction buffer, and store buffer for each thread

• The caches, TLBs, BHT, BTB, RUU can be shared (although the miss rates may
increase if they are not sized accordingly)

• The memory can be shared through virtual memory mechanisms

• Hardware must support efficient thread context switching

Multi-Threading on A Chip

14/44

Eight fine grain multithreaded single–issue, in-order cores (no speculation, no
dynamic branch prediction)

Niagara 2
Data width 64-b
Clock rate 1.4 GHz
Cache
(I/D/L2)

16K/8K/4M

Issue rate 1 issue
Pipe stages 6 stages
BHT entries None
TLB entries 64I/64D
Memory BW 60+ GB/s
Transistors ??? million
Power (max) <95 W

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

8-
w

ay
 M

T
SP

AR
C

 p
ip

e

Crossbar

8-way banked L2$

Memory controllers

I/O
shared
funct’s

Multithreaded Example: Sun’s Niagara (UltraSparc T2)

15/44

Cores are simple (single-issue, 6 stage, no branch prediction), small, and
power-efficient

Fetch Thrd Sel Decode Execute Memory WB

I$

ITLB

Inst
bufx8

PC
logicx8

Decode

RegFile
x8

Thread
Select
Logic

ALU
Mul
Shft
Div

D$

DTLB
Stbufx8

Thrd
Sel
Mux

Thrd
Sel
Mux

Crossbar
Interface

Instr type
Cache misses
Traps & interrupts
Resource conflicts

Niagara Integer Pipeline

16/44

Coarse-grain

Switches threads only on costly stalls (e.g., L2 cache misses)

• , Thread switching doesn’t have to be essentially free and much less likely to slow down the
execution of an individual thread

• / Limited, due to pipeline start-up costs, in its ability to overcome throughput loss

• / Pipeline must be flushed and refilled on thread switches

Fine-grain

Switch threads on every instruction issue

• Round-robin thread interleaving (skipping stalled threads)

• Processor must be able to switch threads on every clock cycle

• , Can hide throughput losses that come from both short and long stalls

• / Slows down the execution of an individual thread since a thread that is ready to execute
without stalls is delayed by instructions from other threads

Types of Multithreading

17/44

A variation on multithreading that uses the resources of a multiple-issue, dynamically
scheduled processor (superscalar) to exploit both program ILP and TLP

• Most SS processors have more machine level parallelism than most programs can effectively
use (i.e., than have ILP)

• With register renaming and dynamic scheduling, multiple instructions from independent
threads can be issued without regard to dependencies among them

• Need separate rename tables (RUUs) for each thread or need to be able to indicate which
thread the entry belongs to

• Need the capability to commit from multiple threads in one cycle

• Intel’s Pentium 4 SMT is called hyperthreading: supports just two threads (doubles the
architecture state)

Simultaneous Multithreading (SMT)

18/44

Thread A Thread B

Thread C Thread D

Tim
e →

Issue slots →
SMTFine MTCoarse MT

Threading on a 4-way SS Processor Example

19/44

Thread A Thread B

Thread C Thread D

Tim
e →

Issue slots →
SMTFine MTCoarse MT

Threading on a 4-way SS Processor Example

19/44

Thread A Thread B

Thread C Thread D

Tim
e →

Issue slots →
SMTFine MTCoarse MT

Threading on a 4-way SS Processor Example

19/44

Thread A Thread B

Thread C Thread D

Tim
e →

Issue slots →
SMTFine MTCoarse MT

Threading on a 4-way SS Processor Example

19/44

20/44

…

…
Hotspot

Non-Hotspot

512x512x4
256x256x4

256x256x8

128x128x16
128x128x8

64x64x16 64x64x32
32x32x32 32x32x32

16x16x32

2048

512

C1

P1 C2-1C2-2 C2-3

P2 C3-1 C3-2 C4-1P3C3-3 C4-2 C4-3

C5-1 C5-2 C5-3P4 P5

21/44

Multi-Cores

Multiprocessor

A computer system with at least two processors

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

• Can deliver high throughput for independent jobs via job-level parallelism or
process-level parallelism

• And improve the run time of a single program that has been specially crafted to run
on a multiprocessor – a parallel processing program

The Big Picture: Where are We Now?

23/44

• Power challenge has forced a change in microprocessor design

• Since 2002 the rate of improvement in the response time of programs has slowed
from a factor of 1.5 per year to less than a factor of 1.2 per year

• Today’s microprocessors typically contain more than one core – Chip Multicore
microProcessors (CMPs) in a single IC

Product AMD	
Barcelona

Intel	
Nehalem

IBM	Power		6 Sun	Niagara	2

Cores	per	chip 4 4 2 8

Clock	rate 2.5	GHz ~2.5 GHz? 4.7	GHz 1.4	GHz

Power 120	W ~100 W? ~100	W? 94	W

Multicores Now Universal

24/44

• Some of the problems that need higher performance can be handled simply by using
a cluster

• A set of independent servers (or PCs) connected over a local area network (LAN)
functioning as a single large multiprocessor

• E.g.: Search engines, Web servers, email servers, databases ...

Key Challenge

Craft parallel (concurrent) programs that have high performance on multiprocessors as
the number of processors increase

E.g.: Scale Scheduling, load balancing, time for synchronization, overhead for
communication

Other Multiprocessor Basics

25/44

To get good speedup on a multiprocessor while keeping the problem size fixed is
harder than getting good speedup by increasing the size of the problem.

• Strong scaling –when speedup can be achieved on a multiprocessor without
increasing the size of the problem

• Weak scaling – when speedup is achieved on a multiprocessor by increasing the size
of the problem proportionally to the increase in the number of processors

Load balancing is another important factor. Just a single processor with twice the load of
the others cuts the speedup almost in half

Scaling

26/44

Q1: How do they share data?

Q2: How do they coordinate?

Q3: How scalable is the architecture? How many processors can be
supported?

Multiprocessor/Clusters Key Questions

27/44

Q1: How do they share data?
Single address space shared by all processors

Q2: How do they coordinate?
Processors coordinate/communicate through shared variables in memory (via loads and
stores)

• Shared data coordinated via synchronization primitives (locks) that allow access by
only one processor at a time

Shared Memory Multiprocessor (SMP)

28/44

2 Multiprocessor Styles:

• Uniform memory access (UMA)

• Nonuniform memory access (NUMA)

• Programming NUMAs are harder

• But NUMAs can scale to larger sizes and have lower latency to local memory

Shared Memory Multiprocessor (SMP)

29/44

• Need to be able to coordinate processes working on a common task

• Lock variables (semaphores) are used to coordinate or synchronize processes

Need an architecture-supported arbitration mechanism
• decide which processor gets access to the lock variable

• Single bus provides arbitration mechanism, since the bus is the only path to memory

• The processor gets the bus wins

Need an architecture-supported operation that
• locks the variable

• Locking can be done via an atomic swap operation

Process Synchronization

30/44

The single winning processor will succeed in writing a 1 to the lock variable; all
others processors will get a return code of 0

Read lock
variable using ll

Succeed?

Try to lock variable using sc:
set it to locked value of 1

Unlocked?
(=0?)

No

Yes

No Begin update of
shared data

Finish update of
shared data

Yes

.

.

.

unlock variable:
set lock variable

to 0

Spin

atomic
operation

Return
code = 0

Spin Lock Synchronization

31/44

• Processors start by running a loop that sums their subset of vector A numbers

• Vectors A and sum are shared variables

• Pn is the processor’s number, i is a private variable

sum[Pn] = 0;
for (i=1000*Pn; i<1000*(Pn+1); i=i+1)
{

sum[Pn] = sum[Pn] + A[i];
}

Summing 100,000 Numbers on 100 Proc. SMP

32/44

• The processors then coordinate in adding together the partial sums

• half is a private variable initialized to 100 (the number of processors))

repeat
synch(); //synchronize first
if (half%2 != 0 && Pn == 0) {

sum[0] = sum[0] + sum[half-1];
}
half = half/2
if (Pn<half) {

sum[Pn] = sum[Pn] + sum[Pn+half]
}

until (half == 1); //final sum in sum[0]

Summing 100,000 Numbers on 100 Proc. SMP

33/44

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0]sum[P1]sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7]sum[P8] sum[P9]

P0

P0 P1 P2 P3 P4

half = 10

half = 5

P1 half = 2

P0 half = 1

An Example with 10 Processors

34/44

• synch(): Processors must synchronize before the “consumer” processor tries to
read the results from the memory location written by the “producer” processor

• Barrier synchronization: a synchronization scheme where processors wait at the
barrier, not proceeding until every processor has reached it

sum[P0] sum[P1] sum[P2] sum[P3]sum[P4]sum[P5]sum[P6]sum[P7] sum[P8] sum[P9]

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

Synch() Example

35/44

• n is a shared variable initialized to the number of processors
• count is a shared variable initialized to 0
• arrive and depart are shared spin-lock variables where arrive is initially

unlocked and depart is initially locked
procedure synch()
{

lock(arrive);
count = count + 1; // count the processors as
if (count < n) { // they arrive at barrier

unlock(arrive)
}
else {

unlock(depart);
}
lock(depart);
count = count - 1; // count the processors as
if (count > 0) { // they leave barrier

unlock(depart)
}
else {

unlock(arrive);
}

}

Barrier Implemented with Spin-Locks

36/44

With a bus based cache coherency protocol (write invalidate), spin-locks allow
processors to wait on a local copy of the lock in their caches

Reduces Bus Traffic
Once the processor with the lock releases the lock (writes a 0) all other caches see that
write and invalidate their old copy of the lock variable. Unlocking restarts the race to get
the lock. The winner gets the bus and writes the lock back to 1. The other caches then
invalidate their copy of the lock and on the next lock read fetch the new lock value (1)
from memory.

This scheme has problems scaling up to many processors because of the
communication traffic when the lock is released and contested

Spin-Locks on Bus Connected ccUMAs

37/44

Each processor has its own private address space

Q1: How do they share data?
Processors share data by explicitly sending and receiving information (message passing)

Q2: How do they coordinate?
Coordination is built into message passing primitives (message send and message receive)

Message Passing Multiprocessors (MPP)

38/44

Each processor has its own private address space

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory Memory Memory

Message Passing Multiprocessors (MPP)

39/44

Start by distributing 1000 elements of vector A to each of the local memories and
summing each subset in parallel

sum = 0;
for (i = 0; i<1000; i = i + 1)
{

sum = sum + Al[i]; // sum local array subset
}

Summing 100,000 Numbers on 100 Proc. MPP

40/44

• The processors then coordinate in adding together the sub sums

• Pn is the number of processors

• send(x,y) sends value y to processor x, and receive() receives a value

half = 100;
limit = 100;
repeat {

half = (half+1)/2; //dividing line
if (Pn>= half && Pn<limit) send(Pn-half,sum);
if (Pn<(limit/2)) sum = sum + receive();
limit = half;

} until (half == 1); //final sum in P0’s sum

Summing 100,000 Numbers on 100 Proc. MPP

41/44

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

half = 10

half = 5

half = 3

half = 2

sum sum sum sum sum sum sum sum sum sum

send

receive

P0 P1 P2

limit = 10

limit = 5

limit = 3

limit = 2

half = 1

P0 P1

P0

send
receive

send
receive

send

receive

An Example with 10 Processors

42/44

• , Message passing multiprocessors are much easier for hardware designers to
design

• , Don’t have to worry about cache coherency for example

• , The advantage for programmers is that communication is explicit, so there are
fewer “performance surprises” than with the implicit communication in
cache-coherent SMPs.

• / Message sending and receiving is much slower than addition

• / Harder to port a sequential program to a message passing multiprocessor since
every communication must be identified in advance 1.

1With cache-coherent shared memory, the hardware figures out what data needs to be
communicated

Pros and Cons of Message Passing

43/44

• Q1: How do they share data?

• Q2: How do they coordinate?

• Q3: How scalable is the architecture? How many processors?

of Proc
Communication
model

Message passing 8 to 2048
Shared
address

NUMA 8 to 256
UMA 2 to 64

Physical
connection

Network 8 to 256
Bus 2 to 36

Review: Multiprocessor Basics

44/44

	Main Talk
	Introduction
	Amdahl's Law
	Thread-Level Parallelism (TLP)
	Multi-Cores

