
CENG3420
Lecture 01: Introduction

Bei Yu

byu@cse.cuhk.edu.hk

2017 Spring

1 / 45 L01-intro

mailto:byu@cse.cuhk.edu.hk

Overview

Course Information

Background

Organization – First Glance

Summary

2 / 45 L01-intro

Overview

Course Information

Background

Organization – First Glance

Summary

3 / 45 L01-intro

Course Administration

Instructor:
I Bei Yu (byu@cse.cuhk.edu.hk)
I Office: SHB 914
I Office Hrs: H14:00-16:00

Tutors:
I Chong Wing (Sirius) Cheung (cwcheung@cse.cuhk.edu.hk)
I Haoyu Yang (hyyang@cse.cuhk.edu.hk)
I Office: SHB 913

3 / 45 L01-intro

mailto:byu@cse.cuhk.edu.hk
mailto:cwcheung@cse.cuhk.edu.hk
mailto:hyyang@cse.cuhk.edu.hk

Grading Information

Grade Determinates
5% Attendance
5% Group Discussion (New)

15% Homework
15% Midterm (Mar. 16)
20% Three Labs (Individual project)
40% Final Exam

I Late submission per day is subject to 10% of penalty.
I A student must gain at least 45% of the full marks in each part in

order to pass the course.

4 / 45 L01-intro

General References

Textbook:

I Computer Organization and Design, 5th Edition
I Soft copy, amazon.cn, or amazon.com

Manuals:
I LC-3 Instruction Set Architecture (ISA)
I Lab tutorials (slides)

Slides:
I On the course web page before lecture
I Summary may be uploaded afterwards

5 / 45 L01-intro

Course Content
I Introduction to the major components of a computer system, how

they function together in executing a program.
I Introduction to CPU datapath and control unit design
I Introduction to techniques to improve performance and

energy-efficiency of computer systems
I Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of
computer systems and to understand the interactions between the
computer’s architecture and its software so that future software
designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best
cost-performance trade-offs and so that future architects understand
the effects of their design choices on software.

6 / 45 L01-intro

Course Content
I Introduction to the major components of a computer system, how

they function together in executing a program.
I Introduction to CPU datapath and control unit design
I Introduction to techniques to improve performance and

energy-efficiency of computer systems
I Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of
computer systems and to understand the interactions between the
computer’s architecture and its software so that future software
designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best
cost-performance trade-offs and so that future architects understand
the effects of their design choices on software.

6 / 45 L01-intro

Why Learn This Stuff?

I You want to call yourself a “computer scientist/engineer”
I You want to build HW/SW people use (so need

performance/power)
I You need to make a purchasing decision or offer “expert” advice

Both hardware and software affect performance/power
I Algorithm determines number of source-level statements
I Language/compiler/architecture determine the number of

machine-level instructions
I Processor/memory determine how fast and how power-hungry

machine-level instructions are executed

7 / 45 L01-intro

What You Should Already Know

I Basic logic design & machine organization
I logical minimization, FSMs, component design
I processor, memory, I/O

I Create, run, debug programs in an assembly language
I Will be introduced in tutorial

I Create, compile, and run C/C++ programs

I Create, organize, and edit files and run programs on Unix/Linux

8 / 45 L01-intro

Computer Organization and Design

I This course is all about how computers work

I But what do we mean by a computer?
I Different types: embedded, laptop, desktop, server
I Different uses: automobiles, graphics, finance, genomics ...
I Different manufacturers: Intel, Apple, IBM, Sony, Oracle ...
I Different underlying technologies and different costs

I Analogy: Consider a course on “automotive vehicles”
I Many similarities from vehicle to vehicle (e.g., wheels)
I Huge differences from vehicle to vehicle (e.g., gas vs. electric)

I Best way to learn:
I Focus on a specific instance and learn how it works
I While learning general principles and historical perspectives

9 / 45 L01-intro

Overview

Course Information

Background

Organization – First Glance

Summary

10 / 45 L01-intro

A Computer

Desktop computers

Designed to deliver good performance to a single user at low cost
usually executing 3rd party software, usually incorporating a graphics
display, a keyboard, and a mouse

10 / 45 L01-intro

Other Classes of Computers
Servers
Used to run larger programs for multiple, simultaneous users typically
accessed only via a network and that places a greater emphasis on
dependability and (often) security

Supercomputers

A high performance, high cost class of servers with hundreds to
thousands of processors, terabytes of memory and petabytes of
storage that are used for high-end scientific and engineering
applications.

Embedded computers (processors)

A computer inside another device used for running one predetermined
application

11 / 45 L01-intro

Supercomputers

Tianhe-2 (MilkyWay-2)

I Over 3 million cores
I Power: 17.6 MW (24 MW with cooling)
I Speed: 33.86 PFLOPS (peta = 1015)

12 / 45 L01-intro

Embedded Computers in You Car

13 / 45 L01-intro

PostPC Era

Personal Mobile Device (PMD)

Battery-operated device with wireless connectivity

Warehouse Scale Computer (WSC)

Datacenter containing hundreds of thousands of servers providing
software as a service (SaaS)

14 / 45 L01-intro

Growth in Cell Phone Sales (Embedded)
I embedded growth >> desktop growth
I Where else are embedded processors found?

15 / 45 L01-intro

The Evolution of Computer Hardware

When was the first transistor invented?

(a) (b)

(a) 1947, bi-polar transistor, by John Bardeen et al. at Bell Laboratories; (b) UNIVAC I (Universal
Automatic Computer): the first commercial computer in USA.

16 / 45 L01-intro

The Evolution of Computer Hardware

When was the first IC (integrated circuit) invented?

(a) (b)

(a) 1958, by Jack Kilby@Texas Instruments, by hand. Several transistors, resistors and
capacitors on a single substrate. (b) IBM System/360, 2MHz, 128KB – 256KB.

17 / 45 L01-intro

The Evolution of Computer Hardware

When was the first Microprocessor?

(a) (b)

1971, Intel 4004.

18 / 45 L01-intro

The IC Manufacturing Process

Yield
Proportion of working dies per wafer

19 / 45 L01-intro

AMD Opteron X2 Wafer

300mm wafer, 117 chips, 90nm technology.

20 / 45 L01-intro

Integrated Circuit Cost

Cost per die =
Cost per wafer

Dies per wafer · Yield
Dies per wafer = Wafer area / Die area

Yield =
1

[1 + (Defects per area · Die area / 2)]2

Nonlinear relation to area and defect rate
I Wafer cost and area are fixed
I Defect rate determined by manufacturing process
I Die area determined by architecture and circuit design

21 / 45 L01-intro

Impacts of Advancing Technology
Processor

I Logic capacity: increases about 30% per year
I Performance: 2× every 1.5 years

Memory

I DRAM capacity: 4× every 3 years, about 60% per year
I Memory speed: 1.5× every 10 years
I Cost per bit: decreases about 25% per year

Disk

I Capacity: increases about 60% per year

22 / 45 L01-intro

Moore’s Law for CPUs and DRAMs

From: “Facing the Hot Chips Challenge Again”, Bill Holt, Intel, presented at Hot Chips 17, 2005.

23 / 45 L01-intro

Main driver: device scaling ...

From: “Facing the Hot Chips Challenge Again”, Bill Holt, Intel, presented at Hot Chips 17, 2005.

24 / 45 L01-intro

Technology Scaling Road Map (ITRS)

Year 2004 2006 2008 2010 2012
Feature size (nm) 90 65 45 32 22

Intg. Capacity (BT) 2 4 6 16 32

Fun facts about 45nm transistors
I 30 million can fit on the head of a pin
I You could fit more than 2,000 across the width of a human hair
I If car prices had fallen at the same rate as the price of a single

transistor since 1968, a new car today would cost about 1 cent

25 / 45 L01-intro

Highest Clock Rate of Intel Processors

What if the exponential increase had kept up? Why not?
I Due to process improvements
I Deeper pipeline
I Circuit design techniques

26 / 45 L01-intro

Highest Clock Rate of Intel Processors

What if the exponential increase had kept up? Why not?
I Due to process improvements
I Deeper pipeline
I Circuit design techniques

26 / 45 L01-intro

Power Issue

Power = Capacitive load · Voltage2 · Frequency∗

Example

For a simple processor, if capacitive load is reduced by 15%, voltage is
reduced by 15%, maintain the same frequency, how much power
consumption can be reduced?

∗here we only consider dynamic power, but not static power
27 / 45 L01-intro

A Sea Change Is at Hand
I The power challenge has forced a change in the design of

microprocessors
I Since 2002 the rate of improvement in the response time of

programs on desktop computers has slowed from a factor of 1.5
per year to less than a factor of 1.2 per year

I As of 2006 all desktop and server companies are shipping
microprocessors with multiple processors – cores – per chip

I Plan of record is to add two cores per chip per generation (about
every two years)

Product AMD
Barcelona

Intel
Nehalem

IBM Power 6 Sun Niagara
2

Cores per chip 4 4 2 8
Clock rate ~2.5 GHz ~2.5 GHz 4.7 GHz 1.4 GHz
Power 120 W ~100 W ~100 W 94 W

28 / 45 L01-intro

Intel Core i7 Processor

45nm technology, 18.9mm x 13.6mm, 0.73billion transistors, 2008

29 / 45 L01-intro

Overview

Course Information

Background

Organization – First Glance

Summary

30 / 45 L01-intro

What is a Computer?

Components

I processor (datapath, control)
I input (mouse, keyboard)
I output (display, printer)
I memory (cache, main memory, disk drive, CD/DVD)
I network

Our primary focus: the processor (datapath and control) and its
interaction with memory systems

I Implemented using tens/hundreds of millions of transistors
I Impossible to understand by looking at each transistor
I We need abstraction!

30 / 45 L01-intro

Major Components of a Computer

31 / 45 L01-intro

Machine Organization
I Capabilities and performance characteristics of the principal

Functional Units (FUs). (e.g., register file, ALU, multiplexors,
memories, ...)

I The ways those FUs are interconnected (e.g., buses)
I Logic and means by which information flow between FUs is

controlled
I The machine’s Instruction Set Architecture (ISA)
I Register Transfer Level (RTL) machine description

32 / 45 L01-intro

Processor Organization

Control needs to have circuitry to
I Decide which is the next instruction and input it from memory
I Decode the instruction
I Issue signals that control the way information flows between

datapath components
I Control what operations the datapath’s functional units perform

Datapath needs to have circuitry to
I Execute instructions - functional units (e.g., adder) and storage

locations (e.g., register file)
I Interconnect the functional units so that the instructions can be

executed as required
I Load data from and store data to memory

33 / 45 L01-intro

System Software

Systems software

Applications software

Hardware

Operating System
I Supervising program that interfaces the user’s program with the

hardware (e.g., Linux, iOS, Windows)
I Handles basic input and output operations
I Allocates storage and memory
I Provides for protected sharing among multiple applications

Compiler
I Translate programs written in a high-level language (e.g., C, Java)

into instructions that the hardware can execute
34 / 45 L01-intro

Advantages of Higher-Level Languages ?
I Allow the programmer to think in a more natural language and for

their intended use (Fortran for scientific computation, Cobol for
business programming, Lisp for symbol manipulation, Java for
web programming, ...)

I Improve programmer productivity – more understandable code
that is easier to debug and validate

I Improve program maintainability
I Allow programs to be independent of the computer on which they

are developed (compilers and assemblers can translate high-level
language programs to the binary instructions of any machine)

I Emergence of optimizing compilers that produce very efficient
assembly code optimized for the target machine

As a result, very little programming is done today at the assembler level

35 / 45 L01-intro

Below the Program

• High-level	language	program	(in	C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly	language	program	(for	MIPS)
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine	(object)	code	(for	MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

36 / 45 L01-intro

Below the Program

• High-level	language	program	(in	C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly	language	program	(for	MIPS)
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine	(object)	code	(for	MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?
36 / 45 L01-intro

Input Device Inputs Object Code

Processor

Control

Datapath

Memory

000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

37 / 45 L01-intro

Object Code Stored in Memory

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

38 / 45 L01-intro

Object Code Stored in Memory

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

38 / 45 L01-intro

Decode & Excute Codes

Processor

Control

Datapath

Memory000000 00100 00010 0001000000100000

Devices

Input

Output

Network

I Control decodes the instruction to determine what to execute

I Datapath executes the instruction as directed by control

39 / 45 L01-intro

Decode & Excute Codes

Processor

Control

Datapath

Memory

contents Reg #4 ADD contents Reg #2
results put in Reg #2

000000 00100 00010 0001000000100000

Devices

Input

Output

Network

I Control decodes the instruction to determine what to execute
I Datapath executes the instruction as directed by control

39 / 45 L01-intro

What Happens Next?

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network
Fetch

DecodeExec

I Processor fetches the next instruction from memory
I How does it know which location in memory to fetch from next?

40 / 45 L01-intro

Output Device Outputs Data

Processor

Control

Datapath

Memory

00000100010100000000000000000000
00000000010011110000000000000100
00000011111000000000000000001000

Devices

Input

Output

Network

41 / 45 L01-intro

Instruction Set Architecture (ISA)

The interface description separating the software and hardware

software

hardware

instruction set architecture

42 / 45 L01-intro

Instruction Set Architecture (ISA)

I ISA, or simply architecture – the abstract interface between the
hardware and the lowest level software that includes all the
information necessary to write a machine language program,
including instructions, registers, memory access, I/O, ...

I Enables implementations of varying cost and performance to run
identical software

I The combination of the basic instruction set (the ISA) and the
operating system interface is called the application binary
interface (ABI)

I ABI: The user portion of the instruction set plus the operating
system interfaces used by application programmers. Defines a
standard for binary portability across computers.

43 / 45 L01-intro

The MIPS ISA
Instruction Categories

I Load/Store
I Computational
I Jump and Branch
I Floating Point
I Memory Management
I Special

R0 - R31

PC
HI
LO

Registers

3 Instruction Formats: all 32 bits wide

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

44 / 45 L01-intro

Overview

Course Information

Background

Organization – First Glance

Summary

45 / 45 L01-intro

How Do the Pieces Fit Together?

I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory
system

Datapath & Control

network

I Coordination of many levels of abstraction
I Under a rapidly changing set of forces
I Design, measurement, and evaluation

45 / 45 L01-intro

How Do the Pieces Fit Together?

I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory
system

Datapath & Control

network

CSCI3150
CSCI3120

CENG2400&CENG3420

CENG3470
ENGG2020

CENG4430

I Coordination of many levels of abstraction
I Under a rapidly changing set of forces
I Design, measurement, and evaluation

45 / 45 L01-intro

	Main Talk
	Course Information
	Background
	Organization – First Glance
	Summary

