CENG 3420 Midterm (2017 Spring)

Name: ID:	
Q1 (20%)	Check or fill the correct answer:
1.	Decimal value of 36 ₈ is
2.	Drive strength of a gate can be increased by reducing
3.	Name 3 instructions that can do branch, and
4.	MIPS stack address grows from to (fill low or high)
5.	As one of the evaluation metrics of computer, throughput is defined by
6.	A flip-flop is level-sensitive/edge-triggered.

7. Remaindor of dividing 1001011 by 1001 is _____.

Q2 (20%) Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

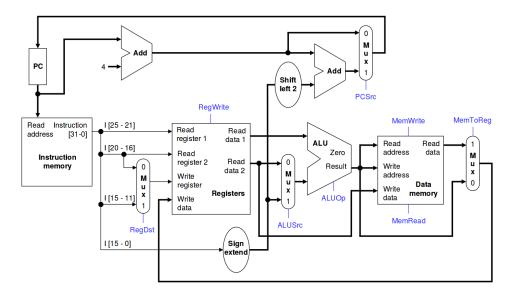
Table 1: Machine A

Instruction Type	Instructions Count	CPI
Arithmetic and logic	8	1
Load and store	4	3
Branch1	2	4
Others	4	3

Table 2: Machine B

Instruction Type	Instructions Count	CPI
Arithmetic and logic	10	1
Load and store	8	2
Branch1	2	4
Others	4	3

- 1. (16%) Determine the effective CPI, MIPS ¹ rate, and execution time for each machine.
- 2. (4%) Comment on the results above.
- Q3 (20%) Answer the following questions about logic gates.
 - 1. (8%) Draw schematic view of NAND and NOR gates.
 - 2. (8%) Considering a single bit half-adder². Write the logic expressions of sum (S) and carry (C) with respective to two inputs A and B if only NAND, NOR and NOT operations are allowed.


¹millions of instructions per second

²Without carry input

- 3. (4%) Based on 1 and 2, how many transistors are required to implement one-bit half adder?
- Q4 (20%) Answer the following questions about mips processor:
 - 1. (10%) Elaborate five stages of load instruction in pipeline design.
 - 2. (15%) Describe all possible hazards in pipeline design.
 - 3. (5%) List all the data hazards of following instructions.

```
lw $t0, 0($a0)
add $t0, $t0, 1
sw $t0, 0($a0)
add $a0, $a0, 4
```

- **Q5** (20%) Short answer questions. Please fill in the blanks.
 - 1. In MIPS structure, by default after one instruction, PC is increased by ___.
 - 2. For an R-type instruction in MIPS, the op field is __ bits, while the rs field is __ bits.
 - 3. For a J-type instruction in MIPS, the new PC is determined by the lower ____ bits of the fetched instruction.

4. Based on the above datapath, finish the blanks in the following table. Here lwd is a new instruction. lwd \$rd, \$rt (\$rs) sets register \$rd to the value at Mem[\$rs +\$rt].

	RegDst	ALUSrc	MemReg	RegWr	MemRd	MemWr
lw	0		1		1	0
SW	X		X		0	1
beq	X		X		0	0
lwd	1		1			