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• http://www.segway.com/

• http://wowwee.com/mip/

Self Balance Vehicle / Robot
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Motion against the tilt angle, so it can stand upright.

Basic Idea
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http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html

• L3G4200D: gyroscope, measure angular rate (relative value)

• ADXL345: accelerometer, measure acceleration

IMU Board
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X reads slightly negative

g

X reads slightly positive.

X now sees some gravity.

Accelerometer

• Give accurate reading of tilt angle

• Slower to respond than Gyro’s

• prone to vibration/noise

Gyro reads positive. Gyro reads negative.

Gyroscope

• response faster

• but has drift over time

Complementary Filter
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• Since

Gyroscope

High 
frequency

Accelerometer

Low 
frequency

• Combine two sensors to find output

Complementary Filter (cont.)
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Mapping Sensors

Y

X

Angle

Angular Velocity

Complementary Filter

Numeric 
Integration

Low-Pass
Filter

High-Pass
Filter

Σ

Read_acc();
Read_gyro();
Ayz=atan2(RwAcc[1],RwAcc[2])*180/PI; //angle by accelerometer
Ayz-=offset; //adjust to correct
Angy = 0.98*(Angy+GyroIN[0]*interval/1000)+0.02*Ayz; //complement filter

Complementary Filter (cont.)
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Recursive Data Processing
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Recursive Data Processing
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Recursive Data Processing
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Recursive Data Processing
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Data Fussion
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Covariance Matrix
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• Born in Budapest, Hungary

• BS in 1953 and MS in 1954 from MIT electrical engineering

• PhD in 1957 from Columbia University.

• Famous for his co-invention of the Kalman filter – widely used in control systems to
extract a signal from a series of incomplete and noisy measurements.

• Convince NASA Ames Research Center 1960

• Kalman filter was used during Apollo program

Rudolf Kalman (1930 – 2016)
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Self-Driving Car Location Problem

Problem Example 1
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Self-Driving Car Location Problem
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Exercise: Analyse Kalman Gain

What is Kalman Gain Kk, if measurement noise R is very small? What if R is very big?
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Angle Measurement System

xt = Atxt−1 + Btut + wt

• xt: state in time t

• At: state transition matrix from time t − 1 to time t

• ut: input parameter vector at time t

• Bt: control input matrix – apply the effort of ut

• wt: process noise, wt ∼ N(0,Qt)
1

1wt assumes zero mean multivariate normal distribution, covariance matrix Qt

Problem Example 2
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Angle Measurement System

xt = Atxt−1 + Btut + wt

• xt = [xt, ẋt]
>: xt is current angle, while ẋt is current rate

• At =

[
1 ∆t
0 1

]
• Bt = [

(∆t)2

2
,∆t]>

• ut = ∆ẋt

Problem Example 2
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System Measurement

zt = Cxt + vt

• zt: measurement vector

• C: transformation matrix mapping state vector to measurement

• vt: measurement noise, vt ∼ N(0,Rt)
2

2vt assumes zero mean multivariate normal distribution, covariance matrix Rt

Problem Example 2
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Exercise
In angle measurement lab, what is the transformation matrix C?

zt = Cxt + vt
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