
CENG 5030
Energy Efficient Computing

L02: CNN Training

Bei Yu

(Latest update: January 20, 2021)

Spring 2021

1 / 37

Overview

CNN Intialization

Gradient Descent Methods

Learning rate annealing

Normalization

2 / 37

Overview

CNN Intialization

Gradient Descent Methods

Learning rate annealing

Normalization

3 / 37

CNN Initialization
I Constant initialization or Random initialization
I Orthogonal initialization
I Xaiver initialization
I Kaiming initialization

Initialization methods contain/adapt materials developed by

I Kaiming He et al. (Dec. 2015). “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV)

I Andrew M. Saxe, James L. McClelland, and Surya Ganguli (2013). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. eprint: arXiv:1312.6120

I Xavier Glorot and Yoshua Bengio (13–15 May 2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: ed. by Yee Whye Teh and Mike Titterington. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: JMLR
Workshop and Conference Proceedings, pp. 249–256. url:
http://proceedings.mlr.press/v9/glorot10a.html

3 / 37

arXiv:1312.6120
http://proceedings.mlr.press/v9/glorot10a.html

Constant initialization or Random initialization

I Constant Initialization

Constant Initialization
All weights are initialized by a constant
This will reduce the learning efficiency and generalization ability of a neural network

I Random initialization

Uniform distribution intialization1

W ∼ U[a, b]

Gaussian initialization
W ∼ Normal(µ, σ2)

1https://www.ucd.ie/msc/t4media/Uniform%20Distribution.pdf
4 / 37

https://www.ucd.ie/msc/t4media/Uniform%20Distribution.pdf

Xaiver Initialization
Definition
zi is the input vector of layer i, and si is the feature vector of the activation function at layer i, we have
si = zi ·W i + bi and zi+1 = f (si) where f is the symmetric activation function with unit derivative at 0
(i.e., f ′(0) = 1)

Insight
For the stable mapping from the input domain to the target domain, we want to make the standard
derivation of the input domain and the target domain are as equal as possible (i.e., keep the
information flowing better in the neural networks)

Forward propagation
Var(zi) = Var(x) ·

∏i−1
i′=0 ni′Var(W i′)

Backward propagation
Var(∂Cost

∂si) = Var(∂Cost
∂sd) ·

∏d
i′=i ni′+1Var(W i′)

5 / 37

Xaiver Initialization
Forward propagation

∀(i), niVar(W i) = 1

Backward propagation
∀(i), ni+1Var(W i) = 1

As a compromise between two constraints
∀(i),Var(W i) = 2

ni+ni+1

Assume we use a Uniform distribution
W ∼ U[− 1√

n ,
1√
n]

Xaiver inititialization

W ∼ U[−
√

6
√

ni + ni+1
,

√
6

√
ni + ni+1

]

6 / 37

Kaiming Initialization

Insight
W has a symmetric distribution around zero and E[b] = 0

Follow the same rule with Xaiver initiailization

We have
Var(zi) = 1

2 Var(xi)

Kaiming initialization

W ∼ U[−

√
6
ni
,

√
6

ni+1
]

7 / 37

Orthogonal Initialization

Insight
Solve the problem of gradient varnishing and exloding in Recurrent Neural Networks

Assume that we are taking a RNN as a form below

A form of a RNN
yt = W t · y0

We apply orthogonal decomposition to W

We have
yt = QΛtQ · y0

Since an orthogonal matrix has the eigenvalue of one, so the gradients would not varnish or
explode during the training phase

8 / 37

Overview

CNN Intialization

Gradient Descent Methods

Learning rate annealing

Normalization

9 / 37

Basic gradient descent methods

I Batch gradient descent
I Stochastic gradient descent
I Mini-batch gradient descent

Reference

I Sebastian Ruder (2016). An overview of gradient descent optimization algorithms. eprint:
arXiv:1609.04747

9 / 37

arXiv:1609.04747

Batch gradient descent

The gradient of the cost function w.r.t. the parameters θ
θ = θ − η · 5θJ(θ)

Features

I The algorithm performs slowly

I The algorithm cannot update the model online (i.e., with new examples on-the-fly)

I The datasets cannot fit in memory possibly

Tips
Batch gradient descent is guaranteed to converge to the global minimum for convex error surfaces
and to a local minimum for non-convex surfaces

10 / 37

Stochastic gradient descent

The gradient of the cost function w.r.t. the parameters θ
θ = θ − η · 5θJ(θ; xi, yi)

Features

I The algorithm usually much faster

I The algorithm can be used to learn online

I SGD cause the objective function to fluctuate heavily since it performs frequent updates with a
high variance

Tips
The fluctuation can help to jump to new and potentially better local minima

11 / 37

Stochastic graident descent2

2By Joe pharos at the English language Wikipedia, CC BY-SA 3.0
12 / 37

Mini-batch gradient descent

The gradient of the cost function w.r.t. the parameters θ
θ = θ − η · 5θJ(θ; x(i:i+n), y(i:i+n))

Features

I Reduce the variance of the parameter updates, which can lead to more stable convergence

I Make use of highly optmized matrix optmizations libraries to accelerate the gradient (i.e., very
efficient)

Tips
Most of training methods utilize mini-batch gradient descent method

13 / 37

Challenges

Challenges

I It is difficult to decide a proper learning rate

I It is difficult to decide a proper learning rate schedule

I It is not reasonable to update all parameters using the same learning rate

I It is difficult to jump out of local minima and also saddle points

14 / 37

Gradient descent optimization methods

Gradient descent optmization methods contain/adapt materials developed by

I Ning Qian (1999). “On the momentum term in gradient descent learning algorithms”. In: Neural
networks 12.1, pp. 145–151

I Yurii E Nesterov (1983). “A method for solving the convex programming problem with
convergence rate O (1/kˆ 2)”. In: Dokl. akad. nauk Sssr. Vol. 269, pp. 543–547

I Matthew D Zeiler (2012). “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701

I John Duchi, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online
learning and stochastic optimization.”. In: Journal of machine learning research 12.7

I Diederik P Kingma and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980

15 / 37

Momentum

3

vt = γvt−1 + η5θ J(θ)

θ = θ − vt

Features

I The momentum increases for dimensions whose gradients point in the same directions

I The momentum reduces updates for dimensions whose gradients change directions

Tips
The momentum term γ is usually set to 0.9 or a similar value

3Genevieve B. Orr, Willamette University cs449.
16 / 37

Nesterov

vt = γvt−1 + η5θ J(θ − γvt−1)

θ = θ − vt

Features

I NAG uses predicted update to prevent us from going too fast compared with Momentum

I It increases the performance of RNNs on a number of tasks

17 / 37

Adagrad

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

gt,i = 5θt J(θt,i)

where Gt ∈ Rd×d is a diagonal matrix where each diagonal elment Gt,ii is the sum of
squares of the gradients w.r.t. θi up to time step t, ε is a smoothing term which avoids
division by zero (e.g., 1e− 8)

Features

I The learning rate η for different parameters can be varied based on the past gradients

I The accumulated sum of the denominator keeps growing during training, which may cause
gradient varnishing

Tips
The initial learing rate η of most applications uses 0.01 as a default value

18 / 37

Adadelta

θt+1,i = θt,i + ∆θt,i

∆θt,i = − RMS[∆θ]t−1,i

RMS[g]t,i
gt,i

where

RMS[∆θ]t,i =
√

E[∆θ2]t,i + ε

E[∆θ2]t,i = γE[∆θ2]t−1,i + (1− γ)∆θ2
t,i

Tips
With Adadelta, we do not need to set a default learning rate, since it has benn eliminated from the
update rule

19 / 37

RMSprop

E[g2]t = γE[g2]t−1 + (1− γ)g2
t

θt+1 = θt −
η√

E[g2]t + ε
gt

Tips
Hinton suggests γ to be set to 0.9 and a good default value for the learning rate η is 0.001 4

4https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

20 / 37

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

θt+1 = θt −
η√

v̂ + ε
m̂t

where

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

Tips
The authors propse the default value of β1 to be 0.9, 0.999 for β2 and 10−8 for ε

21 / 37

Which optimizer to choose?

I Choose one of the adaptive learning-rate optimization methods usually obtain better
performance and you will not need to tune the learning rate with the default value

I Adam might be the best overall choice

I Vanilla SGD is robust to different initialization methods and learning rate annealing
schedulers

22 / 37

Overview

CNN Intialization

Gradient Descent Methods

Learning rate annealing

Normalization

23 / 37

Different annealing methods

I Step
I Cosine
I Cyclical

Learning rate annealing methods contain/adapt materials developed by

I Leslie N Smith (2017). “Cyclical learning rates for training neural networks”. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE, pp. 464–472

I Ilya Loshchilov and Frank Hutter (2016). “Sgdr: Stochastic gradient descent with warm
restarts”. In: arXiv preprint arXiv:1608.03983

23 / 37

Step learning rate scheduler

Step learning rate scheduler
Decay the learning rate by a pre-defined step size exponentially characterized by γ

24 / 37

Cosine learning rate scheduler
Cosine annealing method / SGDR (i.e., Stochastic Gradient Descent with warm Restarts)

ηt = ηt
min + 1

2 (ηi
max − ηi

min)(1 + cos(Tcur
Ti
π))

Where Ti represents the total epoch numbers

Top-1 and Top-5 test errors obtained by SGD with momentum (i.e., Default) and SGDR on
WRN-28-10 trained on a version of ImageNet

25 / 37

Cyclical learning rate scheduler

Insight
The essence of this learning rate policy comes from the observation that increasing the learning rate
might have a short term negtive effect and yet achieve a longer term beneficial effect

Triangular learning rate policy

26 / 37

Cyclical learning rate scheduler

Classification accuracy while training CIFAR-10

Tips

I Experiments show that it often is good to set stepsize equal to 2-10 times the number of
iterations in an epoch (e.g., stepsize = 8 · epoch)

I Use LR range test to estimate reasonable minimum and maximum boundary values

27 / 37

Cyclical learning rate scheduler

Classification accuracy as a function of increasing learning rate for 8 epochs

The figure shows that the model starts to converge from the beginning, so it is reasonable to
set the baseline learning rate to 0.001. Furthermore, when the learning rate is above 0.006,
the accuracy rise gets rough and eventually begins to drop so it is reasonable to set the
maximum learning rate to 0.006

28 / 37

Overview

CNN Intialization

Gradient Descent Methods

Learning rate annealing

Normalization

29 / 37

Normalization
Reduce Internal Covariate Shift, accelerate the training and improve the performance of a
neural network
I Batch normalization
I Layer normalization
I Instance normalization
I Weight normalization

Normalization methods contain/adapt materials developed by

I Sergey Ioffe and Christian Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167

I Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer normalization”. In:
arXiv preprint arXiv:1607.06450

I Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky (2016). “Instance normalization: The
missing ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022

I Tim Salimans and Durk P Kingma (2016). “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks”. In: Advances in neural information processing
systems, pp. 901–909

29 / 37

Batch normalization
Internal Covariate Shift
Internal Covariate Shift is as the change in the distribution of network activations due to the change
in network parameters during training

Algorithm 1 Batch Normalization Transform
Input: Values of x over a mini-batch: B = x1,2,...,m;
1: Parameters to be learned: γ, β

Output: yi = BNγ,β(xi)
2: // mini-batch mean
3: µB = 1

m
∑m

i=1 xi
4: // mini-batch variance
5: σ2

B = 1
m
∑m

i=1(xi − µB)2

6: // normalize
7: x̂i = xi−µB√

σ2
B+ε

8: // scale and shift
9: yi = γx̂i + β ≡ BNγ,β(xi)

30 / 37

Batch normalization
I Back propagation with Batch Normalization
I Use chain rules to optmize γ and β:

∂`

∂x̂i
=

∂`

∂yi
· γ

∂`

∂σ2
B

=

m∑
i=1

∂`

∂x̂i
· (xi − µB) · −1

2
(σ2
B + ε)

−3
2

∂`

∂µB
=

m∑
i=1

∂`

∂x̂i
· −1√

σ2
B + ε

∂`

∂x̂i
· −1√

σ2
B + ε

+
∂`

∂σ2
B
· 2(xi − µB)

m
+

∂`

∂µB
· 1

m

∂`

∂γ
=

m∑
i=1

∂`

∂yi
· x̂i

∂`

∂β
=

m∑
i=1

∂`

∂i

31 / 37

Batch normalization
Algorithm 2 Training a Batch Normalization Network
Input: Network N with trainable parameters Θ;
1: subset of activations xkK

k=1
Output: Batch-normalized network for inference, N inf

BN
2: N tr

BN ← N // Training BN network
3: for k = 1 to K do
4: Add transformation y(k) = BNγk,β(k)(x(k)) to N tr

BN (i.e., Algorithm of Batch Normalization Trans-
form)

5: Modify each layer in N tr
BN with input x(k) to take y(k) instead

6: end for
7: Train N tr

BN to optimize the parameters Θ
⋃
γk, βkK

k=1
8: N inf

BN ← N tr
BN // Inference BN network with frozen parameters

9: for k = 1 to K do
10: // For clarity, x ≡ x(k), γ ≡ γ(k), µB ≡ µ(k)

B
11: Process multiple training mini-batches B, each of size m, and average over them:
12: E[x]← EB[µB]
13: VAR[x]← m

m−1 EB[σ2
B]

14: In N inf
BN , replace the transform y = BNγ,β(x) with y = γ√

VAR[x]+ε
· x + (β − γE[x]√

VAR[x]+ε
)

15: end for
32 / 37

Weight normalization

w =
g
‖v‖

v

where the gradients of g and v:

5gL =
5wL · v
‖v‖

5vL =
g
‖v‖
5w L− g5w L

‖v‖2 v

The relationship between Batch normalization
The pre-activation t for each mini-batch in the Batch normalization

t′ = t−µ[t]
σ[t]

and
t = v · x

For the special case of a single layer with the input features x that has been whitened (i.e., µ[x] = 0
and σ[x] = 1) Weight normalization is given by µ[t] = 0 and σ[t] = ‖v‖

33 / 37

Weight normalization

Training error for CIFAR-10 using different network parameterizations

34 / 37

Layer normalization
at = Whhht−1 + Wxhxt

ht = f [
g
σt

⊙
(at − µt) + b]

µt =
1
H

H∑
i=1

at
i

σt =

√√√√ 1
H

H∑
i=1

(at
i − µt)2

where xt is the current input, ht−1 is the previous vector of hidden states. Whh is the recurrent hidden to hidden weights, Wxh
is the bottom up input to hidden weights,

⊙
is the element-wise multiplication between two vectors, b and g are defined as

the bias and gain parameters of the same dimension as ht

Features

I Layer normalization does not calculate the mean and standard derivation based on the
mini-batch, which can be utilized in RNN rather than Batch normalization

I All the hidden units share the same normalization terms µ and σ

I Layer normalization does not impose any constraint on the size of a mini-batch and it can be
used in the pure online regime with batch size 1

35 / 37

Instance normalization
Let x ∈ RT×C×W×H and xtijk denote its tijk-th element where j and k span spatial
dimensions, i is the feature channel (color channel if the input is an RGB image), and t is
the index of the image in the batch. The instance normalization is formulated as:

ytijk =
xtijk − µti√
σ2

ti + ε

µti =
1

HW

W∑
l=1

∑
m = 1Hxtilm

σ2
ti =

1
HW

W∑
l=1

H∑
m=1

(xtilm − µti)
2

Features

I Instance normalization is used in the style transfer task (i.e., task-specific technique)

I It is based on Batch normalization

36 / 37

Instance normalization

Stylization examples using instance normalization. First row: style images, second row: original images and its stylized
versions

37 / 37

	Main Talk
	CNN Intialization
	Gradient Descent Methods
	Learning rate annealing
	Normalization

