
CENG 3420
Computer Organization & Design

Lecture 10: Instruction-Level Parallelism

Bei Yu

(Latest update: April 8, 2021)

Spring 2021

1 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

2 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

3 / 35

Extracting Yet More Performance

Superpipelining

Increase the depth of the pipeline to increase the clock rate

The more stages in the pipeline, the more forwarding/hazard hardware needed and the
more pipeline latch overhead (i.e., the pipeline latch accounts for a larger and larger
percentage of the clock cycle time)

Multiple-Issue

Fetch (and execute) more than one instructions at one time (expand every pipeline stage to
accommodate multiple instructions)

3 / 35

Example on Multiple-Issue

I The instruction execution rate, CPI, will be less than 1, so instead we use IPC:
instructions per clock cycle

I E.g., a 3 GHz, four-way multiple-issue processor can execute at a peak rate of 12
billion instructions per second with a best case CPI of 0.25 or a best case IPC of 4

Question: If the datapath has a five stage pipeline, how many instructions are active
in the pipeline at any given time?

4 / 35

ILP & Machine Parallelism

Instruction-level parallelism (ILP)

A measure of the average number of instructions in a program that a processor might be
able to execute at the same time

Mostly determined by the number of true (data) dependencies and procedural (control)
dependencies in relation to the number of other instructions

Machine Parallelism
A measure of the ability of the processor to take advantage of the ILP of the program

Determined by the number of instructions that can be fetched and executed at the same
time.

To achieve high performance, need both ILP and Machine Parallelism

5 / 35

Multiple-Issue Processor Styles
Static multiple-issue processors (aka VLIW)
I Decisions on which instructions to execute simultaneously are being made statically (at

compile time by the compiler)

Example: Intel Itanium and Itanium 2 for the IA-64 ISA

I EPIC (Explicit Parallel Instruction Computer)
I 128-bit “bundles” containing three instructions, each 41-bits plus a 5-bit template field

(which specifies which FU each instruction needs)
I Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch)
I Extensive support for speculation and predication

Dynamic multiple-issue processors (aka superscalar)
I Decisions on which instructions to execute simultaneously (in the range of 2 to 8) are

being made dynamically (at run time by the hardware)

IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona

6 / 35

Static v.s. Dynamic

Static: “let’s make our compiler take care of this”
I Fast runtime
I Limited performance (variable values available when is running)

Dynamic: “let’s build some hardware that takes care of this”
I Hardware penalty
I Complete knowledge on the program

7 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

8 / 35

Dependencies
Structural Hazards – Resource conflicts

I A SS/VLIW processor has a much larger number of potential resource conflicts
I Functional units may have to arbitrate for result buses and register-file write ports
I Resource conflicts can be eliminated by duplicating the resource or by pipelining the

resource

Data Hazards – Storage (data) dependencies

Limitation more severe in a SS/VLIW processor due to (usually) low ILP

Control Hazards – Procedural dependencies

I Ditto, but even more severe
I Use dynamic branch prediction to help resolve the ILP issue

Resolved through combination of hardware and software.
8 / 35

Data Hazards

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

True data dependency (RAW)
Antidependency (WAR)
Output dependency (WAW)

True dependency (RAW)

Later instruction using a value (not yet) produced by an earlier instruction.

Antidependencies (WAR)

Later instruction (that executes earlier) produces a data value that destroys a data value
used as a source in an earlier instruction (that executes later).

Output dependency (WAW)

Two instructions write the same register or memory location.

9 / 35

Question: Find all data dependences in this instruction sequence.

I1: ADD R1, R2, R1
I2: LW R2, 0(R1)
I3: LW R1, 4(R1)
I4: OR R3, R1, R2

10 / 35

Data Hazards

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

True data dependency (RAW)
Antidependency (WAR)
Output dependency (WAW)

I True dependencies (RAW) represent the flow of data and information through a
program

I Antidependencies (WAR) and output dependencies (WAW) arise because the limited
number of registers, i.e., programmers reuse registers for different computations
leading to storage conflicts

I Storage conflicts can be reduced (or eliminated) by
I Increasing or duplicating the troublesome resource
I Providing additional registers that are used to re-establish the correspondence between

registers and values
I Allocated dynamically by the hardware in SS processors

11 / 35

Resolve Storage Conflicts

Register Renaming

The processor renames the original register identifier in the instruction to a new register
(one not in the visible register set)

R3b := R3a * R5a
R4a := R3b + 1
R3c := R5a + 1

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

I The hardware that does renaming assigns a “replacement” register from a pool of free
registers

I Releases it back to the pool when its value is superseded and there are no outstanding
references to it

12 / 35

Resolve Control Dependency

Speculation

Allow execution of future instr’s that (may) depend on the speculated instruction:
I Speculate on the outcome of a conditional branch (branch prediction)
I Speculate that a store (for which we don’t yet know the address) that precedes a load

does not refer to the same address, allowing the load to be scheduled before the store
(load speculation)

Must have (hardware and/or software) mechanisms for
I Checking to see if the guess was correct
I Recovering from the effects of the instructions that were executed speculatively if the

guess was incorrect
Ignore and/or buffer exceptions created by speculatively executed instructions until it is clear
that they should really occur

13 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

14 / 35

Static Multiple Issue Machines (VLIW)

Static multiple-issue processors (aka VLIW) use the compiler (at compile-time) to statically
decide which instructions to issue and execute simultaneously

I Issue packet – the set of instructions that are bundled together and issued in one clock cycle – think of it
as one large instruction with multiple operations

I The mix of instructions in the packet (bundle) is usually restricted – a single “instruction” with several
predefined fields

I The compiler does static branch prediction and code scheduling to reduce (control) or eliminate (data)
hazards

VLIW has

I Multiple functional units
I Multi-ported register files
I Wide program bus

14 / 35

An Example: A VLIW RISC-V

The ALU and data transfer instructions are issued at the same time.

15 / 35

An Example: A VLIW RISC-V

Consider a 2-issue RISC-V with a 2 instr bundle

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits

I Instructions are always fetched, decoded, and issued in pairs
I If one instr of the pair can not be used, it is replaced with a noop
I Need 4 read ports and 2 write ports and a separate memory address adder

16 / 35

A RISC-V VLIW (2-issue) Datapath

Instruction
Memory

Add
PC

4

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

No hazard hardware (so no load use allowed)
17 / 35

Compiler Techniques for Exposing ILP

1. Instruction Scheduling
2. Loop Unrolling

18 / 35

Instruction Scheduling Example

Consider the following loop code

lp: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, lp # branch if $s1 != 0

Must “schedule” the instructions to avoid pipeline stalls
I Instructions in one bundle must be independent
I Must separate load use instructions from their loads by one cycle
I Notice that the first two instructions have a load use dependency, the next two and last

two have data dependencies
I Assume branches are perfectly predicted by the hardware

19 / 35

The Scheduled Instruction (Not Unrolled)

ALU or branch Data transfer CC
1
2
3
4
5

20 / 35

The Scheduled Instruction (Not Unrolled)

20 / 35

Loop Unrolling

I Loop unrolling – multiple copies of the loop body are made and instructions from
different iterations are scheduled together as a way to increase ILP

I Apply loop unrolling (4 times for our example) and then schedule the resulting code
I Eliminate unnecessary loop overhead instructions
I Schedule so as to avoid load use hazards

I During unrolling the compiler applies register renaming to eliminate all data
dependencies that are not true data dependencies

21 / 35

Unrolled Code Example

lp: lw $t0,0($s1) # $t0=array element
lw $t1,-4($s1) # $t1=array element
lw $t2,-8($s1) # $t2=array element
lw $t3,-12($s1) # $t3=array element
addu $t0,$t0,$s2 # add scalar in $s2
addu $t1,$t1,$s2 # add scalar in $s2
addu $t2,$t2,$s2 # add scalar in $s2
addu $t3,$t3,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
sw $t1,-4($s1) # store result
sw $t2,-8($s1) # store result
sw $t3,-12($s1) # store result
addi $s1,$s1,-16 # decrement pointer
bne $s1,$0,lp # branch if s1 != 0

22 / 35

The Scheduled Code (Unrolled)
ALU or branch Data transfer CC

1
2
3
4
5
6
7
8

23 / 35

The Scheduled Code (Unrolled)

23 / 35

Compiler Support for VLIW Processors

I The compiler packs groups of independent instructions into the bundle – Done by code
re-ordering (trace scheduling)

I The compiler uses loop unrolling to expose more ILP
I The compiler uses register renaming to solve name dependencies and ensures no

load use hazards occur
I While superscalars use dynamic prediction, VLIW’s primarily depend on the compiler

for branch prediction
I Loop unrolling reduces the number of conditional branches
I Predication eliminates if-the-else branch structures by replacing them with predicated instructions

I The compiler predicts memory bank references to help minimize memory bank
conflicts

24 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

25 / 35

SuperScaler – Dynamic multiple-issue processors

Use hardware at run-time to dynamically decide which instructions to issue and execute
simultaneously

I Instruction-fetch and issue – fetch instructions, decode them, and issue them to a FU
to await execution

I Defines the Instruction lookahead capability – fetch, decode and issue instructions
beyond the current instruction

I Instruction-execution – as soon as the source operands and the FU are ready, the
result can be calculated

I Defines the processor lookahead capability – complete execution of issued instructions
beyond the current instruction

I Instruction-commit – when it is safe to, write back results to the RegFile or D$ (i.e.,
change the machine state)

25 / 35

In-Order

Instruction Fetch and Decode Units
are required to issue instructions in-order so that dependencies can be tracked

Commit Unit
is required to write results to registers and memory in program fetch order so that

I If exceptions occur the only registers updated will be those written by instructions
before the one causing the exception

I If branches are mispredicted, those instructions executed after the mispredicted
branch don’t change the machine state (i.e., we use the commit unit to correct
incorrect speculation)

26 / 35

Out-of-Order

I Although the front end (fetch, decode, and issue) and back end (commit) of the
pipeline run in-order

I FUs are free to initiate execution whenever the data they need is available –
out-of-(program) order execution

I Allowing out-of-order execution increases the amount of ILP

27 / 35

In-Order v.s. Out-of-Order

28 / 35

Out-of-Order Execution

With out-of-order execution, a later instruction may execute before a previous instruction so
the hardware needs to resolve both write after read (WAR) and write after write (WAW) data
hazards.

lw $t0, 0($s1)
addu $t0, $t1, $s2
. . .
sub $t2, $t0, $s2

I If the lw write to $t0 occurs after the addu write, then the sub gets an incorrect value
for $t0

I The addu has an output dependency on the lw – write after write (WAW)
I The issuing of the addu might have to be stalled if its result could later be overwritten

by an previous instruction that takes longer to complete

29 / 35

Overview

Introduction

Dependencies

VLIW

SuperScalar (SS)

Summary

30 / 35

Does ILP Work?

I Yes, but not as much as we’d like
I Programs have real dependencies that limit ILP
I Some dependencies are hard to eliminate, e.g., pointer aliasing
I Some parallelism is hard to expose, e.g., limited window size during instruction issue
I Memory delays and limited bandwidth: hard to keep pipelines full
I Speculation can help if done well

(Security Issue!)

30 / 35

Does ILP Work?

I Yes, but not as much as we’d like
I Programs have real dependencies that limit ILP
I Some dependencies are hard to eliminate, e.g., pointer aliasing
I Some parallelism is hard to expose, e.g., limited window size during instruction issue
I Memory delays and limited bandwidth: hard to keep pipelines full
I Speculation can help if done well (Security Issue!)

30 / 35

Kernel-memory-leaking Intel Processor Design Flaw

More on: http://www.theregister.co.uk/2018/01/04/intel_amd_arm_cpu_vulnerability/

31 / 35

http://www.theregister.co.uk/2018/01/04/intel_amd_arm_cpu_vulnerability/

Summary: Extracting More Performance

To achieve high performance, need both machine parallelism and instruction level
parallelism (ILP) by
I Superpipelining
I Static multiple-issue (VLIW)
I Dynamic multiple-issue (superscalar)

I A processor’s instruction issue and execution policies impact the available ILP
I Register renaming can solve these storage dependencies

32 / 35

CISC vs RISC vs SS vs VLIW

CISC RISC Superscalar VLIW
Instr size variable size fixed size fixed size fixed size (but

large)
Instr format variable

format
fixed format fixed format fixed format

Registers few, some
special
Limited # of
ports

Many GP
Limited # of
ports

GP and
rename (RUU)
Many ports

many, many
GP
Many ports

Memory
reference

embedded in
many instr’s

load/store load/store load/store

Key Issues decode
complexity

data
forwarding,
hazards

hardware
dependency
resolution

(compiler)
code
scheduling

33 / 35

Evolution of Pipelined, SS Processors

Year Clock
Rate

Pipe
Stages

Issue
Width

OOO? Cores
/Chip

Power

Intel 486 1989 25 MHz 5 1 No 1 5 W
Intel Pentium 1993 66 MHz 5 2 No 1 10 W
Intel Pentium
Pro

1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium
4 Willamette

2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium
4 Prescott

2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W
Sun USPARC
III

2003 1950 MHz 14 4 No 1 90 W

Sun T1
(Niagara)

2005 1200 MHz 6 1 No 8 70 W

34 / 35

Power Efficiency

I Complexity of dynamic scheduling and speculations requires power
I Multiple simpler cores may be better (next lecture)

35 / 35

	Main Talk
	Introduction
	Dependencies
	VLIW
	SuperScalar (SS)
	Summary

