CENG4480 Lecture 09: Memory 2

Bei Yu

byu@cse.cuhk.edu.hk (Latest update: November 26, 2020)

_

Fall 2020

香港中文大學

The Chinese University of Hong Kong

CENG4480 v.s. CENG3420

CENG3420:

- architecture perspective
- memory coherent
- data address

CENG4480:

more details on how data is stored

Memory Arrays

Memory Arrays

What if we add feedback to a pair of inverters?

- Usually drawn as a ring of cross-coupled inverters
- Stable way to store one bit of information (w. power)

How to change the value stored?

Replace inverter with NAND gate

RS Latch

- Basic building block: SRAM Cell
 - Holds one bit of information, like a latch
 - Must be read and written
- 12-transistor (12T) SRAM cell
 - Use a simple latch connected to bitline
 - 46 imes 75 λ unit cell

nMOS, pMOS, Inverter

nMOS: Gate = 1, transistor is ON Then electric current path pMOS: Gate = 0, transistor is ON Then electric current path

- Inverter:
 - Q = NOT (A)

- Used in most commercial chips
- A pair of weak cross-coupled inverters
- Data stored in cross-coupled inverters
- Compared with 12T SRAM, 6T SRAM:
 - (+) reduce area
 - (-) much more complex control

6T SRAM Read

- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- Read stability
 - A must not flip
 - N1 >> N2

EX: 6T SRAM Read

Question 1: A = 0, A_b = 1, discuss the behavior:

Question 2: At least how many bit lines to finish read?

6T SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value

Writability

- Must overpower feedback inverter
- N4 >> P2
- N2 >> P1 (symmetry)

EX: 6T SRAM Write

Question 1: A = 0, A_b = 1, discuss the behavior:

Question 2: At least how many bit lines to finish write?

6T SRAM Sizing

High bitlines must not overpower inverters during reads

But low bitlines must write new value into cell

Memory Arrays

Dynamic RAM (DRAM)

- Basic Principle: Storage of information on capacitors
- Charge & discharge of capacitor to change stored value
- Use of transistor as "switch" to:
 - Store charge
 - Charge or discharge

Remove the two p-MOS transistors from static RAM cell, to get a four-transistor dynamic RAM cell.

- Data must be refreshed regularly
- Dynamic cells must be designed very carefully
- Data stored as charge on gate capacitors (complementary nodes)

- No constraints on device ratios
- Reads are non-destructive
- ▶ Value stored at node X when writing a "1" = $V_{DD} V_T$

3T DRAM Layout

[1970: Intel 1003]

- ▶ 576 λ 3T DRAM v.s. 1092 λ 6T SRAM
- Further simplified

Read

- Pre-charge large tank to VDD2
- If Ts = 0, for large tank: VDD2 V1
- If Ts = 1, for large tank: VDD2 + V1
- V1 is very insignificant

- Write: Cs is charged or discharged by asserting WL and BL
- **Read:** Charge redistribution takes place between bit line and storage capacitance
- Voltage swing is small; typically around 250 mV

Trench-capacitor cell [Mano87]

- Question: V_{DD}=4V, C_S=100pF, C_{BL}=1000pF. What's the voltage swing value?
- Note: $\Delta V = \frac{V_{DD}}{2} \cdot \frac{C_S}{C_S + CBL}$

SRAM v.s. DRAM

Static (SRAM)

- Data stored as long as supply is applied
- Large (6 transistorscell)
- Fast
- Compatible with current CMOS manufacturing

Dynamic (DRAM)

- Periodic refresh required
- Small (1-3 transistors/cell)
- Slower
- Require additional process for trench capacitance

Array Architecture

2ⁿ words of 2^m bits each

Good regularity - easy to design

SRAM Memory Structure

Latch based memory

Array Architecture

- 2ⁿ words of 2^m bits each
- How to design if n >> m?
- Fold by 2k into fewer rows of more columns

Decoders

э.

Static CMOS

 \triangleright n:2^{*n*} decoder consists of 2^{*n*} n-input AND gates One needed for each row of memory

Build AND with NAND or NOR gates

Using NOR gates

EX. Decoder

Question: AND gates => NAND gate structure

Larger Decoder

- For n > 4, NAND gates become slow
 - Break large gates into multiple smaller gates

Predecoding

- Many of these gates are redundant
 - Factor out common gates
 - > Predecoder
 - Saves area
 - Same path effort

Question: How many NANDs can be saved?

*Decoder Layout

Decoders must be pitch-matched to SRAM cell

Requires very skinny gates

*Column Circuitry

- Some circuitry is required for each column
 - Bitline conditioning
 - Column multiplexing
 - Sense amplifiers (DRAM)

*Bitline Conditioning

Precharge bitlines high before reads

Equalize bitlines to minimize voltage difference when using sense amplifiers

*Twisted Bitlines

- Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by twisting bitlines

*SRAM Column Example

bit_b_v1f

・ロ・・聞・・ 声・・ 聞・ うらぐ

*Column Multiplexing

- Recall that array may be folded for good aspect ratio
- Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

*Ex: 2-way Muxed SRAM

37/44

*Tree Decoder Mux

- Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- One design is to use k series transistors for 2^k :1 mux
 - No external decoder logic needed

*SRAM from ARM

Sense Amp Operation for 1T DRAM

1T DRAM read is destructive

Read and refresh for 1T DRAM

*Sense Amplifiers (DRAM)

Bitlines have many cells attached

- Ex: 32-kbit SRAM has 256 rows x 128 cols
- 256 cells on each bitline
- \blacktriangleright $t_{pd} \propto (C/I)\Delta V$
 - Ex: Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- Sense amplifiers are triggered on small voltage swing (reduce ΔV)

*Differential Pair Amp

Differential pair requires no clock

But always dissipates static power

*Clocked Sense Amp

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline capacitance

Thank You :)

◆□ →
◆□ →
◆□ →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →