CENG 4480 Lecture 11: PCB

Bei Yu

Reference:

- Chapter 5 of Ground Planes and Layer Stacking
- High speed digital design
- by Johnson and Graham

香港中文大學 The Chinese University of Hong Kong

Introduction

- What is a PCB
- Why we need one?
 - For large scale production/repeatable fabrication
 - Reliable: much better than ad hoc bread board
 - Controlled Electrical characteristics
- Many videos showing you how to make one on You Tube
 - https://www.youtube.com/watch?v=e-gMsABCRTI
- Our lecture:
 - Not on how to make one (you will try one later)
 - More concern about issues on reliability; electrical characteristics

How to Make a PCB

- 1.Cut the board
- 2. Toner transferring
- 3.Removing the paper
- 4. Etching using acid
- 5.Clean the board
- 6.Drilling the holes

Modern PCB Design — 1

DDR3 Layout on Layers 2 and 3 [www.mentor.com]

Functions of Ground and Power Planes

- Provide stable reference voltage for digital signal
- Exchange Distribute power
- Control crosstalk between signals
- Note:
 - All formula are approximations
 - In this book, signal trace = tracks on PCB

Current Path

- At low speed: => Follow Least Resistance
- At high speed: Follow Least Inductance

At low speeds, current flows the path of least resistance

At high speeds, current flows the path of least inductance

Return-current density

- A function of H and D:
 - H: hight of trace above PCB
 - D: perpendicular distance
- Current density at D is:
- $\frac{I_o}{\pi H} \cdot \frac{1}{1 + (D/H)^2}$ • Current density at D is proportional to :

Crosstalk in Solid Ground Planes

- Magnetic fields => induce voltages in other circuit traces
- Mutual Inductance & Mutual Capacitance
 - inductance effects dominates
- Crosstalk $\simeq \frac{K}{1+(D/H)^2}$
 - K <= rise time & length of trace
 - Faster rise time, higher K

Simple Crosstalk Experiment

- 26 in Cu track separated by 0.08 in centre to centre
- Ground plane is a solid Cu sheet

Crosstalk in Slotted Ground Planes

- Ground slots increases crosstalk:
 - large loop => higher inductance
 - Overlaps with other signals
- Must not tolerate

Crosstalk in a slotted ground plane.

Crosstalk on Dense Connection Holes (Vias)

- Slots in ground plane creates unwanted inductance
- Slots inductances slows down rising edges
- Slot inductance creates mutual inductive crosstalk

Crosstalk in Cross-Hatched Ground Plane

- 2-Layer board design
 - (+) Separate power & ground planes
 - (-) At the expense of increased mutual inductance
 - NOT good enough for high speed system

 A bypass is a capacitor that shorts AC signals to ground, so that any AC noise presenting on a DC signal is removed, producing a much cleaner DC signal.

Bypass (cont.)

Ideal DC Signal

DC Voltage

15v

Practical DC Signal

DC Voltage

- At low speed: => Follow Least Resistance
- At high speed: Follow Least Inductance

L11. PCB

Crosstalk in Cross-Hatched Ground Plane

- 2-Layer board design
 - (+) Separate power & ground planes
 - (-) At the expense of increased mutual inductance
 - NOT good enough for high speed system

Crosstalk with Power & Ground Fingers

- 1 power & ground layer; and 1 signal layer
- (+) Save even more board area
- (-) Worse mutual inductance
 - only for very slow circuit
 - Fatten the ground fingers will not help

Guard Traces

- Appear extensively in Analogue Systems
 - On a two layer board w/o. solid ground plane
 - A pair of guard traces can reduce crosstalk by an order of magnitude
- In general, a trace grounded at both ends will half coupling
- In general, reduce crosstalk to 1-3% is good enough

Ex. Guard Trace Calculations

• Question: what's the estimated crosstalk?

• Answer:

since K < 1, crosstalk <
$$\frac{1}{1+(D/H)^2} = \frac{1}{1+8^2} = 0.015$$

Experiment Measuring Guard Trace Efficiencies

More on Guard Traces

- In Digital System
 - Solid ground plane is preferred
 - No extra benefit using guard trace

L11, PCB

Near-end & Far-end Crosstalk

- Descriptions so far based on lumped-circuit analysis
 - No good for long transmission lines

- Inductive Coupling Mechanism
- Capacitance Coupling Mechanism

Inductive Coupling Mechanism

- Magnetic coupling (mutual inductance) likes a transformer
- A series of blips appear on the
 - Negative forward blips
 - Positive reverse blips

Capacitance Coupling Mechanism

• Positive for both forward and reverse blips

L11. PCB

Reflection Diagram

 $\vdash T_p \rightarrow$

Combining Mutual Inductive & Capacitive Coupling

- Generally, over a solid ground plane, inductive and capacitive crosstalk voltages are roughly equal
- Over slotted, hatched or imperfect ground plane
 - Inductive component is much larger
 - Forward cross talk is large & negative

Near-end Crosstalk => Far-end Problem

- In practical applications without source terminators
 - Source is a low impedance driver
 - Reverse crosstalk reflects when it hits the near-end
 - Reflection coefficient = -1
 - Signal seen at the far-end is a copy of the reverse coupling signal at C, delayed by one propagation delay and inverted

Summary (for long transmission line)

- Over solid ground, inductive & capacitive crosstalk are qual
 - Forward crosstalk cancel
 - Reverse crosstalk reinforce
- Over a slotted or imperfect ground plane, inductive coupling exceeds capacitive coupling
 - Forward crosstalk large and negative
- Forward crosstalk is like a square pulse
 - constant height & duration 2Tp
- Reverse crosstalk when it hits a low impedance driver, reflects towards the far-end

Modern PCB Design – 2

Escape Routing [Tan et al. DAC'2009]

Modern PCB Design – 3

Simultaneously Escape Routing [Luo et al. ISPD'2010]

Modern PCB Design — 4 ξ

Untangling Twisted Nets + Length-Matched Routing [Tan et al. ICCAD'2007] 30 L11. PCB

One-Side Untangle Twisted Nets

- Route left side pins to the right side pins
 - Each pin has an ID.
 - Planar routing
 - Only untangle the twisted nets on the left-side
- Example:

How to automatically handle extreme large cases?

Stacking Circuit Board Layers

- Need to specify
 - Which are the power, ground and signal layers
 - Dielectric constant of the substrate
 - Spacing between layers
 - Desire trace dimensions and minimum trace spacing
- Power & Ground Planning
 - Choose solid, hatched or finger ground plane model
 - Use ground & power planes in pair
 - Symmetric pairing in a layer stack helps prevent wrapping
 - Both ground & power planes may be used as low-inductance signal return paths
 - Adequate bypass capacitors between ground and power planes

Selecting Trace Dimensions

- Dense design requires fewer layers but
- Smaller, more closely spaced traces also yield more crosstalk and power-handling capacity problem
- Power-handling capacity depends on
 - Cross sectional area
 - Allowable temperature rise (amount of power dissipated)
- Power is not a problem for a large distribution bus
 - is a big problem for extremely small trace
- High density will lower yield, thus increase cost
 - avoid using minimum attainable line width
- Other factors:
 - Control etching process to avoid wide line width variations to control the impedance

111 PCB

Routing Density versus Layer

- More layer will cost more but easier to lay
- From experience
 - Divide the circuit into quadrants, half of the wires will stay with a quadrant
 - Same statistics when this quadrant is further subdivided into quadrants
 - Average wire length = spacing between quadrants

Thank You