CENG 4480 Lecture 06: PID Control

Bei Yu

Objectives

- 1) Study DC motors
- 2) Study open-loop and closed-loop control
- 3) Control methods
 - I) Proportional feedback control
 - II) PID (proportional-integral-derivative) control

1) DC motors

For robots

CENG4480: feedback control V5a

Motors

- DC motors: Direct current motor, easy to control and use. For making wheeled robots
- Servo motors for making robot legs http://www.lynxmotion .com/

Small <u>Direct</u> <u>Current</u> D.C.

motors

- Speed (~ 1200-2000 rpm).
- Operates on a 3~5Volt, Can use gear box (e.g. ratio 58:1) to increase torque
- Use H-bridge circuit to boost up current from the TLL level to motor driving level.

田宮四驱车配件15351 PRO版专用双头马达, picture from http://item.taobao.com/item.htm?id=1606576457&tra celog=newcardfavirate

Motor control chip

- L293D: H-bridge circuit, up 2A
- LDIR: left motor direction; RDIR: right motor direction
- LEN : left motor enable; REN : right motor enable

2) open-loop and closed-loop control

Feedback control PID theory and implementation

Open-loop motor control and its problems

- Change motor supply power change speed
- Problem: How much power is right?
 - Ans: don't know , depends on internal/external frictions of individual motors.
- Problem: How to make the robot move straight?
- How to control power (Ton) by ISR & an MCU?
 - Solution: Use feedback control to read actual wheel:
 - Slower, increase power (+ Ton)
 - Faster, reduce power (- Ton)

PWM Signal

- Pulse Width Modulation
- Analog results with digital means
- a square signal switched between on and off
- changing the portion the signal on

Exercise

• When using the open-loop control method with a constant PWM signal for both wheels, explain why the robot would slow down when climbing up hill.

Feedback control

- The real solution to real speed control is feedback control
- Require speed encoder to read back the real speed of the wheel at real time.

First you need to have speed encoders

- Read wheel speed.
- Use photo interrupter
- Use reflective disk to save space
- Based on interrupts

Wheel encoder

Our motor and speed encoder

Each wheel rotation= 88 on/off changes IR receiver /Darkened part blocks light IR light source

田宫四驱车配件15351 PRO版专用双头马达,

picture from http://item.taobao.com/item.htm?id=16 06576457&tracelog=newcardfavirate

CENG4480: feedback control V5a

3) Control methods

I) Proportional feedback controlII) PID (proportional-integral-derivative) control

I) Proportional closed-loop feed back control system

• Show the left motor control only

II) PID (proportional-integral-derivative) control

A more formal and precise method Used in most modern machines

History of PID

- By Nicolas Minorsky in 1922
- observations of a helmsman
- steered the ship based on
 - the current course error
 - past error
 - the current rate of change

Introduction

- Control for better performance
- Use PID, choose whatever response you want

Values to evaluate a control system Exercise 2: Describe the terms n the following diagrams

PID Control

$$u(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{de(t)}{dt},$$

where

- e(t): error value
- u(t): control variable
- K_p : coefficient for the proportional (P)
- \blacktriangleright K_i : coefficient for the integral (I)
- K_d : coefficient for the derivative (D)

PID Control

Use of PID

control terms are intertwined

http://en.wikipedia.org/wiki/PID_controller

- Kp (Pgain): **Proportional Gain** Larger Kp typically means faster response since the larger the error, the larger the Proportional term compensation. An excessively large proportional gain will lead to process instability and oscillation.
- Ki (Igain): Integral Gain Larger Ki implies steady state errors are eliminated quicker. The trade-off is larger overshoot: any negative error integrated during transient response must be integrated away by positive error before we reach steady state.
- Kd (Dgain): Derivative Gain Larger Kd decreases overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.

Effects of increasing parameters

http://en.wikipedia.org/wiki/PID_controller

Parameter	Rise Time	Overshoot	Settling Time	Steady state error
Kp (Pgain)	Decrease <u>step1</u>	Increase	Small Change	Decrease
Ki (Igain)	Decrease	Increase	Increase	Eliminate <u>step3</u>
Kd (Dgain)	Small Change	Decrease <u>step2</u>	Decrease	Small Change

Software

PIDrobotdemo.c

(at course webpage)

http://www.cse.cuhk.edu.hk/~khwong/www2/ceng2400/PIDRobotDemo093.c

control method: PID (proportional-integral-derivative) control

Overview

- Main()
- { setup()
- forward (Lstep, Rstep, Lspeed, Rspeed).....
- forward (Lstep, Rstep, Lspeed, Rspeed)
- { lcount=0
- if (lcount>=Lstep)
- Stop left motor
- ...same for right motor...
- .}

•

- //////timer triggered , interrupt service routine, 1000Hz//////
- ____irq exception// Interrupt() running at 1000HZ
- { lcount++
- read wheel speeds
- PID control to achieve L/Rspeed
-same for right motor....
-]

Interrupt

IRC

rate 1000Hz

seel next slide

Speed encoder interfacing (show left motor only)

• Block diagram

The interrupt service routine enables the loop to run 4 times in a second

Part 2 : Algorithm for PID core

– Error <= dead_band, error too small do nothing</p>

control method: PID (proportional-integral-derivative) control

Inside the PID core, we will study these lines

- 5) if((leftErr<DeadBand*(-1))||(leftErr>DeadBand))
- - :
- 7) leftP = Pgain * leftErr; //calculate P Proportional term
- 8) leftI = Igain * leftaccErr; //calculate I Integral term
- 9) leftD = Dgain * (leftErr leftlastErr);//calculate D Derivative term
- 10) leftPWM += (leftP + leftI + leftD);//update motorPWM by PID
- :
- 14) leftaccErr += leftErr; // accumulate error

Dead band

line5) if((leftErr<DeadBand*(-1))||(leftErr>DeadBand))

• **Dead-band** : A **Dead-band** (sometimes called a **neutral zone**) is an area of a <u>signal range</u> or band where no action occurs :

> leftErr = leftRPM - leftRPMset; //calculate left error if(leftErr>DeadBand) { activate motor}

- only enable motor when leftErr> a small value (deadband, ie =1 in our robot)
- Otherwise may oscillate when leftErr is small

Dead-band

Exercise 4:

Discuss what will happen if dead-band is changed, say (a) 0.5 or (b) 2.

Parameters for evaluating a control system

(line 7) Effects of increasing Kp(P)

http://en.wikipedia.org/wiki/PID_controller

Understanding PID –a little summary for the P proportional term

- When the measurement is below the set point (leftRPMset)
 - The motor is currently too slow
 - The P term calculated is +ve, need to push the speed higher
- When the measurement is above the set point (leftRPMset)
 - The motor is running too fast
 - The P proportional term is -ve, lowering down the speed.
- Increase in Pgain (Kp) will decrease rise time (meaning faster to reach set point), decrease steady state error (study it later)
 - It also increases overshoot

(line 9) Effects of increasing Kd (D)

http://en.wikipedia.org/wiki/PID_controller

Derivative term

- Derivative control
 - Dgain*[d(leftErr)/dt]
- d(leftErr)/dt =
 - =Derivative term
 - =current_Err last_Err
 - =leftErr leftlastErr ; in our program

Example: time 0→ t1, the Derivative term (=current-previous) When the measurement is rising, the Derivative term is -ve

Example: time t1 \rightarrow t2, the Derivative term

When the measurement is rising, the Derivative term is -ve

Little Summary: Negative D Derivative term

- When the measurement (leftRPM) is rising, the change (change= current-previous) of error (error = setpoint-leftRPM) is -ve = d(Err/dt)=-ve
- **D Derivative term=** Kd*d(Err/dt) is –VE
- Decrease energy to motor → decrease overshoot

Exercise 6:Fill in ? time t2 \rightarrow t3, the Derivative term When the measurement is falling, the Derivative term is +ve Usage of the D Derivative term ¹/₄ seconds Each ¹/₄ seconds a new left RPM (speed of wheel) is leftPRM overshodt measured leftRPMset =10 g undershoot D is leftErr= leftRPMset -leftPRM D isI+ve D is leftlastErr= leftRPMset -leftlastPRMs =10-7=3+ve -ve e.q. =10-9= 1 **Pgain = 8000;** -ve Igain = 6000; **t2 t3** t4 time Dgain = 5000; 0 **Rise time** In our experiment leftD = Dgain * (leftErr – leftlastErr); leftPWM=276000 at the beginning and leftD= ?_____, which is +ve or –ve?__ 192800 at steady state "leftPWM" increased or decreased? 53 More/less energy delivered to the wheel? CENG4480: feedback control V5a

Little Summary: Positive D Derivative term

- When the measurement (leftRPM) is falling, the change (change= current-previous) of error (error = setpoint-leftRPM) is +ve
- **D Derivative term=** Kd*d(Err/dt) is +VE
- Increase energy to motor → decrease undershoot

Understanding PID –a little summary for the D derivative term

- When the measurement (leftRPM) is rising,
 - The motor is gaining speed
 - The D derivative term is –ve, so lowering the motor speed → decrease overshoot
- When the measurement (leftRPM) is falling,
 - The motor is reducing speed
 - The Derivative term is +ve, so pushing the motor speed higher → decrease undershoot
 - In conclusion, the gradient of the error (Err) determines the adjustment. Depends on whether d(Err)/dt is +ve or -ve.
- Increase in Dgain (Kd) will decrease overshoot/undershoot and settling time (system more stable)

(line 8)Effects of increasing Ki (I)

http://en.wikipedia.org/wiki/PID_controller

	Parameter	Rise Time	Overshoot	Settling Time	Steady state error
5	Kp (Pgain)	Decrease <u>step1</u>	Increase	Small Change	Decrease
	Ki (Igain)	Decrease	Increase	Increase	Eliminate step3

control method: PID (proportional-integral-derivative) control

Time → near steady state

leftRPMset=leftRPM

In our experiment leftPWM=276000 at the beginning and 192800 at steady state

e.g.

Pgain = 8000;

Igain = 6000;

Dgain = 5000;

hence leftErr =0, leftlastErr=0 \rightarrow leftP=0, leftD=0

- leftErr = leftRPMset leftRPM=0
- So as leftlastErr = 0
- Therefore
- Steps
- 7) leftP = Pgain * leftErr//=0
 8) leftI = Igain * leftaccErr;
- //calculate P Proportional term
 //calculate I Integral term
- 9) leftD = Dgain * (leftErr leftlastErr)//=0 //calculate D Derivative term
- 10) leftPWM += (leftP + leftI + leftD);//update left motor PWM using PID

near steady state : leftP=0 leftD=0

The only valid term is the integral term "leftl"

- leftPWM += leftI
- The main idea is to create a small term (leftl) to maintain the leftPWM value

The integral term is found by adding all previous errors

same as leftaccErr=sum{leftErr(t=0)+leftErr(t=1)+.. +leftErr(t=now)}

- 14) leftaccErr += leftErr;//LeftaccErr is the summation of all previous errors
- 8) leftI=Igain*leftaccErr// integral term,
- 10) leftPWM += leftI // near steady state, only leftI is valid

e.g. Pgain = 8000; Igain = 6000; Dgain = 5000;

- Don't worry it will <u>not</u> become infinitive, one measure to safeguard this is:
 - 11) if(leftPWM>PWM_FREQ);// PWM_FREQ=maximum PWM allowed
 - 12) leftPWM=PWM_FREQ;//prevent over range
 - (max.=PWM_FREQ)
- Also, because near steady state, leftaccErr will adjust itself automatically, see next slide

In our experiment leftPWM=276000 at the beginning and 192800 at steady state

How the integral term adjusts itself automatically near steady state

- Near steady state
 - 8) leftl=lgain*leftacceErr
 - 10) leftPWM += leftI
- If measured speed (leftRPM) > set point
 - leftErr is -ve
 - leftaccErr (Acculumation) decreases, hence reducing leftaccErr at a suitable value to maintain leftPWM
- If measured speed (leftRPM) < set point
 - leftErr is +ve
 - leftaccErr (Acculumation) increases, hence increasing leftaccErr at a suitable value to maintain leftPWM

Understanding PID –a little summary for the I Integral term

- When the measurement is below the set point (leftRPMset)
 - The motor is slow
 - The I Intergral term is +ve, pushing the speed higher
- When the measurement is above the set point (leftRPMset)
 - The motor is running too fast
 - The I intergral term is -ve, lowering down the speed.
- Increase in Igain (Ki) will result in
 - It is similar to the P term (see above two points)
 - So increase overshoot, settling time
 - and decrease rise time
 - Note: the main function of Integral control is to reduce steady state error

PID Tuning (usually done by trail and error)

- Tune (adjust manually)
 - step1) Pgain proportional_gain (Kp),
 - step2) Dgain derivative_gain (Kd),
 - step3) Igain integral_gain (Ki)
- Set constant speed V1 for a while (5 seconds) and reduced to (V1)/2 at T1
 - Record the speed by the computer after T1 and see if the performance is ok or not
 - Yes (accept Kp,Ki,Kd)
 - 🛰 No (tune Kp,Ki,Kd again)

done

Summary

• Studies PID control theory and implementation