CENG4480 Lecture 05: Analog/Digital Conversions

Bei Yu

2016 Fall

byu@cse.cuhk.edu.hk

香港中文大學 The Chinese University of Hong Kong

Overview

Preliminaries

Digital to Analog Conversion (DAC)

Analog to Digital Conversion (ADC)

Sample-and-Hold Amplifier

Overview

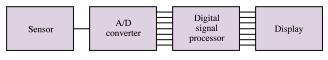
Preliminaries

Digital to Analog Conversion (DAC)

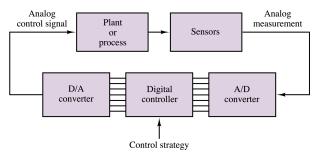
Analog to Digital Conversion (ADC)

Sample-and-Hold Amplifier

Analog/Digital Conversions

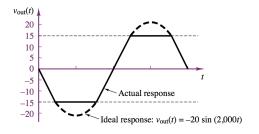

Topics:

- Digital to analog conversion
- Analog to digital conversion
- Sampling-speed limitation
- Frequency aliasing
- Practical ADCs of different speed



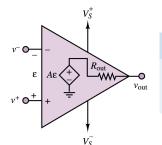
Block Diagrams

Digital measuring instrument



Digital control system

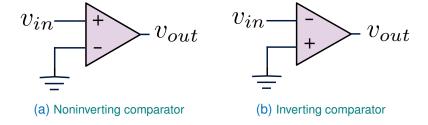
Voltage Supply Limits


Op-amp output with voltage supply limit ($V_S^+ = V_S^- = 15$)

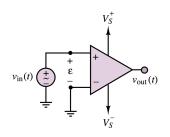
- ▶ Powered by external DC voltage supplies V_S^+ & V_S^-
- Amplifying signals only within the range of supply voltages

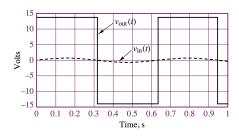
Op-Amp Comparator

Open-Loop Mode


$$v_{out} = A_V(v^+ - v^-)$$

- Extreme large gain
- ▶ Any small difference ϵ will cause large outputs.

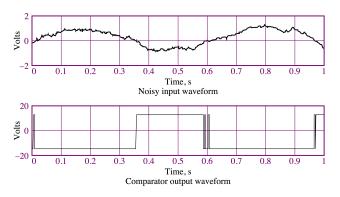

Noninverting & Inverting Comparator



Switching waveforms by Comparator

Switching waveforms of non-inverting comparator.

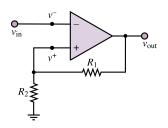
Since $\epsilon = V cos(\omega t)$, therefore

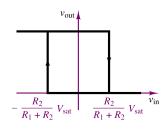

$$\epsilon > 0 \Rightarrow v_{out} = V_{sat}^{+}$$
 $\epsilon < 0 \Rightarrow v_{out} = V_{sat}^{-}$

$$\epsilon < 0 \Rightarrow v_{out} = V_{sat}^-$$

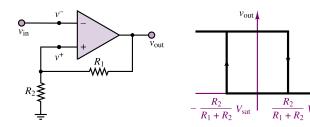
^{*}V_{sat}: saturation voltage (e.g., 15-V supplies is approximately 13.5 V)

Limitation of Conventional Comparator




- In the presence of noisy inputs
- Cross the reference voltage level repeatedly
- Cause multiple triggering

Schmitt Trigger



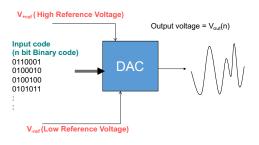
- Based on Inverting comparator
- Positive feedback
- ▶ (+) Increase the switching speed
- (+) Noise immunity

Question: prove two reference voltages of schmitt trigger.

Overview

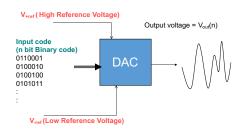
Preliminaries

Digital to Analog Conversion (DAC)

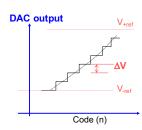

Analog to Digital Conversion (ADC)

Sample-and-Hold Amplifier

Digital-to-Analog Converter (DAC)


$$V_{out} = (b_3b_2b_1b_0)_2$$

= $(b_3 \cdot 2^3 + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0 \cdot 2^0)_{10}$
= $(8b_3 + 4b_2 + 2b_1 + b_0)\Delta v + V_{-ref}$


 Δv : smallest step size by which voltage can increase

How to Determine Δv ?

$$\Delta v = \frac{V_{+ref} - V_{-ref}}{2^n}$$

where n is the bit# of input digital signal.

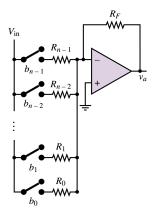
DAC Characteristics

Glitch:

A transient spike in the output of a DAC that occurs when more than one bit changes in the input code.

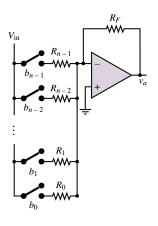
- Use a low pass filter to reduce the glitch
- Use sample-and-hold circuit to reduce the glitch

Settling time:


Time for the output to settle to typically 1/4 LSB after a change in DA output.

DAC Type 1: Weighted Adder DAC

Similar to summing amplifier:



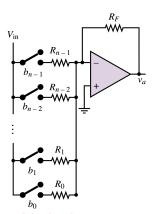
$$v_a = -(\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

DAC Type 1: Weighted Adder DAC

Similar to summing amplifier:

$$v_a = -(\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

If we select
$$R_i = \frac{R_0}{2^i}$$
:


$$v_a = -\frac{R_F}{R_0} (2^{n-1}b_{n-1} + \dots + 2^1b_1 + 2^0b_0) \cdot v_{in}$$

Note here V_{-ref} is 0 (ground)

DAC Type 1: Weighted Adder DAC

Similar to summing amplifier:

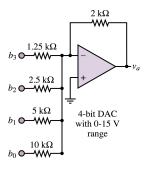
$$v_a = -(\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

If we select
$$R_i = \frac{R_0}{2^i}$$
:

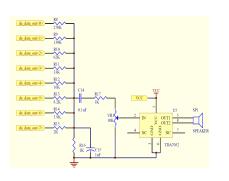
$$v_a = -\frac{R_F}{R_0} (2^{n-1}b_{n-1} + \dots + 2^1b_1 + 2^0b_0) \cdot v_{in}$$

Note here V_{-ref} is 0 (ground)

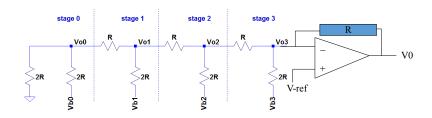
Limitations:


Impossible to fabricate a wide range of resistor values in the same IC chip

Question: 4-bit DAC

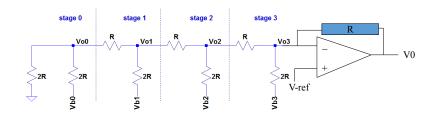

For given $(b_3b_2b_1b_0) = \{(1111), (0000), (1010)\}$, calculate v_a .

Practical Resistor Network DAC and Audio Amplifier


Data Bit	Ideal R	Real R
0 (LSB)	256K	270K
1	128K	130K
2	64K	62K
3	32K	33K
4	16K	16K
5	8K	8.2K
6	4K	3.9K
7 (MSB)	2K	2K

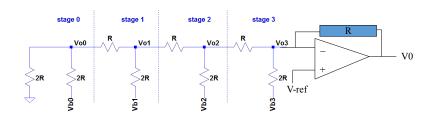
Not perfect, but okay.

DAC Type 2: R-2R DAC


Motivations:

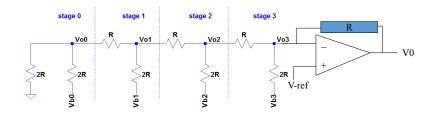
- Use only two values of resistors which make for easy and accurate fabrication and integration
- At each node, current is split into 2 equal parts
- The most popular DAC

DAC Type 2: R-2R DAC


Reference:

http://www.tek.com/blog/tutorial-digital-analog-conversion--r-2r-dac

DAC Type 2: R-2R DAC



Given *I* as input value (*n* bit):

$$V_{o3} = V_{-ref} + I \cdot \frac{V_{+ref} - V_{-ref}}{2^n},$$

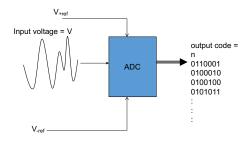
Question: R-2R DAC

For given $(b_3b_2b_1b_0) = \{(1111), (0000), (1010)\}$, calculate v_{o3} .

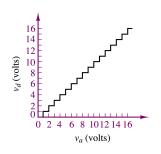
Overview

Preliminaries

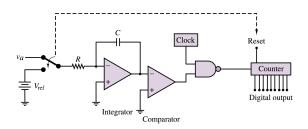
Digital to Analog Conversion (DAC)


Analog to Digital Conversion (ADC)

Sample-and-Hold Amplifier

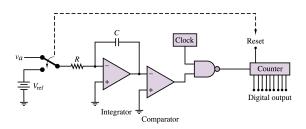

Analog-to-Digital Converter (ADC)

Quantization


nntized ltage			Binary representation			
	v_d	b_3	b_2	b_1	b_0	
	0	0	0	0	0	
	1	0	0	0	1	
	2	0	0	1	0	
	3	0	0	1	1	
	4	0	1	0	0	
	:	:				
	14	1	1	1	0	
	15	1	1	1	1	

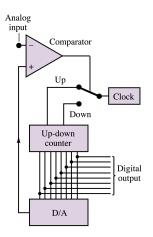
- Convert an analog level to digital output
- ▶ Employ $2^n 1$ intervals (n: bit#)
- v_a: analog voltage
- v_d: output digital voltage

ADC Type 1: Integrating ADC



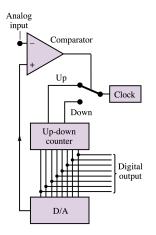
- Accumulate the input current on a capacitor for a fixed time
- Then measure time (T) to discharge the capacitor
- When cap is discharged to 0 V, comparator will stop the counter

ADC Type 1: Integrating ADC


- Accumulate the input current on a capacitor for a fixed time
- Then measure time (T) to discharge the capacitor
- When cap is discharged to 0 V, comparator will stop the counter

Limination: Slow

ADC Type 2: Tracking ADC

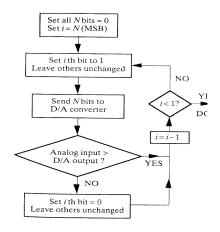


- ADC repeatedly compares its input with DAC outputs
- Up/down count depends on input/DAC output comparison

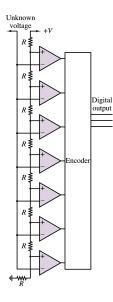
ADC Type 2: Tracking ADC

- ADC repeatedly compares its input with DAC outputs
- Up/down count depends on input/DAC output comparison

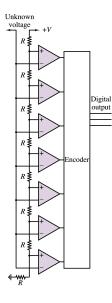
Limination: Slow


ADC Type 3: Successive Approximation

- Replace "Up-down counter" by "control logic"
- Binary search to determine the output bits
- still slow although faster than types 1 & 2

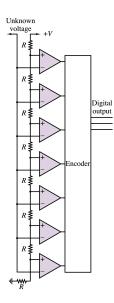


Flow chart of Successive-approximation ADC



- ▶ Divide the voltage range into $2^n 1$ levels
- ▶ Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel

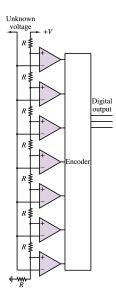
Pros:


- ▶ Divide the voltage range into $2^n 1$ levels
- ▶ Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel

Pros:

- Very fast for high quality audio and video
- Sample and hold circuit NOT required

- ▶ Divide the voltage range into $2^n 1$ levels
- ▶ Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel


Pros:

- Very fast for high quality audio and video
- Sample and hold circuit NOT required

Cons:

- ▶ Divide the voltage range into $2^n 1$ levels
- ▶ Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel

Pros:

- Very fast for high quality audio and video
- Sample and hold circuit NOT required

Cons:

Very expensive for wide bits conversion

Overview

Preliminaries

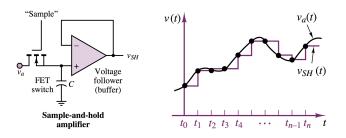
Digital to Analog Conversion (DAC)

Analog to Digital Conversion (ADC)

Sample-and-Hold Amplifier

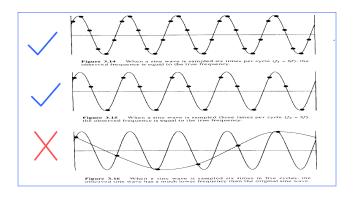
Sample-and-Hold Amplifier

Motivations:


When a slow ADC is used to sample a fast changing signal only a short sampling point can be analyzed

- To resolve uncertainty during ADC
- "freeze" the value of analog waveform for a time sufficient for the ADC to complete its taks

Sample-and-Hold Amplifier



- A MOSFET analog switch is used to "sample" analog waveform
- While MOSFET conducts, charge the "hold" capacitor

Good Sample, Bad Sample

- When sampling 6 times per cycle, close to the original.
- when sampling 3 times per cycle, less reliable but frequency is equal to original.
- When sampling 6 times per 5 cycles, frequency is different.

