CENG4480 Homework 2

Solutions

Q1 Given the following system as shown in Fig. 1. Q_1 is so-call NPN bipolar device, which has following voltage-current characteristic:

$$I_C = I_S e^{\frac{k V_X}{T}} \tag{1}$$

where, T is temperature, k and I_S is constant. Suppose R_2 is a temperature-sensitive resister and has resistor value of $R_{2,0}$ at temperature T_0 , determine the R_2 in terms of T, so that V_Y is stable as temperature changes.

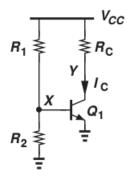


Figure 1: Resistive Divider Biased System

A1 As required $\frac{V_X}{T}$ is constant,

$$V_X = CT \tag{2}$$

Besides,

$$V_X = \frac{R_2}{R_1 + R_2}$$
(3)

We have,

$$C = \frac{R_{2,0}}{T_0 R_1 + T_0 R_{2,0}} \tag{4}$$

Combine Eq. (2)–(4),

$$R_{2,0} = \frac{R_1 R_{2,0} T}{T_0 (R_1 + R_{2,0}) - T R_{2,0}}$$
(5)

Q2 A simple Infra-Red Sensor system to detect passing human is presented as in Fig. 2. A and B are IR Sensors which will generate different output voltages for different infra-red intensity, and higher voltage level corresponds to high light intensity.

(1) Explain how this system works for counting passing pedestrians.

(2) To increase counting accuracy, usually B is covered with materials that can reflect infra-red light. Explain why.

Figure 2: IR-System

A2 (1) When pedestrians pass over IR Sensor, they will approach and deviate the sensor, which corresponds to voltage pulses V_A at the output of it. We can simply count pulse number for passing pedestrian.

(2) When Sensor B is covered with infra-red reflection materials, it can generate pulses V_B caused by non-infra-red wave. We can reduce wrongly counted number by subtract V_B from V_A to avoid counting noise signal.

Q3 Considering the 4-bit DAC in Fig. 3, calculate the output scope of v_a , and the minimum voltage change it can generate.

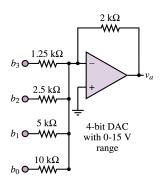


Figure 3: 4-bit DAC

- A3 Boundary of v_a occurs at digital input (0000) and (1111), thus the scope of output is 0–3V. Minimum voltage change occurs when the least significant bit changes, at this occasion, v_a has 0.2V change.
- Q4 Design a fully paralleled ADC, please provide ADC details. ADC should satisfy: (1) Detect input range 0–3V and (2) Generate 4-bit digital output.
- A4 Type: Flash ADC. For 4-bit output, ADC should be able to sense 0.2V input change, thus total 15 comparators are needed with reference voltage 3.2V.
- **Q5** For the 4-bit R-2R DAC, calculate V_0 in terms of $V_{b,0} V_{b,4}$ if V_{ref} is grounded (Fig. 4).
- A5 As shown in Fig 5, first we calculate the equivalence seen from V_{o3} ,

$$R_{eq} = R \tag{6}$$

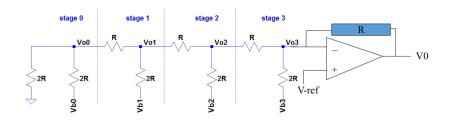


Figure 4: R-2R DAC

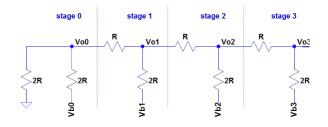


Figure 5: Load of R-2R ADC

Get contribution at V_{o3i} of each digital input V_{bi} , i=0,1,2,3 separately, it's easy to derive from Thevenin equivalent analysis,

$$V_{o30} = \frac{V_{b0}}{16} \tag{7}$$

$$V_{o31} = \frac{V_{b1}}{8}$$
(8)

$$V_{o32} = \frac{V_{b2}}{4}$$
(9)

$$V_{o33} = \frac{V_{b3}}{2}$$
(10)

then, we have,

$$V_{o3} = \frac{V_{b0}}{16} + \frac{V_{b1}}{8} + \frac{V_{b2}}{4} + \frac{V_{b3}}{2}$$
(12)

Using the quality of op amp,

$$V_o = \frac{V_{b0}}{16} + \frac{V_{b1}}{8} + \frac{V_{b2}}{4} + \frac{V_{b3}}{2}$$
(13)

Q6 Briefly describe how PID affects motor control.

A6 TRIVIAL

Q7 Elaborate motion sensors you know.

A7 TRIVIAL

- **Q8** Describe how Sample and Hold Amp works.
- **A8** When sampling signal comes, FET switch open, Capacitor will be charged by v_a and $v_{SH}=v_a(t)$ Repeat previous procedure, continuous analog signal is converted into step signals for further quantization process.