

香港中文大學 The Chinese University of Hong Kong

CENG5030 Part 2-4: CNN Inaccurate Speedup-2 —- Quantization

Bei Yu

(Latest update: March 25, 2019)

Spring 2019

These slides contain/adapt materials developed by

- Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737–1746
- Ritchie Zhao et al. (2017). "Accelerating binarized convolutional neural networks with software-programmable FPGAs". In: *Proc. FPGA*, pp. 15–24
- Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542

State of the art recognition methods

- Very Expensive
 - Memory
 - Computation
 - Power

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

Fixed-Point v.s. Floating-Point

Fixed-Point v.s. Floating-Point

Fixed-Point v.s. Floating-Point

Fixed-Point Arithmetic

Number representation(IL,FL)

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737+1746. • • • •

Fixed-Point Arithmetic

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737+1746.

Fixed-Point Arithmetic: Rounding Modes

Round-to-nearest

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737+1746.

Fixed-Point Arithmetic: Rounding Modes

- Non-zero probability of rounding to either $\lfloor x \rfloor$ or $\lfloor x \rfloor + \epsilon$
- Unbiased rounding scheme: expected rounding error is zero

10

MNIST: Fully-connected DNNs

11

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737-1746. • < = •

MNIST: Fully-connected DNNs

- For small fractional lengths (FL < 12), a large majority of weight updates are rounded to zero when using the round-to-nearest scheme.
 - Convergence slows down
- For FL < 12, there is a noticeable degradation in the classification accuracy

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737–1746. • • • • •

MNIST: Fully-connected DNNs

- Stochastic rounding preserves gradient information (statistically)
 - No degradation in convergence properties
- Test error nearly equal to that obtained using 32-bit floats

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp 1737-1746. * (=)

FPGA prototyping: GEMM with stochastic rounding

Top-level controller and memory hierarchy designed to maximize data reuse

Wavefront systolic array for computing matrix product **AB**. Arrows indicate dataflow

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp+1737+1746. • ()

Maximizing data reuse

Inner Loop:

Cycle through columns of Matrix B (*M/n* iterations)

Outer Loop:

Cycle through rows of Matrix A (*K/p.n* iterations)

Re-use factor for Matrix A: *M* times Re-use factor for Matrix B: *p.n* times

n : dimension of the systolic array
p : parameter chosen based on available
BRAM resources

Stochastic rounding

23

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737–1746. * = * =

Stochastic rounding

¹Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737–1746. A B > 3

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

Binarized Neural Networks (BNN)

CNN

Key Differences

- 1. Inputs are binarized (-1 or +1)
- 2. Weights are binarized (-1 or +1)
- 3. Results are binarized after **batch normalization**

BNN

BNN CIFAR-10 Architecture [2]

- 6 conv layers, 3 dense layers, 3 max pooling layers
- All conv filters are 3x3
- First conv layer takes in floating-point input
- 13.4 Mbits total model size (after hardware optimizations)

Advantages of BNN

1. Floating point ops replaced with binary logic ops

- Encode $\{+1,-1\}$ as $\{0,1\} \rightarrow$ multiplies become XORs
- Conv/dense layers do dot products → XOR and popcount
- Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size

- Fewer bits per weight may be offset by having more weights

BNN vs CNN Parameter Efficiency

Architecture	Depth	Param Bits (Float)	Param Bits (Fixed-Point)	Error Rate (%)
ResNet [3] (CIFAR-10)	164	51.9M	13.0M*	11.26
BNN [2]	9	-	13.4M	11.40

* Assuming each float param can be quantized to 8-bit fixed-point

Comparison:

- Conservative assumption: ResNet can use 8-bit weights
- BNN is based on VGG (less advanced architecture)
- BNN seems to hold promise!

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.

	*		Operations	Memory	Computation	
\mathbb{R}	*	\mathbb{R}	+ - ×	1x	1x	
\mathbb{R}	*	$\mathbb B$	+ -	~32x	~2x	
$\mathbb B$	*	$\mathbb B$	XNOR Bit-count	~32x	~58x	

Quantization Error

 $W^B = sign(W)$

2

Optimal Scaling Factor

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

How to train a CNN with binary filters?

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

Training Binary Weight Networks

Naive Solution:

1. Train a network with real value parameters 2. Binarize the weight filters

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

Binary Weight Network

Train for binary weights:

- 1. Randomly initialize ${f W}$
- 2. For iter = 1 to N
- 3. Load a random input image \mathbf{X}

4.
$$W^B = sign(W)$$

5.
$$\alpha = \frac{\|W\|_{\ell}}{n}$$

- 6. Forward pass with α , $\mathbf{W}^{\mathbf{B}}$
- 7. Compute loss function C

8.
$$\frac{\partial \mathbf{C}}{\partial \mathbf{W}} = \text{Backward pass with } \alpha, \mathbf{W}^{B}$$

9. Update
$$\mathbf{W} (\mathbf{W} = \mathbf{W} - \frac{\partial \mathbf{C}}{\partial \mathbf{W}})$$

Binary Weight Network

Train for binary weights:

- 1. Randomly initialize ${\bf W}$
- 2. For iter = 1 to N
- 3. Load a random input image \mathbf{X}

4.
$$W^{B} = sign(W)$$

5.
$$\alpha = \frac{||W|}{n}$$

- 6. Forward pass with α , $\mathbf{W}^{\mathbf{B}}$
- 7. Compute loss function C

8.
$$\frac{\partial \mathbf{C}}{\partial \mathbf{W}} = \text{Backward pass with } \alpha, \mathbf{W}^{\text{E}}$$

9. Update
$$\mathbf{W} (\mathbf{W} = \mathbf{W} - \frac{\partial \mathbf{C}}{\partial \mathbf{W}})$$

W

2

 \mathbb{R}

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

	*		Operations	Memory	Computation
\mathbb{R}	*	\mathbb{R}	+ - ×	1x	1x
\mathbb{R}	*	$\mathbb B$	+ -	~32x	~2x
	* R-Net	B works	XNOR Bit-count	~32x	~58x

Binary Input and Binary Weight (XNOR-Net)

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

Binary Input and Binary Weight (XNOR-Net)

Network Structure in XNOR-Networks

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

Network Structure in XNOR-Networks

²Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542.

Network Structure in XNOR-Networks

2

8/9

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

Further Reading List

Fixed-Point Representation:

- Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). "Fixed point quantization of deep convolutional networks". In: *Proc. ICML*, pp. 2849–2858
- Soroosh Khoram and Jing Li (2018). "Adaptive quantization of neural networks". In: Proc. ICLR

Binary/Ternary Network:

Hyeonuk Kim et al. (2017). "A Kernel Decomposition Architecture for Binary-weight Convolutional Neural Networks". In: Proc. DAC, 60:1–60:6

イロト イポト イヨト イヨト 一日

Chenzhuo Zhu et al. (2017). "Trained ternary quantization". In: Proc. ICLR

9/9