

香港中文大學 The Chinese University of Hong Kong

CENG5030 Part 1-4: Switching Activity

Bei Yu

(Latest update: March 25, 2019)

Spring 2019

・ロト・国・・国・・国・ シック・

These slides contain/adapt materials developed by

Sukumar Jairam et al. (2008). "Clock gating for power optimization in ASIC design cycle theory & practice.". In: *Proc. ISLPED*, pp. 307–308

- C and A are intertwined
- $P = V^2 X f x C_{effective.}$
- ILP + Frequency increase => Power problem !!
- Factors affecting A:
 - Complexity of the processor
 - Exploitation of parallelism
 - Bit-width of its structures etc.
 - Optimized at the architectural and microarchitectural level
 - Can be changed by run-time optimizations
- Factors affecting C:
 - Size of a processor's structure
 - Organization to exploit locality
 - Manipulated at the circuit and process technology level
 - Determined at fixed design time

On Switching Activity

- Idle-Unit switching activity:
 - Triggered by clock transitions in unused portions of hardware.
- Idle -width switching activity :
 - Mismatch in the implemented and the actual width of processor structures.
- Idle-capacity switching activity :
 - · When a program does not use the provided hardware architectures in their entirety.

イロト イポト イヨト イヨト

- Parallel switching activity:
 - · Activity expended in parallel for performance
- Cacheable switching activity:
 - · Repetitive switching activity, convert computing activity to cache lookups
- Speculative switching activity:
 - Speculatively executing incorrect instructions is wasted activity
- Value- dependent switching activity:
 - Power consumed depends on the actual data values.

Excess Switching Activity	Cause	Granularity	Line of Attack	Example Technique	Section
Idle-unit	Clock-induced switching in unused (idle) units	Functional unit	Clock gating	Clock-gated Functional Units [11, 218, 152, 57, 58]	4.2
Idle-width	Bit-width too wide for typical operations	Cross section of FUs, datapaths, caches	Adapting to narrow-width operands	Clock-gated high-order bits in ALUs [37, 44], cache compression [221, 235, 234, 237, 141]	4.3, 4.4
Idle-capacity	Processor structures sized to support peak ILP not fully utilized in typical programs	Large processor structures: instruction queues, core width, caches	Dynamic resizing	instruction queue resizing [42, 80, 182], cache resizing [244, 8, 21, 68, 9, 168, 241, 131]	4.5,4.6, 4.7, 4.8
Parallel- speculative	Parallel (speculative) activity for speed	Caches, coherence H/W	Serializing or filtering parallel activity	Way prediction and other techniques for set-associative caches [95, 87, 133, 109, 183, 242, 249, 168, 241, 131] Coherence, [171]	4.9
Cacheable (repetitive)	Repetitive computing with the same inputs, or repetitive memory accessing	Architectural structures: FUs, caches	Caching—or memoization	Work reuse [56, 86, 107, 208], filter cache [142], loop buffers [150, 24, 25, 232, 10, 110], trace caches [193, 210]	4.10
Speculative	Activity wasted on wrong speculation	Out-of-order core	Execution throttling	Pipeline & selective gating [161, 16]	4.11
Value-dependent	Data value encoding not optimal	FU, datapaths	Applying different data encoding	Bus encodings [176, 75, 27, 28, 173, 212, 26, 188, 55, 233]	4.12

CHER CO

- System level gating: Turn off entire block disabling all functionality.
- Conditions for disabling identified by the designer

- System level gating: Turn off entire block disabling all functionality.
- Conditions for disabling identified by the designer

- Suspend clocks selectively
- No change to functionality
- Specific to circuit structure
- Possible to automate gating at RTL or gate-level

- Clock network power consists of
 - Clock Tree Buffer Power
 - Clock Tree dynamic power due to wires
 - CLK->Q sequential internal power
- Leaf-levels drive the highest capacitance in the tree
- ~80% of the clock network dynamic power is consumed by the leaf driver stage
 - The clock pins of registers are considered as loads
 - Leaf cap = wire cap + (constant) pin cap
 - Good clustering during synthesis reduces wirecap
- Effective clock gating isolates this leaf level buffers and cap, providing large dynamic power savings
- Larger savings with CGs higher up in the tree
 - A trade-off with timing

Clock network consumes 30-50% of the total dynamic power of the chip

Background: Superscaler

SuperScaler – Dynamic multiple-issue processors

Use hardware at run-time to dynamically decide which instructions to issue and execute simultaneously

- Instruction-fetch and issue fetch instructions, decode them, and issue them to a FU to await execution
- Defines the Instruction lookahead capability fetch, decode and issue instructions beyond the current instruction
- Instruction-execution as soon as the source operands and the FU are ready, the result can be calculated
- Defines the processor lookahead capability complete execution of issued instructions beyond the current instruction

Instruction-commit – when it is safe to, write back results to the RegFile or D\$ (i.e., change the machine state)

Background: In-Order v.s. Out-of-Order

PPE

Switching Activity – Circuit Level¹

¹Hai Li et al. (2004). "DCG: deterministic clock-gating for low-power microprocessor design". In: *IEEE TVLSI* 12.3, pp. 245–254.

Background: Instruction Fields

MIPS fields are given names to make them easier to refer to

6	5	5	5	5	6
ор	rs	rt	rd	shamt	funct

op 6-bits, opcode that specifies the operation

- rs 5-bits, register file address of the first source operand
- rt 5-bits, register file address of the second source operand
- rd 5-bits, register file address of the result's destination
- shamt 5-bits, shift amount (for shift instructions)
 - funct 6-bits, function code augmenting the opcode

Switching Activity – Core²

²David Brooks and Margaret Martonosi (1999). "Dynamically exploiting narrow width operands to improve processor power and performance". In: *Proc. HPCA*, pp. 13–22.

Background: Memory System

(Relative) size of the memory at each level

< ロ > < 同 > < 回 > < 回 > < 回 >

Background: Direct Mapping

Cache

Index Valid Tag			Data					
00								
01								
10								
11							1	

Background: Direct Mapping

Background: Set Associative Mapping

Switching Activity – Cache³

³David H. Albonesi (1999). "Selective cache ways: On-demand cache resource allocation". In: Proc. MICRO, pp. 248–259.