
CENG 3420
Computer Organization & Design

Lecture 04: Arithmetic Instructions

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 2.1 – 2.7)

Spring 2023



Introduction



RISC-V

• An open standard instruction set architecture (ISA)

• A clean break from the earlier MIPS-inspired designs

• Modular ISA organization

• Open standards, numerous proprietary and open-source cores

• Managed by RISC-V Foundation

Welcome to RISC-V

3/24



RISC-V Timeline

4/24



Specification of RISC-V

• Allow / Encourage custom extension

• Emphasize flexibility

• Standard extensions

• I (Integer-related module)
• M (Multiply and divide module)
• A (Atomic-related module)
• F (Floating point number calculation module)
• D (Double point number calculation module)
• C (Compressed module)
• G (General purpose module, including IMAFD)

• 32-bit instruction encoding in G module, 16-bit instruction encoding in C module

• User / Supervisor / Machine level

Notice
Our Labs will focus on RV32I

Specifications

5/24



Table: RV32I Unprivileged Integer Register

Register Name ABI Name Description

x0 zero Hard-Wired Zero
x1 ra Return Address
x2 sp Stack Pointer
x3 gp Global Pointer
x4 tp Thread Pointer
x5 t0 Temporary/Alternate Link Register

x6-x7 t1-t2 Temporary Register
x8 s0/fp Saved Register (Frame Pointer)
x9 s1 Saved Register

x10-x11 a0-a1 Function Argument/Return Value Registers
x12-x17 a2-a7 Function Argument Registers
x18-x27 s2-s11 Saved Registers
x28-x31 t3-t6 Temporary Registers

RV32I Unprivileged Integer Register

6/24



Stack pointer register

In RISC-V architecture, x2 register is use as Stack Pointer sp0 and holds the base address of
the stack.
Stack base address must aligne to 4-bytes, if not, a load / store alignment fault may arise.

Stack Pointer Register

7/24



Global pointer register

Data is allocated to the memory when it is globally declared in an application. Using
pc-relative or absolute addressing mode leads to utilization of extra instructions, thus
increasing the code size.
In order to decrease the code size, RISC-V places all the global variables in a particular
area which is pointed to, using the x3 gp register. The x3 register will hold the base
address of the location where the global variables reside.

Global Pointer Register

8/24



Thread pointer register

The x1 ra register is used to save the subroutine / function return addresses. Before a
subroutine call is performed, x1 is explicitly set to the subroutine return address which is
usually pc + 4.
The standard software calling convention uses x1 register to hold the return address on a
function call.

Thread Pointer Register

9/24



Argument register

In RISC-V, 8 argument registers, namely, x10 to x17 are used to pass arguments in a
subroutine / function. Before a subroutine call is made, the arguments to the subroutine
are copied to the argument registers. The stack is used in case the number of arguments
exceeds 8.

Argument Register

10/24



opcode 6-bits, opcode that specifies the operation
rs1 5-bits, register file address of the first source operand
rs2 5-bits, register file address of the second source operand
rd 5-bits, register file address of the result’s destination

imm 12-bits / 20-bits, immediate number field
funct 3-bits / 10-bits, function code augmenting the opcode

Introduction
RV32I Base Types

11/24



Four RV32I Encodes

• Immediate Encoding Variants, e.g., slti, addi, lui, and etc.

• Integer Computational Instructions, e.g., sll, sub, or, and etc.

• Control Transfer Instructions, e.g., jal, jalr, beq, and etc.

• Load and Store Instructions, e.g., lb, ld, sh, and etc.

Notice
We will be detailed in Lab 1-1

Selected Four RV32I Encodings

12/24



Arithmetic & Logical Instructions



• RISC-V assembly language arithmetic statement

add t0, a1, a2
sub t0, a1, a2

• Each arithmetic instruction performs one operation

• Each specifies exactly three operands that are all contained in the datapath’s register
file (t0, s1, s2)

destination = source1 op source2

• Instruction Format (R format)

RISC-V Arithmetic Instructions

14/24



• Small constants are used often in typical code

Possible approaches?

• put “typical constants” in memory and load them

• create hard-wired registers (like zero) for constants like 1

• have special instructions that contain constants

addi sp, sp, 4 # sp = sp + 4
slti t0, s2, 15 # t0 = 1 if s2 < 15

• Machine format (I format)

• The constant is kept inside the instruction itself!

• Immediate format limits values to the range −211 to +211 − 1

RISCV Immediate Instructions

15/24



• We’d also like to be able to load a 32 bit constant into a register

• For this we must use two instructions

1 A new “load upper immediate” instruction (U-type format, load top 20bits)

lui t0, 1010101010101010

2 Then must get the lower order bits right, use

ori t0, t0, 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010                              1010101010101010

Aside: How About Larger Constants?

16/24



• We’d also like to be able to load a 32 bit constant into a register

• For this we must use two instructions

1 A new “load upper immediate” instruction (U-type format, load top 20bits)

lui t0, 1010101010101010

2 Then must get the lower order bits right, use

ori t0, t0, 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010                              1010101010101010

Aside: How About Larger Constants?

16/24



• Need operations to pack and unpack 8-bit characters into 32-bit words

• Shifts move all the bits in a word left or right

slli t2, s0, 8 # t2 = s0 << 8 bits
srli t2, s0, 8 # t2 = s0 >> 8 bits

• Instruction Format (I format)

• Such shifts are called logical because they fill with zeros

• Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit
positions

RISC-V Shift Operations

17/24



There are a number of bit-wise logical operations in the RISC-V ISA

R Format

and t0, t1, t2 # t0 = t1 & t2
or t0, t1, t2 # t0 = t1 | t2
nor t0, t1, t2 # t0 = not(t1 | t2)

I Format

andi t0, t1, 0xFF00 # t0 = t1 & 0xff00
ori t0, t1, 0xFF00 # t0 = t1 | 0xff00

RISC-V Logical Operations

18/24



Data Transfer Instructions



• Two basic data transfer instructions for accessing memory

lw t0, 4(s3) # load word from memory
sw t0, 8(s3) # store word to memory

• The data is loaded into (lw) or stored from (sw) a register in the register file – a 5 bit
address

• The memory address – a 32 bit address – is formed by adding the contents of the base
address register to the offset value

• A 12-bit field in RV32I meaning access is limited to memory locations within a region
from −4 KB to 4 KB of the address in the base register

RISC-V Memory Access Instructions

20/24



Load/Store Instruction Format (I format):

Machine Language – Load Instruction

21/24



Load/Store Instruction Format (I format):

Machine Language – Load Instruction

21/24



• Since 8-bit bytes are so useful, most architectures address individual bytes in memory

• Alignment restriction – the memory address of a word must be on natural word
boundaries (a multiple of 4 in RV32I)

• Big Endian: leftmost byte is word address

• IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: rightmost byte is word address

• RISC-V, Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3                    2                    1                      0

little  endian  byte  0

0                    1                    2                      3
big  endian  byte  0

Byte Addresses

22/24



RISC-V provides special instructions to move bytes

lb t0, 1(s3) # load byte from memory
sb t0, 6(s3) # store byte to memory

• What 8 bits get loaded and stored?

• Load byte places the byte from memory in the rightmost 8 bits to the destination
register

• Store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte
in memory

Aside: Loading and Storing Bytes

23/24



EX-1:
Given following code sequence and memory state:

add s3, zero, zero
lb t0, 1(s3)
sb t0, 6(s3)

Memory

0x  0  0  9  0  1  2  A  0
Data Word  Address

(Decimal)

0
4
8
12
16
20
24

0x  F  F  F  F  F  F  F  F
0x  0  1  0  0  0  4  0  2
0x  1  0  0  0  0  0  1  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0

1 What value is left in t0?

2 What word is changed in Memory and to what?

3 What if the machine was little Endian?

24/24


	Introduction
	Arithmetic & Logical Instructions
	Data Transfer Instructions

