CENG 3420 Computer Organization & Design

Lecture 04: Arithmetic Instructions

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Textbook: Chapters 2.1 – 2.7)

Spring 2023

Introduction

RISC-V

- An open standard instruction set architecture (ISA)
- A clean break from the earlier MIPS-inspired designs
- Modular ISA organization
- Open standards, numerous proprietary and open-source cores
- Managed by RISC-V Foundation

4/24

Specifications

Specification of RISC-V

- Allow / Encourage custom extension
- Emphasize flexibility
- Standard extensions
 - I (Integer-related module)
 - M (Multiply and divide module)
 - A (Atomic-related module)
 - F (Floating point number calculation module)
 - D (Double point number calculation module)
 - C (Compressed module)
 - G (General purpose module, including IMAFD)
- 32-bit instruction encoding in G module, 16-bit instruction encoding in C module
- User / Supervisor / Machine level

Notice

Our Labs will focus on RV32I

Register Name ABI Name Description Hard-Wired Zero $\mathbf{x}0$ zero x1 Return Address ra Stack Pointer x2 sp Global Pointer x3 gp x4 Thread Pointer tp x5 t0 Temporary/Alternate Link Register x6-x7 t1-t2 **Temporary Register** x8 s0/fp Saved Register (Frame Pointer) x9 s1Saved Register x10-x11 a0-a1 Function Argument/Return Value Registers x12-x17 a2-a7 Function Argument Registers x18-x27 Saved Registers s2-s11 x28-x31 **Temporary Registers** t3-t6

Table: RV32I Unprivileged Integer Register

Stack pointer register

In RISC-V architecture, x2 register is use as Stack Pointer *sp0* and holds the base address of the stack. Stack base address must aligne to 4-bytes, if not, a load / store alignment fault may arise.

Global pointer register

Data is allocated to the memory when it is globally declared in an application. Using pc-relative or absolute addressing mode leads to utilization of extra instructions, thus increasing the code size.

In order to decrease the code size, RISC-V places all the global variables in a particular area which is pointed to, using the x3 *gp* register. The x3 register will hold the base address of the location where the global variables reside.

Thread pointer register

The x1 *ra* register is used to save the subroutine / function return addresses. Before a subroutine call is performed, x1 is explicitly set to the subroutine return address which is usually pc + 4. The standard software calling convention uses x1 register to hold the return address on a function call.

Argument register

In RISC-V, 8 argument registers, namely, x10 to x17 are used to pass arguments in a subroutine / function. Before a subroutine call is made, the arguments to the subroutine are copied to the argument registers. The stack is used in case the number of arguments exceeds 8.

31	25	24 2	$0 \ 19$	15	14 1	2 11		76		0	
func	t7	rs2	rs1		funct3		rd	0	pcode		R-type
	imm[11:0)]	rs1		funct3		rd	0	pcode		I-type
<u></u>		-									
imm[1	1:5]	rs2	rs1		funct3	im	m[4:0]	0	pcode		S-type
		imm[31:12	2]				rd	0	pcode		U-type

opcode 6-bits, opcode that specifies the operation

rs1 5-bits, register file address of the first source operand

rs2 5-bits, register file address of the second source operand

rd 5-bits, register file address of the result's destination

imm 12-bits / 20-bits, immediate number field

funct 3-bits / 10-bits, function code augmenting the opcode

Four RV32I Encodes

- Immediate Encoding Variants, e.g., slti, addi, lui, and etc.
- Integer Computational Instructions, e.g., sll, sub, or, and etc.
- Control Transfer Instructions, e.g., jal, jalr, beq, and etc.
- Load and Store Instructions, *e.g.*, *lb*, *ld*, *sh*, and *etc*.

Notice

We will be detailed in Lab 1-1

Arithmetic & Logical Instructions

• RISC-V assembly language arithmetic statement

add	t0,	a1,	a2
sub	t0,	a1,	a2

- Each arithmetic instruction performs one operation
- Each specifies exactly three operands that are all contained in the datapath's register file (t0, s1, s2)

destination = source1 op source2

• Instruction Format (R format)

0x0/0	0x40	0xc	0xb	0	0x5	0x33
-------	------	-----	-----	---	-----	------

• Small constants are used often in typical code

Possible approaches?

- put "typical constants" in memory and load them
- create hard-wired registers (like zero) for constants like 1
- have special instructions that contain constants

addi sp, sp, 4 # sp = sp + 4 slti t0, s2, 15 # t0 = 1 if s2 < 15

- Machine format (I format)
- The constant is kept inside the instruction itself!
- Immediate format limits values to the range -2^{11} to $+2^{11} 1$

Aside: How About Larger Constants?

- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions
- A new "load upper immediate" instruction (U-type format, load top 20bits)
 lui t0, 10101010101010
- 2 Then must get the lower order bits right, use ori t0, t0, 10101010101010

Aside: How About Larger Constants?

- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions
- A new "load upper immediate" instruction (U-type format, load top 20bits)
 lui t0, 10101010101010
- 2 Then must get the lower order bits right, use

ori t0, t0, 1010101010101010

1010101010101010	000000000000000000000000000000000000000
000000000000000000000000000000000000000	1010101010101010
1010101010101010	1010101010101010

- Need operations to pack and unpack 8-bit characters into 32-bit words
- Shifts move all the bits in a word left or right

slli t2, s0, 8 # t2 = s0 << 8 bits
srli t2, s0, 8 # t2 = s0 >> 8 bits

- Instruction Format (I format)
- Such shifts are called logical because they fill with zeros
- Notice that a 5-bit shamt field is enough to shift a 32-bit value 2⁵ 1 or 31 bit positions

There are a number of **bit-wise** logical operations in the RISC-V ISA

R Format

and t0, t1, t2 # t0 = t1 & t2 or t0, t1, t2 # t0 = t1 | t2 nor t0, t1, t2 # t0 = not(t1 | t2)

I Format

andi	t0,	t1,	0xFF00	#	t0	=	t1	æ	0xff00
ori	t0,	t1,	0xFF00	#	t0	=	t1	/	0xff00

Data Transfer Instructions

• Two basic data transfer instructions for accessing memory

lw t0, 4(s3) # load word from memory
sw t0, 8(s3) # store word to memory

- The data is loaded into (lw) or stored from (sw) a register in the register file a 5 bit address
- The memory address a 32 bit address is formed by adding the contents of the base address register to the offset value
- A 12-bit field in RV32I meaning access is limited to memory locations within a region from -4 KB to 4 KB of the address in the base register

Load/Store Instruction Format (I format):

lw t0, 24(s3)

0x18	0x13	0x2	0x5	0x3
------	------	-----	-----	-----

Load/Store Instruction Format (I format):

- Since 8-bit bytes are so useful, most architectures address individual bytes in memory
- Alignment restriction the memory address of a word must be on natural word boundaries (a multiple of 4 in RV32I)
- Big Endian: leftmost byte is word address
 - IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- Little Endian: rightmost byte is word address
 - RISC-V, Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

RISC-V provides special instructions to move bytes

lb	t0,	1(s3)	#	load byte from memory
sb	t0,	6(s3)	#	store byte to memory

- What 8 bits get loaded and stored?
- Load byte places the byte from memory in the rightmost 8 bits to the destination register
- Store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in memory

EX-1:

Given following c	ode sequence and memory state:		
Ũ	· ·	Memory	
		0x 0 0 0 0 0 0 0 0 0	24
		0x 0 0 0 0 0 0 0 0	20
add	s3, zero, zero	0x 0 0 0 0 0 0 0 0 0	16
lb	t0, 1(s3)	0x 1 0 0 0 0 0 1 0	12
sb	t0, 6(s3)	0x 0 1 0 0 0 4 0 2	8
		0x F F F F F F F F	4
		0x 0 0 9 0 1 2 A 0	0
What value i	s left in t 0?	Data Wo (De	rd Address ecimal)

- 2 What word is changed in Memory and to what?
- **3** What if the machine was little Endian?