
Queueing Syst (2014) 77:115–148
DOI 10.1007/s11134-014-9405-y

Stochastic modeling and optimization of garbage
collection algorithms in solid-state drive systems

Yongkun Li · Patrick P. C. Lee · John C. S. Lui

Received: 29 April 2013 / Revised: 23 October 2013 / Published online: 5 April 2014
© Springer Science+Business Media New York 2014

Abstract Markov chains and mean-field analysis are powerful tools and widely used
for performance analysis in large-scale computer and communication systems. In
this paper, we consider the application of Markov modeling and mean-field analysis
to solid-state drives (SSDs). SSDs are now widely deployed in mobiles, desktops,
and data centers due to their high I/O performance and low energy consumption. In
particular, we focus on characterizing the performance–durability tradeoff of garbage
collection (GC) algorithms in SSDs. Specifically, we first develop a stochastic Markov
chain model to capture the I/O dynamics of large-scale SSDs, then adapt mean-field
analysis to derive the asymptotic steady state, based on which we are able to easily
analyze the performance–durability tradeoff of a large family of GC algorithms. We
further prove the model convergence and generalize the model for all types of work-
load. Inspired by this model, we also propose a randomized greedy algorithm (RGA)
which has a single tunable parameter to trade between performance and durability.
Using trace-driven simulation on DiskSim with SSD add-ons, we demonstrate how
RGA can be parameterized to realize the performance–durability tradeoff.

An earlier conference version of the paper appeared in ACM SIGMETRICS 2013 [36]. In this journal
version, we present all proofs, revise the presentation of mean-field model, analyze write amplification,
and provide more rigorous arguments for our discussion throughout the paper.

Y. Li (B)
School of Computer Science and Technology, University of Science and Technology of China,
Hefei, China
e-mail: yongkunlee@gmail.com

Y. Li · P. P. C. Lee · J. C. S. Lui
The Chinese University of Hong Kong, New Territories, Hong Kong
e-mail: pclee@cse.cuhk.edu.hk
J. C. S. Lui
e-mail: cslui@cse.cuhk.edu.hk

123



116 Queueing Syst (2014) 77:115–148

Keywords Solid-state drives · Garbage collection · Wear-leveling · Cleaning cost ·
Markov model · Mean-field analysis

Mathematics Subject Classification 60H10 · 60K30 · 68M20

1 Introduction

Markov chains and mean-field analysis are powerful tools in analyzing the perfor-
mance of computer and communication systems. In this paper, we focus on the appli-
cation of Markov chain modeling to analyze the performance of the newly emerging
storage devices, solid-state drives (SSDs). In particular, we show that the underlying
Markov chain model is effective to characterize the system state of SSDs which consist
of a large number of storage blocks. Based on the derived system state, one can easily
analyze the performance–durability tradeoff of garbage collection (GC) algorithms in
SSDs. We first develop a stochastic Markov chain model to capture the I/O dynamics of
large-scale SSDs, then apply mean-field analysis to derive the asymptotic steady state,
and finally analyze the performance–durability tradeoff of GC algorithms based on the
derived system state. To elaborate on our work, we first present the necessary back-
ground on SSDs, then briefly illustrate the performance–durability tradeoff of GC algo-
rithms, and finally state our contributions as well as the overall structure of this paper.

1.1 Background on SSDs

The increasing adoption of SSDs in mobile devices to large-scale search engines is
revolutionizing the way we process data. Today’s SSDs are mainly built on NAND
flash memory, and provide number of attractive features, i.e., high performance in I/O
throughput, low energy consumption, and high reliability due to their shock resistance
property. As the SSD price per gigabyte decreases [21], not only desktops are replacing
traditional hard-disk drives (HDDs) with SSDs, but there is a growing trend toward
using SSDs in data centers [19,27].

SSDs have inherently different I/O characteristics from traditional HDDs. An SSD
is organized in blocks, each of which usually contains 64/128/256 pages that are
typically of size 4/8 KB each [1,13,40]. It supports three basic operations: read, write,
and erase. The read and write operations are performed in a unit of page, while the
erase operation is performed at the block level. After a block is erased, all pages of the
block become clean. Each write can only operate on a clean page; when a clean page is
written, it becomes a valid page. To improve the write performance, SSDs use the out-
of-place write approach. That is, to update data in a valid page, the new data are first
written to a different clean page, and the original page containing old data is marked as
invalid. Thus, a block may contain a mix of clean pages, valid pages, and invalid pages.

1.2 Performance–durability tradeoff of GC algorithms

The unique I/O characteristics of SSDs pose different design requirements from those
in HDDs. Since each write of SSD must be operated on a clean page, GC is required

123



Queueing Syst (2014) 77:115–148 117

to reclaim invalid pages. GC can be triggered, for example, when the number of clean
pages drops below a predefined threshold. During GC, some blocks are chosen to be
erased, and all valid pages in an erased block must first be written to a different free
block before the erasure. Such additional writes introduce performance overhead to
normal read/write operations. To maintain high performance, one design requirement
of SSDs is to minimize the cleaning cost, such that a GC algorithm chooses blocks
containing as few valid pages as possible for reclamation.

However, SSDs allow each block to tolerate only a limited number of erasures
before becoming unusable. For instance, the number is typically 100K for single-level
cell (SLC) SSDs and 10K for multilevel cell (MLC) SSDs [13]. With more bits being
stored in a flash cell and smaller feature size of flash cells, the maximum number of
erasures tolerable by each block further decreases, for example, to several thousands
or even several hundreds for the latest 3-bits MLC SSDs [23]. Thus, to maintain high
durability, another design requirement of SSDs is to maximize wear leveling in GC,
such that all blocks should have similar numbers of erasures over time so as to avoid
any “hot” blocks being worn out soon.

Clearly, there is a performance–durability tradeoff in the GC design space. Specifi-
cally, a GC algorithm with a low cleaning cost may not achieve efficient wear leveling,
or vice versa. Prior study (e.g., [1]) addressed the tradeoff, but that study is mainly
based on simulations. From the viewpoints of SSD practitioners, it remains an open
design issue of how to choose the “best” parameters of a GC algorithm to adapt to dif-
ferent tradeoff requirements for different application needs. However, understanding
the performance–durability tradeoff is nontrivial, since it depends on the I/O dynamics
of an SSD, and the dynamics characterization becomes complicated with the increas-
ing numbers of blocks/pages of the SSD. This motivates us to formulate a framework
that can efficiently capture the optimal design space of GC algorithms and guide the
choices of parameterizing a GC algorithm to fit any tradeoff requirement.

1.3 Our contributions

In this paper, we develop a stochastic Markov chain model to characterize the I/O
dynamics of an SSD, and then derive the optimal performance–durability tradeoff of
a GC algorithm. Using our model as a baseline, we propose a tunable GC algorithm
for different performance–durability tradeoff requirements. To summarize, our paper
makes the following contributions:

– We formulate a stochastic Markov chain model that captures the I/O dynamics of
an SSD. Since the state space of our stochastic model increases with the SSD size,
we adapt the mean-field technique [5,41] to make the model tractable. We formally
prove the convergence results under the uniform workload to enable us to analyze
the steady-state performance of a GC algorithm. We also discuss how our system
model can be extended for a general workload.

– We identify the optimal extremal points that correspond to the minimum cleaning
cost and the maximum wear leveling, as well as the optimal tradeoff curve of
cleaning cost and wear leveling that enables us to explore the full design space of
the GC algorithms.

123



118 Queueing Syst (2014) 77:115–148

– Based on our analytic model, we propose a novel GC algorithm called the random-
ized greedy algorithm (RGA) that can be tunable to attain the operational points
that follow closely along the optimal tradeoff curve. RGA also introduces low RAM
usage and low computational cost.

– To address the practicality of our work, we conduct extensive simulations using the
DiskSim simulator [8] with SSD extensions [1]. We first validate via synthetic work-
loads that our model efficiently characterizes the asymptotic steady-state perfor-
mance. Furthermore, we consider real-world workload traces and use trace-driven
simulations to study the performance tradeoff and versatility of RGA.

The rest of the paper proceeds as follows. In Sect. 2, we propose a Markov model
to capture the system dynamics of an SSD and conduct the mean-field analysis. We
formally prove the convergence, and further extend the model for a general workload.
In Sect. 3, we study the design tradeoff between cleaning cost and wear leveling of GC
algorithms. In Sect. 4, we propose RGA and analyze its performance. In Sect. 5, we
validate our model via simulations. In Sect. 6, we present the trace-driven simulation
results. In Sect. 7, we review related work, and finally in Sect. 8, we conclude the
paper.

2 System model

We formulate a Markov chain model to characterize the I/O dynamics of an SSD
under the read, write, and GC operations. We then analyze the model via the mean-
field technique when the SSD scales with the increasing number of blocks or storage
capacity.

2.1 Markov chain model formulation

Our model considers an SSD with N blocks of k pages each, where the typical value
of k is 64/128/256 for today’s commonly used SSDs [1,13,40]. Since SSDs use the
out-of-place write approach (see Sect. 1), a write to a logical page may reflect on any
physical page. Therefore, SSDs implement address mapping to map a logical page to
a physical page. Address mapping is maintained in the software flash translation layer
(FTL) in the SSD controller. It can be implemented in block level [46], page level
[24], or hybrid form [16,34,43]. A survey of the FTL design including the address
mapping mechanisms can be found in [17]. In this paper, our model abstracts out the
complexity due to address mapping; specifically, we focus on the physical address
space and directly characterize the I/O dynamics of physical blocks.

To help in understanding our model, we elaborate the mechanisms of handling
I/O operations in an SSD. Reads and writes are file-system-level requests that are
performed in units of pages. To read a page, an SSD simply shifts data out from
the flash memory. However, a write operation is more complicated. Since data can
only be written to clean flash pages, SSDs adopt out-of-place overwrites, that is, to
update a page, an SSD first writes new data to another clean page, which is done
by a flash-level program operation, and then it marks the original page containing

123



Queueing Syst (2014) 77:115–148 119

Fig. 1 The GC process in an SSD consisting of N physical blocks with k pages each. Each page is in one
of the three states: clean, valid, or invalid

old data as invalid through a flash-level invalidate operation. An SSD performs GC
operations to reclaim free space from invalid pages. Figure 1 illustrates the GC process.
Specifically, when GC is triggered, say when the number of clean blocks is below some
predefined threshold, the GC algorithm selects a candidate block to reclaim, such that
it first writes all valid pages in the candidate block to another clean block, and then
erases the candidate block and resets all pages in the block as clean. Note that the
erase operation must be performed in units of blocks. In summary, the flash-level I/O
requests can be classified into four types: (1) read a page, (2) perform GC on a block,
(3) program (i.e., write) new data to a page, and (4) invalidate a page. We see that reads
do not change the amount of valid data in each block. Each program request increases
the number of valid pages in a block by one, while each invalidate request decreases
it by one. GC works as if swapping two blocks, while still keeping the distribution of
number of valid pages in each block unchanged.

Since a page can be in one of the three states clean, valid or invalid, we classify
each block into a different type based on the number of valid pages containing in the
block. Specifically, a block of type i contains exactly i valid pages. Since each block
has k pages, a block can be of one of the k+1 types (i.e., from 0 to k valid pages). If a
block is of type i , then we say it is in state i . We define the time duration of handling
a single flash-level request as one time slot, and let Xn(t) denote the state of block
n ∈ {1, . . . , N } at time slot t (t ∈ N). The state descriptor for the whole SSD is

XN (t) = (X1(t), X2(t), . . . , X N (t)), t ∈ N, (1)

where Xi (t)∈{0, 1, . . . , k}. Thus, the state space cardinality is (k+1)N . To facilitate
our analysis under the large system regime (as we will show later), we transform the
above state descriptor to

nN (t) = (n0(t), n1(t), . . . , nk(t)), t ∈ N, (2)

123



120 Queueing Syst (2014) 77:115–148

Fig. 2 State transition of a block in one time slot

where ni (t) ∈ {0, 1, . . . , N } denotes the number of type i blocks in the SSD at time
slot t . Clearly, we have

∑k
j=0n j (t)= N , and the state space cardinality is

(N+k
k

)
.

We first describe how different flash-level requests affect the system dynamics of
an SSD from the perspective of physical blocks. First, read requests do not change
nN (t). For GC, the SSD selects a block, writes all valid pages of that block to a clean
block, and finally erases the selected block. Thus, GC requests do not change the state
of nN (t) either. On the other hand, for the program and invalidate requests, if the
corresponding block is of type i , it will move from state i to state i +1 and to state
i −1, respectively.

We now describe the state transition of a block in an SSD. In each time slot, we
assume that only one request (either program or invalidate) arrives and triggers a state
transition accordingly. Suppose that the workload is uniform in the sense that all pages
in the SSD will have an equal probability of being accessed (in Sect. 2.5, we extend
our model for a general workload). The assumption of the uniform workload implies
that (1) each block has the same probability 1/N of being accessed, (2) the probability
of invalidating one page in a block is proportional to the number of valid pages in
the corresponding block, and (3) the probability of programming a page in a block
is proportional to the total number of invalid and clean pages in the corresponding
block. Thus, if the requested block is of type i , then the probability of invalidating one
page of the block is i

k , and that of programming one page in the block is k−i
k . Figure 2

illustrates the state transitions of a single block in an SSD. If a block is at state i , each
of the program and invalidate requests move the block to state i +1 with probability
k−i
Nk and to state i −1 with probability i

Nk , respectively. Note that Fig. 2 only shows
the state transition of a particular block, but not the whole SSD. Specifically, the state
space cardinality of a particular block is k + 1 as shown in Fig. 2, while that of the
whole SSD is

(N+k
k

)
as described by Eq. (2).

To characterize the I/O dynamics of an SSD, we define the occupancy measure
M N (t) as the vector of fraction of type i blocks at time t . Formally, we have

M N (t) = (M0(t), M1(t), . . . , Mk(t)), t ∈ N,

where Mi (t) is

Mi (t) = 1
N

N∑

n=1

1{Xn(t)=i} = ni (t)
N

, t ∈ N. (3)

123



Queueing Syst (2014) 77:115–148 121

In other words, Mi (t) is the fraction of type i blocks in the SSD. It is easy to see that
the occupancy measure M N (t) is a homogeneous Markov chain.

We are interested in modeling large-scale SSDs to understand the performance
implication of GC algorithms. By large-scale, we mean that the number of blocks
N of an SSD is large. For example, for a 256GB SSD (which is available in many
of today’s SSD manufactures), we have N ≈ 1×106 and k = 64 for a page size
of 4 KB, implying a huge state space of M N (t). Since M N (t) does not possess any
special structure (i.e., matrix-geometric form), analyzing it can be computationally
expensive.

2.2 Mean-field analysis

To make our Markov chain model tractable for a large-scale SSD, we employ the
mean-field technique [5,41]. We first introduce the concept of intensity denoted by
ε(N ). Intuitively, the probability that a block performs a state transition per time slot
is in the order of ε(N ). Under the uniform workload, since each block is accessed with
the same probability 1/N in one time slot, we have ε(N ) = 1/N which vanishes as
N grows. Therefore, to derive an asymptotic result, we have to re-scale the process
M N (t) to continuous time. Mathematically, the re-scaled process M̃ N

(τ )(τ ∈ R+)

associated with the original process M N (t)(t ∈ N) can be defined as follows:

{
M̃ N

(tε(N )) = M N (t), t ∈ N,

M̃ N
(τ ) is affine on τ ∈ [tε(N ), (t + 1)ε(N )].

(4)

For simplicity, in the following, we also use notations with t , e.g., M̃ N
(t), to denote

continuous time processes, and we may also drop the notation t if the context is clear.
The main idea of mean-field technique is that the stochastic process M̃ N

(t) can be
solved by a deterministic process s(t) = (s0(t), s1(t), . . . , sk(t)) as N → ∞, where
si (t) denotes the fraction of blocks of type i at time t in the deterministic process.
We call s(t) the mean-field limit. By solving the deterministic process s(t), we can
obtain the occupancy measure of the stochastic process M N (t). We now show how
the deterministic process s(t) is related to the re-scaled process M̃ N

(t). The time
evolution of the deterministic process can be specified by the following set of ordinary
differential equations (ODEs):

dsi (t)
dt

=−si +
k−i +1

k
si−1+ i +1

k
si+1, 1≤ i ≤k−1,

ds0(t)
dt

=−s0+ 1
k

s1,

dsk(t)
dt

=−sk + 1
k

sk−1. (5)

The idea of the above ODEs is explained as follows. For an SSD with N blocks, we
express the expected change in number of blocks of type i over a small time period of

123



122 Queueing Syst (2014) 77:115–148

length dt under the re-scaled process M̃ N
(t). During this period (of length dt under

M̃ N
(t)), N dt program/invalidate requests arrive, each of which changes the state of

some type i block to state i − 1 or state i + 1 with probability 1/N . Since there are a
total of Nsi blocks of type i , the expected change from state i to other states is N dtsi .
Using the similar arguments, the expected change in number of blocks from state i+1
to state i is Ndt i+1

k si+1, and that from state i −1 to state i is Ndt k−i+1
k si−1. Similarly,

we can also specify the expected change in fraction of blocks of type 0 and type k,
and we obtain the ODEs as stated in Eq. (5).

2.3 Derivation of the fixed point

We now derive the fixed point of the deterministic process in Eq. (5). Specifically, s(t)
is said to be a fixed point if s(t) = π implies s(t ′) = π for all t ′ ≥ t . In other words,
the fixed point π describes the distribution of different types of blocks in the steady
state. The necessary and sufficient condition for π to be a fixed point is that dπi

dt = 0
for all i ∈ {0, 1, . . . , k}.

Theorem 1 Equation (5) has a unique fixed point π given by:

πi =
(k

i

)

2k , 0 ≤ i ≤ k. (6)

Proof First, it is easy to check that π satisfies dπi
dt =0 for 0≤ i ≤k. Conversely, based

on the condition of dπi
dt = 0 for all i , we have

−πi +
k − i + 1

k
πi−1+ i + 1

k
πi+1 = 0, 1 ≤ i ≤ k−1,

−π0+ 1
k
π1 = 0,

−πk + 1
k
πk−1 = 0.

By solving these equations, we get

πi =
(

k
i

)
πk, for 0 ≤ i ≤ k.

Since
k∑

i=0
πi=1, the fixed point is derived as in Eq. (6). ⊓+

Remarks Note that under uniform workload, a simpler analysis may also reach the
same asymptotic occupancy measure as the states of all blocks are independent. In
particular, one may analyze one block’s dynamics according to the state transitions
in Fig. 2, then couple N independent blocks of the same process to reach the same
result in Theorem 1. However, this approach cannot be extended to analyze general

123



Queueing Syst (2014) 77:115–148 123

workload in which the probability of accessing each block in one time slot may not be
the same any more. Therefore, we perform mean-field analysis to derive the occupancy
measure because of its generality.

2.4 Proof of convergence

We develop a stochastic Markov chain model to characterize the I/O dynamics of a
large-scale SSD system. Specifically, we solve the stochastic process with a determin-
istic process via the mean-field technique and identify the fixed point in the steady
state. To validate the accuracy of the derivation, we now formally prove the conver-
gence of the SSD system state under the uniform workload. Our proof consists of two
parts. We first prove that the stochastic process M N (t) indeed converges to the deter-
ministic process s(t) when N → ∞. We then prove that the deterministic process
described in Eq. (5) converges to the unique fixed point π in Eq. (6).

We first show that the re-scaled process M̃ N
(t) converges to s(t). Let us first show

several important properties of the stochastic process M N (t).

Lemma 1 Define S = {m ∈ Rk+1| ∑k
i=0 mi = 1, mi ≥ 0 ∀i}. For any s ∈ S, let

f N (s) = E(M N (t + 1) − M N (t)|M N (t) = s) be the expected change to the occu-
pancy measure in one time slot, and let ε(N ) = 1/N. We have limN→∞ ε(N ) = 0,

and limN→∞
f N (s)
ε(N ) exists for ∀s ∈ S.

Proof Since ε(N ) = 1
N , we have limN→∞ ε(N ) = 0. We denote f N (s) as f N (s) =

( f N
0 (s), f N

1 (s), . . . , f N
k (s)). Consider the expected change in Mi (t) (1 ≤ i ≤ k − 1)

during one time slot. Since only one request arrives, the probability of changing a
block of type i to other states is 1

N Nsi , and the corresponding change in Mi (t) is
− 1

N . A request may also change blocks of type i + 1 (or type i − 1) to state i , with
probability being i+1

Nk Nsi+1 (or k−i+1
Nk Nsi−1) and the change in Mi (t) being 1

N (or
1
N ). Thus, we have

f N
i (s)=− 1

N
si + i + 1

Nk
si+1 + k − i + 1

Nk
si−1, 1≤ i ≤ k−1.

Similarly, we can also derive f N
0 (s) and f N

k (s). Therefore, we have limN→∞
f N (s)
ε(N ) =

f (s), where

⎧
⎪⎨

⎪⎩

fi (s) = − si +
i + 1

k
si+1+ k − i + 1

k
si−1, 1≤ i ≤k−1,

f0(s) = − s0 + 1
k

s1; fk(s) = −sk + 1
k

sk−1.

⊓+
Lemma 2 Define W N (t) as an upper bound on the number of blocks that make a
transition in time slot t . Then, W N (t) satisfies E(W N (t)2|M N (t) = s) ≤ cN 2ε(N )2

where c is a constant.

123



124 Queueing Syst (2014) 77:115–148

Proof During the time slot t , one request arrives, and it accesses a block with prob-
ability 1

N . Therefore, W N (t) follows a binomial distribution with parameters 1
N and

N .

E(W N (t)2|M N (t)= s)=
(

N
1
N

)2

+N
1
N

(
1− 1

N

)
≤ 2,

which shows the result in Lemma 2 with c = 2. ⊓+

Lemma 3 There exists β > 0 and a function ϕ(s,α) defined on S × [0,β] such that

ϕ has continuous derivatives everywhere and f N (s)
ε(N ) = ϕ(s, 1

N ).

Proof According to the proof of Lemma 1, we can derive f N (s)
ε(N ) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f N
i (s)
ε(N )

= − si +
i + 1

k
si+1+ k − i + 1

k
si−1, 1≤ i ≤k−1,

f N
0 (s)
ε(N )

= − s0 + 1
k

s1;
f N
k (s)
ε(N )

= −sk + 1
k

sk−1.

Clearly, f N (s)
ε(N ) is a rational function with respect to s and 1

N . We let β be any number

greater than 1
N and ϕ(s,α) = f N (s)

ε(N ) , so that ϕ has continuous derivatives everywhere,

and f N (s)
ε(N ) = ϕ(s, 1

N ), which completes the proof. ⊓+

Now, we can now show that the re-scaled process M̃ N
(t) converges to s(t) with

the following theorem.

Theorem 2 If M N (0) → m in probability as N → ∞, then for all T >

0, sup0≤t≤T ∥M̃ N
(t)− s(t)∥ → 0 in probability, where s(t) satisfies the ODEs in Eq.

(5) and s(0) = m.

Proof The theorem holds due to Lemmas 1, 2, 3, and the existing theorem in [5]
(Corollary 1). ⊓+

Note that the theorem in [5] provides a way to prove the convergence to mean-field
limit, provided that several sufficient conditions hold. Therefore, to invoke the theorem
in [5], we must explicitly verify that our model indeed satisfies the conditions, i.e.,
Lemma 1–3, so as to make the proof complete.

Corollary 1 If M N (0) → m in probability as N → ∞, then for all T >

0, sup0≤t≤T ∥M N (t) − s( t
N )∥ → 0 in probability, where s(t) satisfies the ODEs

in Eq. (5), and s(0) = m.

In the following, we prove that the deterministic process s(t) in Eq. (5) converges
to the unique fixed point π in Eq. (6). The detailed proof is shown in Theorem 3. We
thank Professor Benny Van Houdt for giving us invaluable comments on this proof.

123



Queueing Syst (2014) 77:115–148 125

Theorem 3 The deterministic process s(t) which is specified by ODEs (5) converges
to the fixed point π which is determined by Eq. (6).

Proof Note that Eq. (5) can be rewritten as follows:

ds(t)
dt

= s(t)Q, (7)

where s(t) = (s0(t), s1(t), . . . , sk(t)), and Q = [qi, j ].

qi, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1, for j = i,
k − j + 1

k
, for i = j − 1, j = 1, · · · , k,

j + 1
k

, for i = j + 1, j = 0, · · · , k − 1.

Note that if we treat the state transition of a particular block shown in Fig. 2 as a
birth–death process, then Eq. (7) exactly maps to the Kolmogorov’s forward equations
where Q is just the rate matrix of the birth–death process. Therefore, s(t) converges
to the stationary distribution of the birth–death process π where πQ = 0. We can
easily verity that the fixed point π in Eq. (6) satisfies the condition πQ = 0, which
completes the proof. ⊓+

Our model enables us to analyze the tradeoff between cleaning cost and wear
leveling of GC algorithms. As shown in Sect. 3, cleaning cost and wear leveling can
be expressed as functions of π .

2.5 Extensions to general workload

Our model thus far focused on the uniform workload, i.e., all physical pages have
the same probability of being accessed. For completeness, we also generalize our
model to allow for the general workload, in which blocks/pages are accessed with
respect to some general probability distribution. We show how we apply the mean-
field technique to approximate the I/O dynamics of an SSD, and we also conduct
simulations using synthetic workloads to validate our approximation (see Sect. 5.1).
As stated in Sect. 2.1, we focus on the program and invalidate requests, both of which
can change the state of a block in the Markov chain model. In particular, to model the
general workload, we let pi, j be the transition probability of a particular type i block
being transited to state j due to one program/invalidate request. We have

pi, j = 0, if j ̸= i − 1 and j ̸= i + 1,

∑

i

∑

j

pi, j

(
∑

n

1{Xn(t)=i}

)

= 1,

123



126 Queueing Syst (2014) 77:115–148

where 1{Xn(t)=i} indicates whether block n is in state i , and thus
∑

n 1{Xn(t)=i} repre-
sents the number of blocks in state i . The second equation comes from the fact that
each program/invalidate request can only change the state of one particular block.

In practice, pi, j (where j = i − 1 or j = i + 1) can be estimated via workload
traces. Without loss of generality, we assume that these probabilities are not zero.
Specifically, for each request being processed, one can count the number of blocks in
state i (i.e., ni ) and the number of blocks in state i that change to state j (i.e., ni, j ).
Then, pi, j can be estimated as

pi, j ≈
∑

for each request
ni, j
ni

total number of requests
, (8)

where ni, j
ni

is the probability that a block transits from state i to j in a particular request,
and pi, j is the average over all requests. Note that each request only changes the state
of one block, and so pi, j must be in the order of O(1/N ). Therefore, after measuring
pi, j ’s, we scale them with N , which is a finite number in practical systems, and denote
the corresponding re-scaled probabilities by p̃i, j ’s, or mathematically p̃i, j = N pi, j .

Applying our previous analysis framework, we can also derive the occupancy mea-
sure M N (t) by solving a deterministic process s(t) specified by the following ODEs:

dsi

dt
=−

(
p̃i,i−1+ p̃i,i+1

)
si + p̃i−1,i si−1+ p̃i+1,i si+1, 1≤i≤k−1,

ds0

dt
= − p̃0,1s0+ p̃1,0s1,

dsk

dt
= − p̃k,k−1sk + p̃k−1,ksk−1. (9)

We can further derive the fixed point of the deterministic process s(t) as in Theo-
rem 4. Note that for the convergence proof, Theorem 3 also applies because ODEs in
Eq. (9) and ODEs in Eq. (5) have the same structure.

Theorem 4 Equation (9) has a unique fixed point π given by:

πk = 1

1 + ∑k−1
i=0

∏i+1
j=k p j, j−1

∏k−1
j=i p j, j+1

,

πi =
∏i+1

j=k p j, j−1
∏k−1

j=i p j, j+1
πk, 0 ≤ i ≤ k − 1,

(10)

where pi, j ’s are measured via Eq. (8).

Proof The derivation is similar to that of Theorem 1. ⊓+

123



Queueing Syst (2014) 77:115–148 127

3 Design space of GC algorithms

Using our developed stochastic model, we analyze how we can parameterize a GC
algorithm to adapt to different performance–durability tradeoffs. In this section, we
formally define two metrics, namely cleaning cost and wear leveling, for general GC
algorithms. Both metrics are defined based on the occupancy measure π which we
derived in Sect. 2. We identify two optimal extremal points in GC algorithms. Finally,
we identify the optimal tradeoff curve that explores the full optimal design space of
GC algorithms.

3.1 Metrics

We now define the new parameters that are used to characterize a family of GC
algorithms. When a GC algorithm is executed, it selects a block to reclaim. Let wi ≥ 0
(where 0 ≤ i ≤ k) denote the weight of selecting a particular type i block (i.e., a block
with i valid pages), such that the higher the weight wi is, the more likely each type i
block is chosen to be reclaimed. The weights are chosen with the following constraint:

k∑

i=0

wi

N
× ni =

k∑

i=0

wiπi = 1. (11)

The above constraint has the following physical meaning. The ratio wi/N can be
viewed as the probability of selecting a particular type i block for a GC operation.
Since ni is the total number of type i blocks in the system, wiπi can be viewed as the
probability of selecting any type i block for a GC operation. The summation of wiπi
over all i is equal to 1. Note that πi is the occupancy measure that we derive in Sect.
2.

We now define two metrics that respectively characterize the performance and
durability of a GC algorithm. The first metric is called the cleaning cost, denoted by
C, which is defined as the average number of valid pages contained in the block that
is selected for a GC operation. This implies that the cleaning cost reflects the average
number of valid pages that need to be written to another clean block during a GC
operation. The cleaning cost reflects the performance of a GC algorithm, such that a
high-performance GC algorithm should have a low cleaning cost. Formally, we have

C =
k∑

i=0

iwiπi . (12)

The second metric is called the wear leveling, denoted by W , which reflects how
balanced the blocks are being erased by a GC algorithm. To improve the durability
of an SSD, each block should have approximately the same number of erasures. We
simply use Jain’s fairness index [29] to define the degree of wear leveling W . Formally,
we have

123



128 Queueing Syst (2014) 77:115–148

W =

(∑k
i=0

wi
N Nπi

)2

N
∑k

i=0
(wi

N

)2 Nπi

=
(

k∑

i=0

w2
i πi

)−1

. (13)

We define wear leveling based on Jain’s fairness index because it effectively captures
the evenness of erasures. More precisely, the higher W is, the more the balanced
blocks that are erased. The rationale of Eq. (13) comes from the fact that wi

N is the
probability of selecting a particular type i block, and there are Nπi type i blocks
in total. For example, if all wi ’s are equal to one, which implies that each block has
the same probability 1

N of being selected, then the wear-leveling index W achieves
its maximum value equal to one as

∑k
i=0 πi = 1. Note that the occupancy measure

is a steady-state measure, while the occupancy of a particular physical block may
change over time. Thus, the wear-leveling metric can be viewed as a measure of the
evenness of physical blocks over a finite time period where the impact of physical
block transitions on the wear leveling is negligible as the system size is very large.
We point out that the wear-leveling metric is effective to show the design tradeoff of
GC algorithms. As shown by our experiments in practical settings in Sect. 6 where
the wear-leveling index is measured over the entire workload, the tradeoff relationship
between the cleaning cost and wear leveling derived from our analysis still holds under
real-world I/O traces.

The set of wi ’s, where 0 ≤ i ≤ k, will be our selection parameters to design a GC
algorithm. In the following, we show how we select wi ’s for different GC algorithms
subject to different tradeoffs between cleaning cost and wear leveling. Our results are
derived for a general workload subject to the system state distribution π . Specifically,
we also derive the closed-form solutions under the uniform workload as a case study.

3.2 GC algorithm to maximize wear leveling

Suppose that our goal is to find a set of weight wi ’s such that a GC algorithm maximizes
wear leveling W . We can formulate the following optimization problem:

max W =
(

k∑

i=0

w2
i πi

)−1

s.t.
k∑

i=0

wiπi = 1,

wi ≥ 0. (14)

The solution of the above optimization problem is to set wi = 1 for all i , and the
corresponding wear leveling W is equal to 1. Note that W ≤ 1 as it is a fairness index,
and so the above solution is the optimal solution. The corresponding cleaning cost is∑k

i=0 iπi . In other words, each block has the same probability (i.e., 1/N ) of being
selected for GC. Intuitively, this assignment strategy which maximizes wear leveling

123



Queueing Syst (2014) 77:115–148 129

is the random algorithm, in which each block is uniformly chosen independent of its
number of valid pages.

Under the uniform workload, we can compute the closed-form solution of the
cleaning cost C as

C =
k∑

i=0

iwiπi =
k∑

i=0

i

(k
i

)

2k = k
2
.

It implies that a random GC algorithm introduces an average of k/2 additional page
writes under the uniform workload.

3.3 GC algorithm to minimize cleaning cost

Suppose now that our goal is to find a set of weight wi ’s to minimize the cleaning
cost C, or equivalently, minimize the number of writes of valid pages during GC. The
optimization formulation is

min C =
k∑

i=0

iwiπi

s.t.
k∑

i=0

wiπi = 1,

wi ≥ 0. (15)

The solution of the above optimization problem is to set w0 = 1/π0 and wi = 0
for all i > 0 (assuming that there exist some blocks of type 0), and the cleaning
cost C is equal to 0. Since C ≥ 0, and it is equal to 0 when wi = 0 for all i > 0,
the solution is optimal. The corresponding wear leveling W is π0. Intuitively, this
assignment strategy corresponds to the greedy algorithm, which always chooses the
block that has the minimum number of valid pages for GC.

Under the uniform workload, the closed-form solution of W corresponding to the
minimum cost is given by:

W = 1

w2
0π0

= 1
2k .

The result shows that the greedy algorithm can significantly degrade wear leveling.
For the commonly used present day’s SSDs, the typical value of k is 64 or 128. This
implies that the degree of wear leveling W ≈ 0, and the durability of the SSD suffers.

3.4 Exploring the full optimal design space

We identify two GC algorithms, namely the random and greedy algorithms, that cor-
respond to two optimal extremal points of all GC algorithms. We now characterize

123



130 Queueing Syst (2014) 77:115–148

the tradeoff between cleaning cost and wear leveling, and identify the full optimal
design space of GC algorithms. Specifically, we formulate an optimization problem:
given a cleaning cost C∗, what is the maximum wear leveling that a GC algorithm can
achieve? Formally, we express the problem (with respect to wi ’s) as follows:

max W =
(

k∑

i=0

w2
i πi

)−1

s.t.
k∑

i=0

wiπi = 1,

k∑

i=0

iwiπi = C∗,

wi ≥ 0. (16)

Without loss of generality, we assume that πi > 0 (0 ≤ i ≤ k). The solution of the
optimization problem is stated in the following theorem:

Theorem 5 Given a cleaning cost C∗, the maximum wear leveling W∗ is given by:

W∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0, C∗ = 0,

1
∑I

i=0 γ 2
i πi

, 0 < C∗ <

k∑

i=0

iπi ,

1, C∗ =
k∑

i=0

iπi ,

1
∑k

i=L Γ 2
i πi

,

k∑

i=0

iπi < C∗ < k,

πk, C∗ = k,

(17)

for some constants γi , I, Γi , and L.

Proof We solve Eq. (16) by minimizing the inverse of the objective function, and
the problem is a convex optimization problem. If a point (w̃, ũ, ṽ1, ṽ2) satisfies the
Karush-Kuhn-Tucker (KKT) conditions which are stated in Eq. (18), then w̃ is the
global minimum.

⎧
⎨

⎩

2wiπi − ui + v1πi + v2iπi = 0; ui ≥ 0; wi ≥ 0;

uiwi = 0;
∑k

i=0
wiπi = 1;

∑k

i=0
iwiπi = C∗.

(18)

To find a point satisfying the KKT conditions, we first consider the case when
0 < C∗ <

∑k
i=0 iπi . Let

123



Queueing Syst (2014) 77:115–148 131

I1 = min
0≤ j≤k

{
j :

∑ j

i=0
iπi −C∗ ∑ j

i=0
πi > 0

}
. (19)

Note that I1 must exist because C∗ <
∑k

i=0 iπi and
∑k

i=0 πi = 1. Clearly, we have
I1 > C∗ and

∑ j
i=0 iπi −C∗ ∑ j

i=0 πi > 0 for I1 ≤ j ≤ k. Moreover, we have
∑ j

i=0 i2πi − C∗ ∑ j
i=0 iπi > 0 (I1 ≤ j ≤ k). Now we prove that the following

inequality holds.

∑I1
i=0 i2πi − C∗ ∑I1

i=0 iπi
∑I1

i=0 iπi − C∗ ∑I1
i=0 πi

> I1. (20)

To prove the inequality (20), we rewrite the left hand side of the inequality as follows:

∑I1
i=0 i2πi − C∗ ∑I1

i=0 iπi
∑I1

i=0 iπi − C∗ ∑I1
i=0 πi

! −ax + by + I1z
−x + y + z

,

where x = −∑⌊C∗⌋
i=0 (i − C∗)πi , y = ∑I1−1

i=⌊C∗⌋+1(i − C∗)πi and z = (I1 − C∗)πI1 .
Clearly, we have x > 0, y ≥ 0, z > 0 and I1 > b > a > 0. Since I1 is the
smallest integer which satisfies the condition in (19), we also have −x + y < 0 and
−x + y + z > 0. Now, if −ax + by ≥ 0, then inequality (20) holds. Otherwise,

−ax + by + I1z
−x + y + z

= I1 + (I1 − a)(x − y) + (b − a)y
−x + y + z

> I1( as I1 > b > a > 0,−x + y < 0, and − x + y + z > 0).

Now, we argue that there exists an I (I1 ≤ I ≤ k) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I <k and I <

∑I
i=0 i2πi − C∗ ∑I

i=0 iπi
∑I

i=0 iπi − C∗ ∑I
i=0 πi

≤I + 1, or

I =k and I <

∑I
i=0 i2πi − C∗ ∑I

i=0 iπi
∑I

i=0 iπi − C∗ ∑I
i=0 πi

.

(21)

To prove it, we can examine from I1. Since inequality (20) holds, if I1 < k and
∑I1

i=0 i2πi −C∗ ∑I1
i=0 iπi

∑I1
i=0 iπi −C∗ ∑I1

i=0 πi
> I1 + 1, then we have

∑I1+1
i=0 i2πi − C∗ ∑I1+1

i=0 iπi
∑I1+1

i=0 iπi − C∗ ∑I1+1
i=0 πi

> I1 + 1.

123



132 Queueing Syst (2014) 77:115–148

Therefore, either we find an I such that I<
∑I

i=0i2πi −C∗ ∑I
i=0iπi∑I

i=0iπi −C∗ ∑I
i=0πi

≤I + 1 or we reach k.

Now, given the I in Eq. (21), we define

⎧
⎪⎪⎨

⎪⎪⎩

XI=
∑I

i=0
i2πi −C∗∑I

i=0
iπi , YI=

∑I
i=0

iπi −C∗∑I
i=0

πi ,

ZI =
∑I

i=0
πi

∑I
i=0

i2πi −
(∑I

i=0
iπi

)2

.

By Cauchy’s Inequality, we have ZI > 0. If we define

γi = XI/ZI − i × YI/ZI , (22)

then we have γi > 0, for 0 ≤ i ≤ I, and γi ≤ 0, for I + 1 ≤ i ≤ k.

We can verify that (w̃, ũ, ṽ1, ṽ2), which when defined as follows, satisfies the KKT
conditions (18). Thus, w̃ is the global minimum.

{
ṽ1 = −2XI/ZI ,

ṽ2 = 2YI/ZI ,

{
w̃i = γi , ũi = 0, 0 ≤ i ≤ I,

w̃i = 0, ũi = −2γiπi , I + 1 ≤ i ≤ k,

Similarly, we can find the optimal solution for the case when C∗ >
∑k

i=0 iπi . Since
the framework of the proof is very similar, we only present the solution. In particular,
we define

⎧
⎪⎪⎨

⎪⎪⎩

XL=
∑k

i=L
i2πi −C∗∑k

i=L
iπi , YL=

∑k

i=L
iπi −C∗∑k

i=L
πi ,

ZL =
∑k

i=L
πi

∑k

i=L
i2πi −

(∑k

i=L
iπi

)2

,

where L is an integer which satisfies the following condition:

L>0 and L> XL/YL ≥L − 1, or L=0 and L> XL/YL. (23)

If we define

Γi = XL/ZL − i × YL/ZL, (24)

then we can also verify that (w̃, ũ, ṽ1, ṽ2), which when defined as follows, satisfies
the KKT conditions. Therefore, w̃ is the global minimum.

{
ṽ1 = −2XL/ZL,

ṽ2 = 2YL/ZL,

{
w̃i = 0, ũi = −2Γiπi , 0 ≤ i ≤ L−1,

w̃i = Γi , ũi = 0, L ≤ i ≤ k.

The cases when C∗ = 0 or k and C∗ = ∑k
i=0 iπi correspond to the greedy and

random algorithms, respectively. Therefore, the maximum wear leveling W∗ can be
derived as in Eq. (17) where γi , I, Γi , and L are defined by Eqs. (21)–(24). ⊓+

123



Queueing Syst (2014) 77:115–148 133

3.5 Write amplification

To thoroughly understand the performance of GC algorithms, we have defined two
metrics, cleaning cost and wear leveling. In particular, we focus on studying the tradeoff
between these two performance measures so as to explore the design space of GC
algorithms. Different from our analysis, some researchers study GC algorithms by
deriving the write amplification [9,18,28,48], which is defined as the average number
of physical page writes per user page write. Let A denote the write amplification cost.
Here, physical page writes include the page writes initiated by external I/O, i.e., the
user page writes, as well as the page writes caused by garbage collection. In other
words, an SSD actually performs A internal page writes for handling every external
user page write. Clearly, A ≥ 1, and the lower the write amplification is, the higher
the write performance an SSD can achieve. Note that the cleaning cost C represents
the average number of valid pages that need to be written to another block for each
GC operation; it thus implies that for every k − C user page writes, where k is the
total number of pages in each block, C additional page writes are required due to GC.
Therefore, we can easily derive the write amplification based on the cleaning cost.
Mathematically, we have

A = k
k − C

. (25)

Note that according to Eq. (25), write amplification can be regarded to be equivalent
to the cleaning cost, and it only characterizes one aspect of the performance of GC
algorithms. Moreover, if C = 0, then A = 1, which shows the case of optimal write
performance where no additional write is required for GC.

4 Randomized greedy algorithm

In this section, we present a tunable GC algorithm called the RGA that can operate
at any given cleaning cost C∗ and return the corresponding wear leveling close to
the optimal wear leveling W∗; or equivalently, the operational points of RGA follow
closely along the optimal tradeoff curve of C∗ and W∗.

4.1 Algorithm details

Algorithm 1 shows the pseudo-code of RGA, which operates as follows. Each time
when GC is triggered, RGA randomly chooses d out of N blocks b1, b2, · · · , bd as
candidates (Step 2). Let v(bi ) denote the number of valid pages of block bi . Then, RGA
selects the block b∗ that has the smallest number of valid pages, or the minimum v(.),
to reclaim (Step 3). We then invalidate block b∗ and move its valid pages to another
clean block (Steps 4–5). In essence, we define a selection window of window size d that
defines a random subset of d out of N blocks to be selected. The window size d is the
tunable parameter that enables us to choose between the random and greedy policies.
Intuitively, the random selection of d blocks allows us to maximize wear leveling,

123



134 Queueing Syst (2014) 77:115–148

while the greedy selection within the selection window allows us to minimize the
cleaning cost. Note that in the special cases where d = 1 (resp. d → ∞), RGA
corresponds to the random (resp. greedy) algorithm.

Algorithm 1 Randomized greedy algorithm (RGA)
1: if garbage collection is triggered then
2: randomly choose d blocks b1, b2, …, bd ;
3: find block b∗ = minv(bi ){bi : bi ∈ {b1, b2, . . . , bd}};
4: write all valid pages in b∗ to another clean block;
5: erase b∗;
6: end if

4.2 Performance analysis of RGA

We now derive the cleaning cost and wear leveling of RGA. We first determine the
values of weights wi ’s for all i . Recall from Sect. 3.1 that wiπi represents the prob-
ability of choosing any block of type i for GC. In RGA, a type i block is chosen
for GC if and only if the randomly chosen d blocks all contain at least i valid pages
and at least one of them contains i valid pages. Thus, the corresponding probability
wiπi is (

∑k
j=i π j )

d − (
∑k

j=i+1 π j )
d . Note that this expression assumes that d blocks

are chosen uniformly at random from the N blocks with replacement, while in RGA,
these d blocks are chosen uniformly at random without replacement. However, we
can still use it as approximation since d is much smaller than N for a large-scale SSD.
Therefore, we have

wi =

(∑k
j=i π j

)d
−

(∑k
j=i+1 π j

)d

πi
. (26)

Based on the definitions of cleaning cost C in Eq. (12) and wear leveling W in
Eq. (13), we can derive C and W:

C =
k∑

i=0

i

⎛

⎜⎝

⎛

⎝
k∑

j=i

π j

⎞

⎠
d

−

⎛

⎝
k∑

j=i+1

π j

⎞

⎠
d
⎞

⎟⎠ , (27)

W = 1

k∑
i=0

((∑k
j=i π j

)d
−

(∑k
j=i+1 π j

)d

πi

)2

πi

. (28)

In Sect. 5, we numerically show the relationship between cleaning cost C and wear
leveling W so as to justify the efficiency of RGA. We find that the operational points
of RGA follow very closely along the optimal tradeoff curve of C and W , and can be
easily tuned to balance the tradeoff.

123



Queueing Syst (2014) 77:115–148 135

4.3 Deployment of RGA

We now highlight the practical implications when RGA is deployed. RGA is imple-
mented in the SSD controller as a GC algorithm. From our evaluation (see details in
Sect. 5), a small value of d (which is significantly less than the number of blocks N )
suffices to make RGA operate closely along the optimal tradeoff curve. This allows
RGA to incur low RAM usage and low computational overhead. Specifically, RGA
only needs to load the meta-information (e.g., number of valid pages) of d blocks into
RAM for comparison. With a small value of d, RGA consumes an only small amount
of RAM space. Also, RGA only needs to compare d blocks to select the block with the
minimum number of valid pages for GC. The computational cost is O(d) and hence
very small as well. Since a practical SSD controller typically has limited RAM space
and computational power, we expect that RGA addresses the practical needs and can
be readily deployed.

We expect that RGA, like other GC algorithms, is only executed periodically or
when the number of free blocks drops below a predefined threshold. The window size
d can be tunable at different times during the lifespan of the SSD to achieve different
levels of wear leveling and cleaning cost closely along the optimal tradeoff curve. In
particular, we emphasize that the window size d can be chosen as a non-integer. In
this case, we can simply linearly extrapolate d between ⌊d⌋ and ⌊d + 1⌋. Formally,
for a given non-integer value d, when GC is triggered, RGA can set the window size
as ⌊d⌋ with probability p and set the window size as ⌊d + 1⌋ with probability 1 − p,
where p is given by

d = p⌊d⌋ + (1 − p)⌊d + 1⌋. (29)

Thus, we can evaluate the values of wi ’s as follows:

wi (d) = pwi (⌊d⌋) + (1 − p)wi (⌊d + 1⌋),

based on Eq. (26). The cleaning cost and wear leveling of RGA can be computed
accordingly via Eqs. (12) and (13) substituting wi (d). More generally, we can obtain
the window size from some probability distribution with the mean value given by d.
This enables us to operate at any point close to the optimal tradeoff curve.

5 Model validation

We thus far formulate an analytic model that characterizes the I/O dynamics of an
SSD, and further propose RGA that can be tuned to realize different performance–
durability tradeoffs. In this section, we validate our theoretical results developed in
prior sections. First, we validate via simulation that our system state derivations in
Theorem 4 provide accurate approximation even for a general workload. Also, we
validate the efficiency of RGA by showing that its operational points follow closely
along the optimal tradeoff curve characterized in Theorem 5.

123



136 Queueing Syst (2014) 77:115–148

5.1 Validation on fixed-point derivations

Recall from Sect. 2 that we derived, via the mean field analysis, the fixed-point π for
the system state of our model under both uniform and general workloads. We now
validate the accuracy of such derivation. We use the DiskSim simulator [8] with SSD
extensions [1]. We generate synthetic workloads for different read/write patterns to
drive our simulations, and compare the system state obtained by each simulation with
that of our model.

We feed the simulations with three different types of synthetic workloads: (1)
Random, (2) Sequential, and (3) Hybrid. Specifically, Random means that the
starting address of each I/O request is uniformly distributed in the logical address
space. Note that its definition is (slightly) different from that of the uniform workload
used in our model, as the latter directly considers the requests in the physical address
space. The logical-to-physical address mapping will be determined by the simulator.
Sequential means that each request starts at the address which immediately follows
the last address accessed by the previous request. Hybrid assumes that there are 50 % of
Random requests and 50 % of Sequential requests. Furthermore, for each synthetic
workload, we consider both Poisson and non-Poisson arrivals. For the former, we
assume that the inter-arrival time of requests follows an exponential distribution with
mean 100 ms; for the latter, we assume that the inter-arrival time of requests follow
a normal distribution (denoted by N (µ, σ 2)) with mean µ = 100 ms and standard
deviation σ = 10 ms.

Using simulations, we generate 10 M requests for each workload and feed them to
a small-scale SSD that contains 8 flash packages with 160 blocks each. We consider
a small-scale SSD (i.e., with a small number of blocks) to make the SSD converge
to an equilibrium state quickly with a sufficient number of requests; in Sect. 6, we
consider a larger-size SSD. After running all 10 M requests, we obtain the system state
of the SSD for each workload from our simulation results. On the other hand, using
our model, we first execute the workload and record the transition probabilities pi, j ’s
based on Eq. (8). We then compute the system state π using Theorem 4 for a general
workload (which covers the uniform workload as well). We then compare the system
states obtained from both the simulations and model derivations.

Figure 3 show the simulation and model results for the Random, Sequential, and
Hybrid workloads, each associated with either the Poisson or non-Poisson arrivals of
requests. The results show that under different synthetic workloads, our model derived
from the mean-field technique can still provide good approximations of the system
state compared with that obtained from the simulations. Note that we also observe
good approximations even for non-Poisson arrivals of requests. The results show the
robustness of our model in evaluating the system state.

5.2 Validation on operational points of RGA

In Sect. 3, we characterize the optimal tradeoff curve between cleaning cost and wear
leveling; in Sect. 4, we present a GC algorithm called RGA that can be tuned by a
parameter d to adjust the tradeoff between cleaning cost and wear leveling. We now

123



Queueing Syst (2014) 77:115–148 137

(a) (b) (c)

(d) (e) (f)

Fig. 3 Model validation on the system state π . In each sub-figure, the x-axis represents the states (i.e., the
number of valid pages in a block), and the y-axis indicates the state probabilities. a Random + Poisson.
b Sequential + Poisson. c Hybrid + Poisson. d Random + non-Poisson. e Sequential + non-Poisson. f
Hybrid + non-Poisson

validate that RGA can indeed be tuned to operate closely along the optimal tradeoff
curve.

We consider different system state distributions π to study the performance of RGA.
We first consider π derived for the uniform workload (i.e., Eq. 6). We also consider
three different distributions of π that are drawn from truncated normal distributions,
denoted by N (µ, σ 2) with mean µ and standard deviation σ . Figure 4a illustrates the
four system state distributions, where the mean and variance of each truncated normal
distribution are shown in the figure.

For each system state distribution, we compute the maximum wear leveling W∗

for each cleaning cost C∗ based on Theorem 5. Also, we evaluate the performance
of RGA by varying the window size d from 1 to 100, and obtain the corresponding
cleaning cost and wear leveling based on Eqs. (27) and (28). Here, we only focus on
the integer values of d.

Figure 4b shows the results, in which the four curves represent the optimal tradeoff
curves corresponding to the four different distributions of π , while the circles corre-
spond to the operational points of RGA with different integer values of window size
d from 1 to 100. Note that the maximum wear leveling corresponds to RGA with
window size d = 1 (i.e., the random algorithm). As the window size increases, the
wear leveling decreases, while the cleaning cost also decreases. We observe that RGA
indeed operates along the optimal tradeoff curves with regard to different system state
distributions.

It is important to note that we can realize non-integer window sizes to further fine-
tune RGA along the optimal tradeoff curve (see Sect. 4.3). To validate, we consider

123



138 Queueing Syst (2014) 77:115–148

(a) (b)

(c)

Fig. 4 Full design space and the performance of RGA. a Distributions of π . b Design space and performance
of RGA for different integers of d from 1 to 100. c Design space and performance of RGA for different
non-integers of d from 1 to 2

different values of d from 1 to 2, with step size 0.05, and calculate d via linear
extrapolation between 1 and 2.

Figure 4c shows the results for non-integer d using different system state distrib-
utions. Here, we zoom into the wear-leveling values from 0.75 to 1. Each star corre-
sponds to the RGA with a non-integer window size obtained by Eq. (29). We observe
that RGA can be further fine-tuned to operate closely along the optimal tradeoff curves
even when d is a non-integer.

6 Trace-driven evaluation

In this section, we evaluate the performance of RGA under more realistic settings.
Since today’s SSD controllers are mainly proprietary firmware, it is nontrivial to
implement GC algorithms inside a real-world SSD controller. Thus, similar to Sect. 5,
we conduct our evaluation using the DiskSim simulator [8] with SSD extensions [1].
This time we focus on a large-scale SSD. We consider several real-world traces, and
evaluate different metrics, including cleaning cost, I/O throughput, wear leveling, and
durability, for different GC algorithms. Note that the cleaning cost and wear leveling

123



Queueing Syst (2014) 77:115–148 139

are the metrics considered in the model, while the I/O throughput and durability are
the metrics related to user experience.

Using trace-driven evaluation, our goal is to demonstrate the effectiveness of RGA
in practical deployment. We compare different variants of RGA with regard to different
values of window size d, as well as the random and greedy algorithms. We emphasize
that we are not advocating a particular value of d for RGA in real-world deployment;
instead, we show how different values of d can be tuned along the performance–
durability tradeoff.

6.1 Datasets

We first describe the datasets that drive our evaluation. Since the read requests do not
influence our analysis, we focus on four real-world traces that are all write-intensive:

– Financial [47]: It is an I/O trace collected from an online transaction process
application running at a large financial institution. There are two financial traces in
[47], namely Financial1.spc and Financial2.spc. Since Financial2.spc is read-
dominant, we only use Financial1.spc in this paper.

– Webmail [49]: It is an I/O trace that describes the webmail workload of a university
department mail server.

– Online [49]: It is an I/O trace that describes the coursework management workload
on Moodle at a university.

– Webmail+Online [49]: It is the combination of the I/O traces of Webmail and
Online.

Table 1 summarizes the statistics of the traces. The original Financial trace in [47]
contains 24 application-specific units (ASUs) of a storage server (denoted by ASU0 to
ASU23). We study the traces of all ASUs except ASU1, ASU3, and ASU5, maximum
logical sector numbers of which go beyond the logical address space in our configured
SSD (see Sect. 6.2). The remaining Financial trace contains around 4.4 million I/O
requests, in which 77.82 % are write requests and the remaining are read requests.
Also, 1.67 % of I/O requests are sequential requests, each of which has its starting
address immediately following the last address of its prior request. The average size
of each request is 5.4819 KB, meaning that most requests only access one page as the
size of one page is configured as 4 KB in the simulation. The average inter-arrival time
of two continuous requests is just around 10 ms. On the other hand, for the Webmail,

Table 1 Workload statistics of traces

Trace Total no. of
requests (M)

Write ratio Sequential
ratio

Avg. request
size (KB)

Avg. inter-arrival
time (ms)

Financial 4.4 0.7782 0.0167 5.4819 9.9886

Webmail 7.8 0.8186 0.7868 4 222.118

Online 5.7 0.7388 0.7373 4 303.763

Webmail+Online 13.5 0.7849 0.7597 4 128.302

123



140 Queueing Syst (2014) 77:115–148

Online and Webmail+Online traces obtained from [49], the write requests account
for around 80 % of I/O requests, and over 70 % of I/O requests are sequential requests.
Moreover, all requests in those traces have size 4 KB (i.e., only one page is accessed
in each request), and the average inter-arrival time is much longer than that of the
Financial trace. In summary, the Financial trace has the random-write-dominant
access pattern, while the Webmail, Online, and Webmail+Online traces have the
sequential-write-dominant access pattern.

We set the page size of an SSD as 4 KB (the default value in most today’s SSDs).
Since the block size considered by these traces is 512 bytes, we align the I/O requests
of these traces to be multiples of the 4 KB page size. To enable us evaluate different
GC algorithms, we need to make the blocks in an SSD undergo a sufficient number
of program-erase cycles. However, these traces may not be long enough to trigger
enough block erasures. Thus, we propose to replay a trace; that is, in each replay
cycle, we make a copy of the original trace without changing its I/O patterns, while
we only change the arrival times of the requests by adding a constant value. In our
simulations, we replay the traces multiple times so that each trace file contains around
50M I/O requests. Since we replay a trace, we issue the same write request to a page
multiple times, and this keeps invalidating pages due to out-of-place writes. Thus,
many GC operations will be triggered, and this enables us stress-test the cleaning cost
and wear-leveling metrics. We point out that this replay approach has also been used
in the prior SSD study [42].

6.2 System configuration

Table 2 summarizes the parameters that we use to configure an SSD in our evaluation.
We use the default configurations from the simulator whose parameters are based
on a common SLC SSD [13]. Specifically, the SSD contains 8 flash packages, each
of which has its own control bus and data bus, so they can process I/O requests in

Table 2 Configuration
parameters

Parameter Value

Page size 4 KB

No. of pages per block 64

No. of blocks per package 16,384

No. of packages per SSD 8

SSD capacity 32 GB

Read one page 0.025 ms

Write one page 0.2 ms

Erase one block 1.5 ms

Transfer one byte 0.000025 ms

Over-provisioning 15 %

Threshold of triggering GC 5 %

123



Queueing Syst (2014) 77:115–148 141

parallel. Each flash package contains 8 planes containing 2048 blocks each. Each
block contains 64 pages of size 4 KB each. Therefore, each flash package contains
16384 physical blocks in total, and the physical capacity of the SSD is 32GB. For the
timing parameters, the time to read one page from the flash media to the register in the
plane is 25µs, and the time of programming one page from the register in the plane
to the flash media is 0.2 ms. For an erase operation, it takes 1.5 ms to erase one block.
The time of transferring one byte through the data bus line is 0.025µs. Since an SSD
is usually over-provisioned, we set the over-provisioning factor as 15 %, which means
that the advertised capacity of an SSD is only 85 % of the physical capacity. Moreover,
we set the threshold of triggering GC as 5 %, meaning that GC will be triggered when
the number of free blocks in the system is smaller than 5 %. Since flash packages are
independent in processing I/O requests, GC is also triggered independently in each
flash package. In the following, we only focus on a single flash package and compare
the performance of different GC algorithms.

We consider two different initial states of an SSD before we start our simulations.
The first one is the empty state, meaning that the SSD is entirely clean, and no data have
been stored. The second one is the full state, meaning the SSD is fully occupied with
valid data, and each logical address is always mapped to a physical page containing
valid data. Thus, each write request to a (valid) page will trigger an update operation,
which writes the new data to a clean page and invalidates the original page. Note that
the full initial state is the default setting in the simulator. In most of our simulations
(Sects. 6.3–6.5), we use the full initial state as it can be viewed as “stress-testing” the
I/O performance of an SSD. When we study the durability of SSDs (Sect. 6.6), we use
the empty initial state as it can be viewed as the state of a brand-new SSD.

6.3 Cleaning cost

We first evaluate the cleaning cost of different GC algorithms. In particular, we execute
the traces with each of the GC algorithms and record the total number of GC operations
and the total number of valid pages which are written back due to GC. We then derive
the cleaning cost as the average number of valid pages that are written back in each
GC operation.

Figure 5 shows the simulation results. In this figure, there are four groups of bars
which correspond to the Financial, Webmail, Online, and Webmail+Online traces,
respectively. In each group, there are seven bars which correspond to the greedy
algorithm, random algorithm, and RGA with different window sizes d. The vertical
axis represents the cleaning cost that each GC algorithm incurs. In this simulation, the
simulator starts from the full initial state. We can see that the greedy algorithm incurs
the smallest cleaning cost that is almost 0, while the random algorithm has the highest
cleaning cost that is close to the total number of pages in each block (i.e., k = 64). The
intuition is that if the greedy algorithm is used, then for every GC operation, the block
containing the smallest number of valid pages is reclaimed, which means that it only
needs to read out and write back the smallest number of pages. Therefore, the cleaning
cost of the greedy algorithm should be the smallest among all algorithms. Moreover,
RGA provides a variable cleaning cost between the greedy and random algorithms.

123



142 Queueing Syst (2014) 77:115–148

Fig. 5 Cleaning cost of
different GC algorithms

0

10

20

30

40

50

60

C
le

an
in

g 
C

os
t

Fin
an

cia
l

W
eb

m
ail

Onlin
e

W
eb

m
ail

+O
nlin

e

Greedy
RGA(d=30)
RGA(d=20)
RGA(d=10)
RGA(d=5)
RGA(d=2)
Random

Fig. 6 IOPS of different GC
algorithms

0

500

1000

1500

2000

2500

3000

IO
P

S

Fin
an

cia
l

W
eb

m
ail

Onlin
e

W
eb

m
ail

+O
nlin

e

Greedy
RGA(d=30)
RGA(d=20)
RGA(d=10)
RGA(d=5)
RGA(d=2)
Random

6.4 Impact on I/O throughput

We now consider the impact of different GC algorithms on the I/O throughput, using
the metric Input/Output Operations Per Second (IOPS). Note that IOPS is an indirect
indicator of the cleaning cost. Specifically, the higher the cleaning cost, the more the
pages needed to be moved in each GC operation. This prolongs the duration of a GC
operation, and leads to smaller IOPS as an I/O request must be queued for a longer
time until a GC operation is finished.

Figure 6 shows the IOPS results of different GC algorithms (note that the simulator
starts from the full initial state). We can see that the greedy algorithm achieves the
highest IOPS, and the random algorithm has the lowest IOPS, which is less than
5 % of the IOPS achieved by the greedy algorithm. The results conform to those in
Fig. 5. This means that the cleaning cost, the metric that we use in our analytic model,
correctly reflects the resulting I/O performance. Again, RGA can provide different I/O
throughput results with different values of d.

123



Queueing Syst (2014) 77:115–148 143

Fig. 7 Wear-leveling of
different GC algorithms

0

0.2

0.4

0.6

0.8

1

W
ea

r−
le

ve
lin

g
Fin

an
cia

l

W
eb

m
ail

Onlin
e

W
eb

m
ail

+O
nlin

e

Greedy
RGA(d=30)
RGA(d=20)
RGA(d=10)
RGA(d=5)
RGA(d=2)
Random

6.5 Wear-leveling

We now evaluate the wear leveling of different GC algorithms. In the simulation, we
execute the traces with each of the GC algorithms and record the number of times that
each block has been erased. We then estimate the probability that each block is chosen
for GC and derive the wear leveling based on its definition in Eq. (13).

Figure 7 shows the wear-leveling results. It is clear that the random algorithm
always achieves the maximum wear leveling, which is almost one. This implies that
the random algorithm can effectively balance the numbers of erasures across all blocks.
On the other hand, the greedy algorithm achieves the minimum wear leveling which is
less than 0.2 for all traces. Here, we note that in all traces, our RGA realizes different
levels of wear leveling between the random and greedy algorithms with different
values of d. In particular, when d ≤ 2, the wear leveling of RGA is within 80 % of
the maximum wear leveling of the random algorithm.

6.6 Impact on durability

The previous wear-leveling experiment provides insights into the durability (or life-
time) of an SSD. In this evaluation, we focus on examining how the durability of an
SSD is affected by different GC algorithms.

To study the durability of an SSD, we have to make the SSD continue handling
a sufficient number of I/O requests until it is worn out. In order to speed up our
simulation, we decrease the maximum number of erasures sustainable by each block
to 50. We also reduce the size of the SSD such that each flash package contains 4096
blocks, so the size of each flash package is 1GB. Other configurations are the same as
we described in Sect. 6.2. Also, instead of using the real-world traces as in previous
simulations, we drive the simulation with the synthetic traces that have more aggressive
I/O rates so that the SSD is worn out soon. Specifically, we consider the same set of
synthetic traces Random, Hybrid and Sequential as described in Sect. 5.1, but here
we set the mean inter-arrival time of I/O requests to be 10 ms (as opposed to 100 ms
in Sect. 5.1) based on Poisson arrivals.

123



144 Queueing Syst (2014) 77:115–148

Fig. 8 Durability of different
GC algorithms (normalized with
respect to the greedy algorithm)

0

1

2

3

4

5

6

D
ur

ab
ili

ty
Ran

dom

Hyb
rid

Seq
uen

tia
l

Greedy
RGA(d=30)
RGA(d=20)
RGA(d=10)
RGA(d=5)
RGA(d=2)
Random

Due to the use of bad block management [39], an SSD can allow for a small
percentage of bad (worn-out) blocks during its lifetime. Suppose that the SSD can
allow up to e % of bad blocks for some parameter e. To derive the durability of the
SSD, we first continue running each workload trace on the SSD until e % blocks are
worn out, i.e., the erasure limit is reached. Then, we record the length of the duration
span that the SSD survives, and take it as the durability of the SSD. For comparison,
we normalize the durability with respect to that of the greedy algorithm (which is
expected to have the minimum durability). In this experiment, we consider the case
where e % = 5 %, while we also verify that similar observations are made for other
values of e % ≤ 10 %. Also, we assume that the SSD is brand new (i.e., the initial
state is empty), and all blocks have no erasure at the beginning.

Figure 8 shows the results. We observe that the durability results of different GC
algorithms are consistent with those of wear leveling in Fig. 7. We observe that the
random algorithm achieves the maximum durability, and the value can be almost six
times over that of the greedy algorithm (e.g., in the Sequential workload). Again, RGA
provides a tunable durability between the random and greedy algorithms. When the
window size d ≤ 5, the durability of RGA can be within 68 % of the maximum lifetime
of the random algorithm for Random and Hybrid workloads. For the Sequential
workload, the durability of RGA drops to 40 % of the maximum lifetime of the
random algorithm when d = 5. However, it is still almost three times higher than that
of the greedy algorithm.

6.7 Summary

From the above simulations, we see that the greedy algorithm performs in the best
way and the random algorithm performs the worst in terms of cleaning cost and I/O
throughput, while the opposite holds in terms of wear leveling and durability. We
demonstrate that our RGA provides a tradeoff spectrum between the two algorithms
by tuning the window size. This simulation study not only confirms our theoretical

123



Queueing Syst (2014) 77:115–148 145

model, but also shows that our RGA can be viewed as an effective tunable algorithm
to balance between throughput performance and durability of an SSD.

7 Related studies

The research on NAND-flash based SSDs has recently received a lot of attention.
Many aspects of SSDs are being studied. A survey on algorithms and data structures
for flash memories can be found in [22]. Kawaguchi et al. [32] propose a flash-based
file system based on the log-structured file system design. Birrell et al. [6] propose new
data structures to improve the write performance of SSDs, and Gupta et al. [25] suggest
to exploit value locality and design content-addressable SSDs so as to optimize the
performance. Matthews et al. [38] use NAND-based disk-caching disk to mitigate the
I/O bottlenecks of HDDs, and Kim et al. [33] consider hybrid storage by combining
SSDs and HDDs. Agrawal et al. [1] study different design tradeoffs of SSDs via a
trace-driven simulator based on DiskSim [8]. Chen et al. [13,31] further reveal many
intrinsic characteristics of SSDs via empirical measurements, and Polte et al. [45] also
study the performance of SSDs via experiments. Park et al. [44] mainly focus on the
energy efficiency of SSDs. Li et al. [35] analyze the reliability dynamics of SSD RAID
arrays. Note that [1] addresses the tradeoff between cleaning cost and wear leveling
in GC, but it is mainly based on empirical evaluation.

A variety of wear-leveling techniques have been proposed, mainly from an applied
perspective. Some of them are proposed in patents [2,3,7,20,26,37,50]. Several
research papers have been proposed to maximize wear leveling in SSDs based on
hot–cold swapping, main idea of which is to swap the frequently used hot data in
worn blocks and the rarely used cold data in new blocks. For example, Chiang et
al. [14,15] propose clustering methods for hot/cold data based on access patterns to
maximize wear leveling. Jung et al. [30] propose a memory-efficient design for wear
leveling by tracking only block groups, while maintaining wear-leveling performance.
The authors of [10–12] also propose different strategies based on hot–cold swapping to
further improve the wear-leveling performance. Our study differs from above studies
in that we focus on characterizing the optimal tradeoff of GC algorithms, such that
we provide flexibility for SSD practitioners to reduce wear leveling to trade for higher
cleaning performance. We also propose a tunable GC algorithm to realize the tradeoff.

From a theoretical perspective, some studies propose analytic frameworks to quan-
tify the performance of GC algorithms. A comparative study between online and offline
wear-leveling policies is presented in [4]. Hu et al. [28] propose a probabilistic model
to quantify the write amplification which is equivalent to the cleaning cost defined in
our work. They study a modified greedy GC algorithm, and implement an event-driven
simulator to validate their model. Bux and Iliadis [9] propose theoretical models to
analyze the greedy GC algorithm under the uniform workload, and Desnoyers [18]
also analyzes the performance of LRU and greedy GC algorithms when page-level
address mapping is used. Our study differs from theirs in the following. First, the
former study focuses on analyzing the write amplification which corresponds to the
cleaning cost in our paper, but our focus is to analyze the tradeoff between cleaning
cost and wear leveling, which are both very important in designing GC algorithms,

123



146 Queueing Syst (2014) 77:115–148

and further explore the design space of GC algorithms. Second, our analytic models
are also very different. In particular, we use a Markov model to characterize the I/O
dynamics of SSDs and adapt the mean-field technique to approximate large-scale sys-
tems,and then we develop an optimization framework to derive the optimal tradeoff
curve. Finally, our model also applies to general workload and address mapping, and
it is further validated via trace-driven evaluation.

The study of [48] also applies the mean-field technique to analyze different GC
algorithms. Its d-choices GC algorithm has the same construction as our RGA. Our
study has the following key differences. First, similar to prior analytic studies, the study
[48] focuses on write amplification, while we focus on the tradeoff between cleaning
cost and wear leveling. Second, its analysis is limited to the uniform workload only,
while we also address the general workload. Finally, we validate our analysis via
trace-driven simulations, which are not considered in the study [48].

8 Conclusions

In this paper, we consider the application of Markov chain model to characterize the
performance–durability tradeoff of GC algorithms in SSDs. We develop a Markov
model to characterize the I/O dynamics of a large-scale SSD, and use the mean-field
theory to derive the asymptotic results in equilibrium. In particular, we classify the
blocks of an SSD into different types according to the number of valid pages con-
tained in each block, and our mean-field results can provide effective approximation
on the fraction of different types of blocks in steady-state even under general work-
load. We define two metrics, namely cleaning cost and wear leveling, to quantify the
performance of GC algorithms. In particular, we theoretically characterize the optimal
tradeoff curve between cleaning cost and wear leveling, and develop an optimization
framework to explore the full optimal design space of GC algorithms. Taking inspira-
tion from our analytic framework, we develop a tunable GC algorithm called the RGA
which can efficiently balance the tradeoff between cleaning cost and wear leveling by
tuning the parameter of the window size d. We use trace-driven simulation based on
DiskSim with SSD add-ons to validate our analytic model, and show the effectiveness
of RGA in tuning the performance–durability tradeoff in deployment.

Acknowledgments The work of Yongkun Li was supported in part by National Nature Science Foundation
of China under Grant No. 61303048, and the Fundamental Research Funds for the Central Universities under
Grant No. WK0110000040. The work of Patrick P. C. Lee was partially supported by the seed grants from
the CUHK MoE-Microsoft Key Laboratory of Human-centric Computing and Interface Technologies.

References

1. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M., Panigrahy, R.: Design tradeoffs
for SSD performance. In: Proceedings of USENIX ATC (2008) NULL

2. Assar, M., Nemazie, S., Estakhri, P.: Flash Memorymass storage architecture incorporation wear lev-
eling technique. US patent 5,479,638 (1995)

3. Ban, A.: Wear leveling of static areas in flash memory. US patent 6,732,221 (2004)
4. Ben-Aroya, A., Toledo, S.: Competitive analysis of flash-memory algorithms. In: Proceedings of

Annual European Symposium (2006)

123



Queueing Syst (2014) 77:115–148 147

5. Benaïm, M., Boudec, J.Y.L.: A Class of mean field interaction models for computer and communication
systems. Perform. Eval. 65(11), 823–838 (2008)

6. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance flash disks. ACM
SIGOPS Oper. Syst. Rev. 41(2), 88–93 (2007)

7. Bruce, R.H., Bruce, R.H., Cohen, E.T., Christie, A.J.: Unified re-map and cache-index table with dual
write-counters for wear-leveling of non-volitile flash Ram mass storage. US patent 6,000,006 (1999)

8. Bucy, J.S., Schindler, J., Schlosser, S.W., Ganger, G.R.: The DiskSim simulation environment version
4.0 reference manual. Tech. Rep. CMUPDL-08-101, Carnegie Mellon University (2008)

9. Bux, W., Iliadis, I.: Performance of greedy garbage collection in flash-based solid-state drives. Perform.
Eval. 67(11), 1172–1186 (2010)

10. Chang, L.P., Du, C.D.: Design and implementation of an efficient wear-leveling algorithm for solid-
state-disk microcontrollers. ACM Trans. Des. Autom. Electron. Syst. 15(1), 6:1–6:36 (2009)

11. Chang, L.P., Huang, L.C.: A Low-cost Wear-leveling Algorithm for Block-mapping Solid-state Disks.
In: Proceedings of SIGPLAN/SIGBED Conference on LCTES (2011)

12. Chang, Y.H., Hsieh, J.W., Kuo, T.W.: Improving flash wear-leveling by proactively moving static data.
IEEE Tran. Comput. 59, 53–65 (2010)

13. Chen, F., Koufaty, D.A., Zhang, X.: Understanding Intrinsic Characteristics and System Implications
of Flash Memory Based Solid State Drives. In: Proceedings of ACM SIGMETRICS (2009)

14. Chiang, M.L., Chang, R.C.: Cleaning policies in mobile computers using flash memory. J. Syst. Softw.
48(3), 213–231 (1999)

15. Chiang, M.L., Lee, P.C.H., Chang, R.C.: Using data clustering to improve cleaning performance for
flash memory. Softw. Pract. Exp. 29(3), 267–290 (1999)

16. Chung, T.S., Park, D.J., Park, S., Lee, D.H., Lee, S.W., Song, H.J.: System software for flash memory: a
survey. In: Proceedings of International Conferences on Embedded and Ubiquitous, Computing (2006)

17. Chung, T.S., Park, D.J., Park, S., Lee, D.H., Lee, S.W., Song, H.J.: A survey of flash translation layer.
J. Syst. Arch. 55(5–6), 332–343 (2009)

18. Desnoyers, P.: Analytic modeling of SSD write performance. In: Proceedings of SYSTOR (2012)
19. Enderle, R.: Revolution in January: EMC brings flash drives into the data center. http://www.

itbusinessedge.com/blogs/rob/?p=184 (2008). Accessed 29 Mar 2014
20. Estakhri, P., Assar, M., Reid, R., Alan, Iman, B.: Method of and architecture for controlling system

data with automatic wear leveling in a semiconductor non-volitile mass storage memory. US patent
5,835,935 (1998)

21. Floyer, D.: Flash Pricing Trends Disrupt Storage. http://wikibon.org/wiki/v/Flash_Pricing_Trends_
Disrupt_Storage (2010). Accessed 29 Mar 2014

22. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Comput. Surv. 37(2),
138–163 (2005)

23. Grupp, L.M., Davis, J.D., Swanson, S.: The bleak future of NAND flash memory. In: Proceedings of
USENIX FAST (2012)

24. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: A flash translation layer employing demand-based selective
caching of page-level address mappings. In: Proceedings of ACM ASPLOS (2009)

25. Gupta, A., Pisolkar, R., Urgaonkar, B., Sivasubramaniam, A.: Leveraging value locality in optimizing
NAND flash-based SSDs. In: Proceedings of USENIX FAST (2011)

26. Han, S.W.: Flash memory wear leveling system and method. US patent 6,016,275 (2000)
27. Hess, K.: 2011: Year of the SSD? http://www.datacenterknowledge.com/archives/2011/02/17/

2011-year-of-the-ssd/ (2011). Accessed 29 Mar 2014
28. Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write amplification analysis in flash-based

solid state drives. In: Proceedings of SYSTOR (2009)
29. Jain, R., Chiu, D.M., Hawe, W.: A Quantitative measure of fairness and discrimination for resource

allocation in shared computer systems. Technical Report DEC (1984)
30. Jung, D., Chae, Y.H., Jo, H., Kim, J.S., Lee, J.: A group-based wear-leveling algorithm for large-

capacity flash memory storage systems. In: Proceedings of International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (2007)

31. Jung, M., Kandemir, M.: Revisiting widely held SSD expectations and rethinking system-level impli-
cations. In: Proceedings of the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’13, pp. 203–216. ACM (2013)

32. Kawaguchi, A., Nishioka, S., Motoda, H.: A flash-memory based file system. In: Proceedings of
USENIX Technical Conference (1995)

123

http://www.itbusinessedge.com/blogs/rob/?p=184
http://www.itbusinessedge.com/blogs/rob/?p=184
http://wikibon.org/wiki/v/Flash_Pricing_Trends_Disrupt_Storage
http://wikibon.org/wiki/v/Flash_Pricing_Trends_Disrupt_Storage
http://www.datacenterknowledge.com/archives/2011/02/17/2011-year-of-the-ssd/
http://www.datacenterknowledge.com/archives/2011/02/17/2011-year-of-the-ssd/


148 Queueing Syst (2014) 77:115–148

33. Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., Sivasubramaniam, A.: HybridStore: a cost-efficient,
high-performance storage system combining SSDs and HDDs. In: Proceedings of IEEE MASCOTS
(2011)

34. Lee, S.W., Park, D.J., Chung, T.S., Lee, D.H., Park, S., Song, H.J.: A log buffer-based flash translation
layer using fully-associative sector translation. ACM Trans. Embed. Comput. Syst. 6(3), 18 (2007)

35. Li, Y., Lee, P.P.C., Lui, J.C.S.: Stochastic analysis on RAID reliability for solid-state drives. In: Pro-
ceedings of the 32nd IEEE International Symposium on Reliable Distributed Systems (2013)

36. Li, Y., Lee, P.P.C., Lui, J.C.S.: Stochastic modeling of large-scale Solid-State Storage Systems: Analy-
sis, Design Tradeoffs and Optimization. In: Proceedings of the ACM SIGMETRICS/international
conference on Measurement and modeling of computer systems, SIGMETRICS ’13, pp. 179–190.
ACM (2013)

37. Lofgren, K.M.J., Norman, R.D., Thelin, G.B., Gupta, A.: Wear leveling techniques for flash EEPROM
systems. US patent 6,850,443 (2005)

38. Matthews, J., Trika, S., Hensgen, D., Coulson, R., Grimsrud, K.: IntelR turbo memory: nonvolatile
disk caches in the storage hierarchy of mainstream computer systems. ACM Trans. Storage 4(2), 1–24
(2008)

39. Micron Technology: Bad block management in NAND flash memory. Technical Note, TN-29-59 (2011)
40. Micron Technology. http://www.micron.com/products/nand-flash. Accessed 29 Mar 2014
41. Mitzenmacher, M.: Load balancing and density dependent jump Markov processes. In: Proceedings

of IEEE FOCS (1996)
42. Murugan, M., Du, D.: Rejuvenator: a static wear leveling algorithm for NAND flash memory with

minimized overhead. In: Proceedings of IEEE MSST (2011)
43. Park, C., Cheon, W., Kang, J., Roh, K., Cho, W., Kim, J.S.: A reconfigurable ftl (flash translation layer)

architecture for nand flash-based applications. ACM Trans. Embed. Comput. Syst. 7(4), 38:1–38:23
(2008)

44. Park, S., Kim, Y., Urgaonkar, B., Lee, J., Seo, E.: A comprehensive study of energy efficiency and
performance of flash-based SSD. J. Syst. Arch. 57(4), 354–365 (2011)

45. Polte, M., Simsa, J., Gibson, G.: Enabling enterprise solid state disks performance. In: 1st Workshop
on Integrating Solid-state Memory into the Storage Hierarchy (2009)

46. Qin, Z., Wang, Y., Liu, D., Shao, Z.: Demand-based block-level address mapping in large-scale NAND
flash storage systems. In: Proceedings of IEEE/ACM/IFIP CODES+ISSS (2010)

47. Storage Performance Council: http://traces.cs.umass.edu/index.php/Storage/Storage (2002). Accessed
29 Mar 2014

48. Van Houdt, B.: A mean field model for a class of garbage collection algorithms in flash-based solid
state drives. In: Proceedings of ACM SIGMETRICS (2013)

49. Verma, A., Koller, R., Useche, L., Rangaswami, R.: SRCMap: Energy proportional storage using
dynamic consolidation. In: Proceedings of USENIX FAST (2010). http://sylab.cs.fiu.edu/projects/
srcmap/start. Accessed 29 Mar 2014

50. Wells, S.E.: Method for wear leveling in a flash EEPROM memory. US patent 5,341,339 (1994)

123

http://www.micron.com/products/nand-flash
http://traces.cs.umass.edu/index.php/Storage/Storage
http://sylab.cs.fiu.edu/projects/srcmap/start
http://sylab.cs.fiu.edu/projects/srcmap/start

