
Quality of Service Provisioning for Composable

Routing Elements

Seung Chul Han Puneet Zaroo David K. Y. Yau Yu Dong

Prem Gopalan John C. S. Lui∗

Abstract

Quality of service (QoS) provisioning for dynamically composable software elements

in a programmable router has not received much attention. We present a router plat-

form that supports extensible and configurable routing elements, and provides them

with access to given resource allocations. Scheduling issues for these elements are dis-

cussed: (1) flow-based scheduling, (2) the preemptibility of a pipeline of elements, (3)

CPU conservation for idle elements, (4) the CPU balance between input, output, and

processing elements and its effects on buffer provisioning, and (5) performance inter-

actions between the packet forwarding plane and the service extension control plane.

∗P. Zaroo is with Vmware, Palo Alto, CA; P. Gopalan is with Mazu Networks, Cambridge, MA (work

done while S. C. Han, P. Zaroo, and P. Gopalan are graduate students at Purdue University); D. K. Y. Yau and

Y. Dong are with the Department of Computer Sciences, Purdue University, West Lafayette, IN 47907; J. C.

S. Lui is with the Department of Computer Science and Engineering, the Chinese University of Hong Kong.

Research was supported in part by the National Science Foundation under grant numbers CCR-9875742

(CAREER) and CNS-0305496, by a Hong Kong RGC earmarked grant, and by an IBM Ph.D. Fellowship

awarded to Y. Dong.

1

To demonstrate how QoS provisioning in our system can benefit end users, we use a

video scaling application that can respond gracefully to network congestion. For the

application, we quantify how router resource management impacts the end-to-end

quality of decoded video. Ours appears to be the first comprehensive experimental

evaluation of a software system that supports QoS-aware processing of lightweight,

dynamic router elements.

1 Introduction

Value-added processing of packets during their transport, especially at the network edge,

is increasingly relevant. Example applications include security firewalls, network ad-

dress translations, and proxy services to adapt application payload (e.g., a movie being

streamed) to network conditions. Moreover, some of these services are not anticipated

in advance. For example, in response to emerging security threats, new defense mecha-

nisms will be designed as countermeasures. (Previous instances include proposals such as

IP traceback [9] and route-based packet filtering [7] to defend against distributed denial-

of-service attacks.) Hence, the ability to extend the service interface of a router or proxy

server on the fly, without disrupting existing services, is attractive.

In providing extensible, value-added services during packet transport, we adopt an

approach based on software elements. An element is a self-contained code module imple-

menting a logical routing function. The advantages of using these routing elements are

many:

• The elements can be composed to form a flow processing pipeline. Hence, more

complex router services can be constructed from simpler and well understood build-

ing blocks. This has important software engineering benefits, by isolating design

2

and implementation concerns and facilitating code reuse.

• An element implementing a common routing function can be shared by several

flows desiring the function. This contributes to code and memory efficiency.

• Elements can be easily mapped to a lightweight execution context. For example, dif-

ferent elements, possibly belonging to different flows, can be executed in the context

of a single thread or process. The overhead of context switching between elements

or flows can thus be minimized for higher efficiency.

• Elements can be fetched on demand from a (possibly remote) service repository,

and dynamically linked into the runtime environment of a router. This enables the

service interface of a router to be extensible on the fly, without disrupting existing

flows. Services that are hitherto unanticipated can thus be readily introduced into

an operational routing infrastructure.

While routing elements have been advanced in prior research and are supported in ex-

isting systems (e.g., [6]), their scheduling issues for providing quality of service (QoS) to

network flows have not received much attention. In this paper, we present the CROSS/Linux

router platform that supports configurable flow graphs of router elements as provided by

the Click modular router [6]. Our research contributions beyond Click are in the area of

element-related resource allocation and scheduling, which includes the following issues:

• The provision of flow-based resource allocation and scheduling on top of an element-

based software architecture.

• The preemption granularity of flow processing. Our system can context switch

(with acceptable overhead) from a lower priority flow to a higher priority flow in

3

the middle of processing a packet. This reduces the duration of priority inversion.

We study the resulting effects on robust forwarding of network flows with fine time-

scale QoS requirements.

• CPU conservation for “idle” elements (i.e., elements which need not run because

their packet queues are empty). We provide an architecture in which elements do

not have to poll for work to do.

• The CPU balance between the element functions of input, output, and per-flow pro-

cessing. We study how giving different CPU shares to these functions will affect

buffer provisioning and packet forwarding performance.

• The provision of a service control plance, and accompanying resource contention

issues between the forwarding and control planes. In particular, we discuss how

the concurrent tasks of flow processing and service downloading may affect each

other’s performance.

Our work addresses the problem of QoS provisioning at a single router. For end-to-

end QoS provisioning over multiple hops, an RSVP like protocol generalized to reserve

CPU time will have to be deployed. Although such RSVP style support is not evaluated

in this paper, it can naturally run on the control plane of our router.

1.1 Paper organization

The balance of the paper is organized as follows. In Section 2, we review the Click modu-

lar router architecture, which provides background for configurable elements being used

in our system. We then go on to discuss the design and implementation of CROSS/Linux.

4

Section 3 presents the forwarding plane for packet processing. Issues for per-flow re-

source scheduling will be discussed. Section 4 presents the control plane. In particular, it

describes the processes of flow signaling and on the fly service extension. CROSS/Linux

has been implemented on a network of commodity Pentium III desktops configured as

gateway routers. We present measurement results on various aspects of QoS provisioning

in our system prototype. Related work is discussed in Section 7. Section 8 concludes.

2 Background

The starting point of our work is the existence of an element-based router architecture,

such as provided by the Click modular router [5], in which elements can be configured

for customized per-flow processing of packets. For completeness, we briefly review the

Click software architecture. In Click, elements are C++ kernel modules each implement-

ing a simple router function (e.g., receive from an input network interface, send to an

output interface, packet classification, queuing, and packet scheduling). Elements can be

considered nodes in a directed graph, and they can be connected to each other through

one or more ports they have. When an output port of an element is connected to an input

port of another element, it forms a directed edge from the former (the upstream element)

to the latter (the downstream element). A packet can then be passed from the upstream to

the downstream element. In general, a packet arriving at an input interface of a router is

first processed by an input element, where the packet gets classified to its flow. Accord-

ing to the classification, the packet then flows along the edges of the flow graph, from an

output port of each upstream element to an input port of each downstream element. It

will receive customized protocol processing according to the actual path it traverses, and

finally gets forwarded out of the router by an output element.

5

An upstream element initiates packet transfer to its immediate downstream neighbor

by calling the push virtual function of the neighbor. Hence, packet transfers initiated from

upstream (e.g., by network input) are called push processing. It is also possible for a down-

stream element to request packets from upstream (e.g., when an output network interface

becomes ready, it may request a packet to send). This is done by the downstream element

calling the pull virtual function of its immediate upstream neighbor. Hence, packet trans-

fers initiated from downstream is called pull processing. Conceptually, push/pull process-

ing is enabled by the arrival of packets at relevant packet queues, and a packet queue in

Click is represented by a Queue element.

Fig. 1 illustrates a sample flow graph implementing a traffic conditioning block. The

graph has two Queue elements – one upstream of the Shaper element and the other down-

stream of the Meter element. In the example, push processing starting at the Classifier el-

ement is enabled by packet arrivals at the input device queue (not shown) served by the

classifier, and pull processing starting at the DeviceOutput element is enabled by packet

arrivals at either of the two Queue elements shown.

Click has to schedule the execution order of eligible elements. Our definition of an

eligible element is one that is the starting point of push/pull processing and has available

packets to process in the relevant packet queue(s). From the scheduling point of view,

a sequence of push (or pull) function calls cannot be interrupted. A packet must pass

through the corresponding sequence of elements, until it is either dropped, or queued

in the context of a Queue element. For example, the Classifier-Meter-Discard element

sequence in Fig. 1 cannot be preempted in the middle. After a packet is dropped or

queued, however, the element scheduler regains control, and schedules a next element to

run. Hence, the position of Queue elements in a processing path determines the path’s

6

Classifier

DeviceOutput

PrioSched

RoundRobin

Meter

Shaper

Discard
push/pull input port
push/pull output port

Figure 1: A sample Click flow graph of elements.

preemption granularity in Click scheduling. If more elements are connected in tandem

without interposing Queue elements, the preemption granularity becomes coarser, since

the scheduler must wait for all the elements to complete before it can reschedule.

3 Forwarding Plane Packet Processing

A fundamental design decision about CROSS/Linux is the scheduling paradigm that

should be used for packet processing. A simple approach would be to schedule elements

as independent entities, without reference to their execution context. Click chooses such

an approach. However, packets sent through a router usually belong to higher level log-

ical flows, which have their own QoS constraints. For example, a video flow may need

some minimum forwarding rate to achieve continuity of the pictures. An interactive au-

dio flow may specify some maximum delay bound for its packets, to support high quality

voice communication.

7

To effectively support application-level QoS, we decided to provide a flow abstrac-

tion for scheduling the packet forwarding plane. Packets are classified to their flows

by a packet classifier, according to flow specifications that are installed. For example, a

layer-four IP flow can be defined by the source IP address, destination IP address, trans-

port protocol, transport source port, and transport destination port. Router resources

can then be allocated on a per-flow basis. In our current model, flows can be given pro-

portional CPU shares or guaranteed CPU rates, as provided by start-time fair queueing

(SFQ) [2]. Rate fluctuations over the small time scale (e.g., variations in processing time

of individual packets) can be handled by either over-provisioning at the peak rate or,

more typically, by provisioning at the average rate and using a small buffer to absorb

the resulting burstiness. Longer time-scale rate fluctuations can be solved by various rate

adaptation approaches (e.g., [14]), which are beyond the scope of this paper. (Other forms

of performance guarantees can be provided by other scheduling algorithms. For example,

hierarchical fair service curve (HFSC) scheduling [11] can provide explicit delay guaran-

tees.) Hence, as a packet gets processed by the sequence of elements that it goes through,

the CPU cycles consumed by the processing are charged to the packet’s flow, and not to

the elements themselves. In particular, an element being shared by two or more flows

consumes resources of the flow being processed. Such decoupling of the resource context

from the processing entity is the key to providing performance isolation between logically

independent flows.

The CROSS/Linux forwarding plane scheduler (henceforth called the flow scheduler)

selects the next flow to run from a task queue of all the eligible flows in a router. A flow is

eligible if one or more of its elements are eligible. Such a flow is represented on the task

queue by an fRouter abstraction that contains all the pertinent scheduling state about the

8

flow. Once a flow is scheduled, it still remains to determine the execution order of the

flow’s eligible elements. We support this next-level scheduling decision by (1) allowing

a flow to in turn apportion its CPU allocation among the constituent elements, and (2)

maintaining flow-specific scheduling state for each element.

Notice that certain elements do not logically belong to any particular flow. Instead,

they perform functions in the global router context. Input and output elements for net-

work interfaces, and an element for vanilla IP forwarding, are important examples. We

treat these global elements as belonging to certain “global flows”. A global flow is rep-

resented in the task queue by an ioRouter object, a counterpart of the fRouter object for

non-global flows. For the purpose of scheduling, global flows are quite similar to nor-

mal flows. They can be given specified resource allocations, thus allowing their elements

to compete for system resources with other per-flow elements. The assignment of global

router functions to global flows is flexible. For example, we could have one global flow for

each network input element, one global flow for each network output element, and one

global flow for vanilla IP forwarding. Or we could have one global flow for all of network

input, network output, and vanilla IP forwarding. Fig. 2 shows a router configuration in

which a single ioRouter is used for the router global functions, and two fRouter’s have

been created for per-flow user processing.

3.1 Preemption granularity

Since a flow represents a line of concurrency, it is natural to run each flow as a separate

thread or process. The approach, however, requires high context switching overhead (i.e.,

one full thread context switch) between flows. To reduce the overhead, previous work [8]

has advanced the technique of batching, which always tries to process a batch of at least n

9

Classifier

OutputDevice

scaling pipeline
wavelet video

IP sec pipeline

pipeline

ioRouter

fRouter

Vanilla IP forwarding

Figure 2: A sample CROSS/Linux router configuration.

packets (provided that these packets are available) belonging to one flow before the sys-

tem will consider switching to another flow. While batching reduces context switching, it

also makes the preemption granularity coarse and hence increases the possible duration

of priority inversion. For example, a newly backlogged higher priority flow may have to

wait for an entire batch of n lower priority packets to finish before it will get a chance to

run.

We have described Click’s packet preemption mechanism in Section 2. As discussed,

the preemption granularity is a sequence of elements that usually ends with a Queue ele-

ment. This means that a packet can be preempted while being processed. Such smaller

preemption granularity than batching is feasible in Click because different packets can be

processed by the same thread and no kernel-level thread scheduling is required to switch

between them. Since QoS is an important concern in CROSS/Linux and certain appli-

cations, like continuous media, may have fine-grained time constraints, we take Click’s

10

approach one step further to allow flow preemption at arbitrary element boundaries.

We associate with each flow, say i, a user-specified preemption quantum qi (in µs) for the

flow. The choice of qi allows users to control the tradeoff between scheduling efficiency

and fairness. In general, a smaller qi gives improved fairness (and hence more precise

QoS guarantees) at the expense of a larger context switch overhead. Once scheduled,

if i has been running continuously for qi time, then the system will attempt to resched-

ule when the current element being processed for i finishes. To do so, before invoking a

downstream push call (respectively, upstream pull call) for i’s current packet, we check

whether qi has expired or not. If not, we perform the push (respectively, pull) call as

usual. If it has expired, however, then instead of performing the push/pull call, the sys-

tem checks for the need to reschedule. The current packet of i should be preempted if

there is another eligible flow in the system that has higher or the same SFQ virtual time

priority as i. (In SFQ, flows are scheduled in an increasing virtual time priority order [2].)

To carry out the preemption, the system saves a pointer to i’s current packet and another

pointer to the element that should next process the packet when the packet is resumed.

Since each element operates on and transforms a packet independently in our system, we

do not need to store further execution state for the preempted packet. The added runtime

overhead for our preemption mechanism is therefore quite small.

3.2 CPU conservation for idle elements

Recall from Section 2 that, conceptually, flow elements are enabled by packet arrivals into

their work queue(s). In practice, however, Click does not distinguish between eligible

versus ineligible elements. Instead, elements have to poll their packet queue(s) for work

to do. When an element is scheduled but finds no packet to process, it simply returns

11

but remains eligible for the CPU. Since we assign CPU shares to elements, this imposes a

problem. Specifically, an element that has no non-empty work queue will keep on polling,

thus wasting CPU time, until it has used up its allocated CPU share. Although we are not

able to further elaborate, because of limited space, this causes various anomalies in flow

scheduling.

To address the problem, CROSS/Linux maintains a task queue of eligible flows only,

where a flow is eligible if at least one of its elements is eligible. When an element finishes

processing its last available packet, it will enter the sleep state. When all the elements of

a flow sleep, the flow itself enters the sleep state and, therefore, it will be removed from

the task queue. Hence, it will not be chosen to run by the flow scheduler. Later, when a

packet for the flow arrives, the packet will enable one of the flow’s elements, which will

have the effect of waking up the flow and putting it back on the task queue.

4 The Control Plane

Whereas the forwarding plane processes packet flows, the control plane of a router runs

supporting services such as routing (e.g., OSPF, RIP, and BGP) and signaling (e.g., SIP

and RSVP) daemons. In the case of an extensible services router, the ability to download

code modules on the fly is important. It allows services that are not planned a priori

to be deployed as they become available or as the need arises. For this purpose, the

DARPA active network project has developed the active network daemon, called anetd,

for fetching code from a remote repository. We leverage anetd in providing on-demand

service extension. System support for interfacing CROSS/Linux with anetd is discussed

in Section 4.1.

Control plane services usually run as user-level processes. Fig. 3 illustrates how such

12

a service can be started. In the figure, a request to start anetd is received by the router, and

causes the anetd daemon process to be spawned. After startup, the daemon “subscribes”

to anetd packets through a standard socket-type API. This installs a new rule in the packet

classifier for anetd packets to be locally queued for reading by the daemon. Future anetd

packets will thus be delivered to the daemon, instead of being forwarded by the router.

Processes in the control plane compete for system resources with each other and with

the forwarding plane. To schedule the competing demands, CROSS/Linux implements a

system level multiresource scheduling architecture based on resource allocations [13]. Sim-

ilar to [13], QoS-aware schedulers for CPU cycles, network bandwidth, disk bandwidth

and main memory have been integrated, although the current CPU scheduler supports

only proportional shares but not decoupled delay and rate allocations. Notice also that

the flow scheduler described in Section 3 can be treated essentially as a system process

and hence, can be given a CPU share relative to other processes or threads in the sys-

tem. The flow scheduler then allocates the received CPU share to the packet flows that it

manages.

4.1 Flow Signaling and Service Configuration

So far, we have described flow scheduling assuming that the flows have been already set

up. CROSS/Linux also allows flows to be dynamically created and flexibly configured

as a pipeline of elements. Such flow management is effected by IP control packets with

the router alert option being set. Three kinds of control packets are defined: IC SETUP for

creating flows, IC TEARD for destroying flows, and IC CONFIG for configuring a flow

element. The packet classifier reading from an input interface identifies these control

packets and delivers them to a control queue. A system control thread processes packets

13

1. Control packet

Kernel

daemon spawned

2. Packet classification

User space

3. Anetd

4. anetd control
packet subscription

arrival

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

daemon
anetd

Figure 3: Anetd service startup.

in the control queue in FIFO order. It runs code implemented in a FlowManager element

(also called the flow manager), which is similar to the original Click element for IP classifi-

cation, but has additional support for adding new ports and filter rules. Such support is

clearly crucial for dynamic flow creation.

4.1.1 Flow setup

When an IC SETUP packet is received, the flow manager constructs a configuration string

representing the flow specification encoded in the packet. Once the string is composed,

the original set of configuration strings maintained by the flow manager is reconfigured

to include the new string. As part of the reconfiguration process, a new element output

port is created for the flow manager. The new port is then connected to a Queue element

created for the new flow. In addition, an fRouter object will be created and allocated

resources according to parameters carried in the IC SETUP packet. Later packets that

14

match the classification rule for the new flow are then delivered to the corresponding

flow queue.

4.1.2 Flow configuration

An IC CONFIG control packet is used to add/delete an element to/from the processing

pipeline of an existing flow. In the case of adding an element, the flow manager checks

whether the requested service is already available in a local service repository. If not, it

signals anetd to download the named service from a remote node. The anetd daemon

looks up the remote node having the service. It then reliably fetches the code, as an

uninterpreted byte stream, from a web server running on that node, using HTTP. For

CROSS/Linux, the byte stream must correspond to a compiled kernel module for the

requesting machine. If the download fails (e.g., the requested service cannot be found) in

the current implementation, the request to add an element silently fails, in that the sender

of the add request is not notified of the failure. If the download succeeds, the fetched

code will be entered into the local service repository. Once the code is available locally, it

is dynamically linked with the running kernel using the standard Linux insmod utility.

Lastly, the linked module is configured into the processing pipeline through the standard

Click mechanism of writing a service specification to the kernel through the /proc file

system.

Fig. 4 illustrates the flow configuration process. In the figure, step 2 for spawning

a new control thread is optional. In the current implementation, it is invoked only if the

control thread is not already running when the IC CONFIG packet is received. Notice also

that code downloading can take place concurrently with normal packet forwarding, and

that the code packets returned from the HTTP server are not forwarded but are delivered

15

1. IC_CONFIG packet arrival

informed
5. Returned code

informed to install
7. Control thread

Control plane code packets

Forwarded stream

Forward plane packets

3. anetd

6. Returned code routed to anetd

User space

Kernel

4. HTTP download request

thread spawned
2. Control

.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

daemon
anetd

server
HTTP

downloaded module

Figure 4: The process of service configuration using anetd.

to anetd. This is because anetd has previously subscribed to the packets.

4.1.3 Flow delete

When an IC TEARD is received, the flow manager verifies the existence of the named

fRouter. If it exists, it is removed from the flow scheduler, its flow specification is removed

from the packet classifier, and any memory allocated to it is returned to the kernel.

5 Video Scaling Application

A media scaling service is reported in [4] for router plugins [1]. The service applies to

wavelet-encoded real-time video consisting of a base layer and progressive enhancement

layers. Lower layers contain more basic video information, and are needed for higher lay-

ers to add to the video quality. By using a plugin to examine the layer information of back-

logged video packets at times of network congestion, the router can drop enhancement

16

layer packets before base layer packets, and higher enhancement layer packets before

lower enhancement layer packets. This way, it is possible to achieve graceful degradation

of video quality under constrained network bandwidth.

We have ported wavelet video scaling to CROSS/Linux. The service can be fetched

and loaded on demand, in response to user requests. While the same service has been

demonstrated in [4], our goal is to understand how resource management in CROSS/Linux

can impact video quality perceived by end users. In particular, video scaling requires suf-

ficient CPU cycles to be effective. Otherwise, video packets will be dropped in an undif-

ferentiated manner while awaiting processing by the scaling module. We are interested in

experimentally assessing how different CPU allocations for the scaling service can affect

video quality. Resource allocation issues are particularly relevant for applications like

video streaming that have QoS constraints.

6 Experimental Results

We present experimental results to illustrate application performance on CROSS/Linux.

The routing platform used is a Pentium III/866 MHz PC fitted with four PCI 3Com 3c59x

(vortex) 10/100 Mb/s ethernet interfaces. The original vortex driver runs in interrupt

mode, in which every packet arrival from the network generates a device interrupt. We

have made our own changes to the vortex device driver to additionally support polling

I/O, in which the device driver polls the network interface for packet arrivals (i.e., there

is no interrupt overhead for receiving packets). Polling is much less expensive than in-

terrupt processing, and can significantly increase the efficiency and stability of a router

having to deal with frequent packet arrivals [6, 8]. For the global router functions, we

schedule them in the context of a single global flow, similar to the configuration shown in

17

Fig. 2. Also, the preemption quantum is set to be qi = 5µs. Such a small qi value effec-

tively causes preemption to be considered after the processing of every router element.

6.1 Context switching

As discussed, an element-based architecture allows low context switching overhead be-

tween flows, if the flow elements are run in the context of one kernel thread. To verify the

claim, we measure the overhead of flow context switching in CROSS/Linux, as a function

of the number of eligible flows in the system. Each flow is given the same CPU share and

is always enabled. Fig. 5 shows the results. The overhead has two components. First,

it has a fixed component of about 280 ns, which includes the tasks of dequeuing the in-

coming flow from the head of the task list, storing the execution state of the flow being

switched out (e.g., the next element to process the flow’s packet that is being preempted),

and updating the proportional-share scheduling state of both the incoming and outgoing

flows. Second, it has a linear component that has a measured value of around 5 ns/flow,

which accounts for the time required to insert the outgoing flow into the task list in sorted

order of the eligible flows’ virtual time priorities. The linear time reflects our current im-

plementation of the task list as a doubly linked list of the eligible flows. A priority queue

implementation can reduce the implementation complexity to O(log n), where n is the

number of eligible flows in the system. To put our numbers in perspective, the reported

cost for context switching between forwarding processes in [8] is 3.3 µs, after aggressive

performance optimization using continuations.

18

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20 22

C
on

te
xt

 s
w

itc
h

tim
e

(n
s)

Number of flows

Figure 5: Context switch overhead as a function of the number of eligible flows.

6.2 Throughput comparison with Click

CROSS/Linux has added support for QoS beyond Click, and our measurement platform

uses fine-grained preemption at the boundary of every element. We verify that the extra

mechanisms do not compromise the system’s efficiency in forwarding packets. To do

so, we compare the achievable throughput by Click and CROSS/Linux in forwarding

small size (specifically, 64-byte) packets, because small packets maximize the demand on

CPU processing. We configure ten flows each with equal CPU share. Each flow sends

evenly paced packets at a same specified input rate. We vary the aggregate input packet

rate from 10K to 90K packets/s for both the polling and interrupt modes. Each flow

The results are shown in Fig. 6. For polling, both Click and CROSS/Linux achieve a

forwarding rate equal to the input rate (i.e., there is no packet loss) at all the offered

loads. For interrupt mode, both Click and CROSS/Linux achieve lossless forwarding at

up to about 60K packets/s. When the input rate is 70K to 90K packets/s, losses occur

for both systems, and the achieved forwarding rate of CROSS/Linux is about 90% of

19

 0

 20000

 40000

 60000

 80000

 100000

 120000

 10000 20000 30000 40000 50000 60000 70000 80000 90000

F
or

w
ar

di
ng

 r
at

e
(p

ac
ke

ts
/s

)

Input rate (packets/s)

Click (error bar, polling)
Click (average, polling)

CROSS-Linux (error bar, polling)
CROSS-Linux (average, polling)

Click (error bar, interrupt)
Click (average, interrupt)

CROSS-Linux (error bar, interrupt)
CROSS-Linux (average, interrupt)

Figure 6: Click and CROSS/Linux packet forwarding performance in polling and inter-

rupt modes.

Click’s forwarding rate. We conclude that QoS support in CROSS/Linux does not cause

significant loss in system performance, especially in polling mode.

6.3 Forwarding/control plane contention

We examine system performance when the control plane contends with the forwarding

plane for resources. To do so, we let our router forward flows as usual. Then, while the

forwarding is going on, we send an IC CONFIG control packet to download and configure

the WaveScaleCOLOR.o module into the running kernel. The system level scheduler in

Section 4 is used to allocate relative CPU shares to the flow scheduler, anetd and the

control thread that interacts with anetd. In the experiment, we simply use the default

scheduling parameters such that the three threads all have the same CPU share. The

forwarding plane has much higher actual load than the other two threads, but it can

make use of the CPU cycles not claimed by them. No reservation for network bandwidth

is made in the experiment.

20

140

150

160

170

180

190

200

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(m

s)

Input rate (packets/s)

Least-square fit y = 0.0139 x + 139.8620

Figure 7: Time to configure WaveScaleCOLOR.o as a function of the competing forward-

ing plane packet rate.

We vary the offered traffic rate for the forwarding plane from 10K to 100K 64-byte

packets/s. We measure the actual forwarding rate achieved by the forwarding plane

and also the time taken for WaveScaleCOLOR.o to be successfully installed. From Fig. 7,

notice that the configuration time is partly constant and partly linear with the offered

traffic rate. Let y (in ms) be the configuration time and x (in packets/s) be the offered

traffic rate. We found that a linear least square polynomial, y = 0.0139x+139.86, provides

a very good fit with an R-coefficient of 0.9972.

For the achieved forwarding rate, we compare the cases when forwarding occurs with

and without competition from the service configuration process. From Fig. 8, notice that

there is no observable performance difference between the two cases. We conclude that

service configuration requires only a small fraction of the system resources such that it

makes no significant impact on the forwarding plane.

21

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 10000 30000 50000 70000 90000

F
or

w
ar

di
ng

 r
at

e
(p

ac
ke

ts
/s

)

Input rate (packets/s)

w/o downloading (polling)
w/ downloading (polling)

w/o downloading (interrupt)
w/ downloading (interrupt)

Figure 8: Packet forwarding performance, with and without competing service configu-

ration.

6.4 Flow-based versus element-based scheduling

A fundamental design decision about CROSS/Linux is to impose a flow abstraction over

Click’s element-based architecture. We demonstrate the performance impact of flow-

based scheduling. We configure two flows, A and B, as shown in Fig. 9. Notice that

the MultPull2Push element is being shared by the two flows. Our objective is to process

flow A with twice the actual CPU capacity as B. In the case of Click, CPU shares are

assigned per element. Given the sharing objective, we assign B’s private Paint element a

CPU share of 2, and A’s private Paint element a share of 4. It is not easy to assign a CPU

share to the MultPull2Push element, since it is being shared. We make the apparently

reasonable choice of assigning it a share of (2 + 4)/2 = 3. For CROSS/Linux, CPU shares

are assigned per-flow. Hence, we simply assign shares to flows A and B in the ratio of

2:1.

We then generate 64-byte packet arrivals for the two flows so that they are always

backlogged. Fig. 10 shows the cumulative CPU consumption of A and B in Click, as a

22

C
la

ss
if

ie
r

Paint

Paint

Flow A

Flow B

M
ul

tP
ul

l2
Pu

sh

Flow A

Flow B

D
ev

ic
eO

ut
pu

t

Figure 9: Configuration of Flow A and Flow B to evaluate flow-based versus element-

based scheduling. Notice that MultPull2Push is shared by both flows.

function of time. Given the progress rate of B, the expected progress rate of A is also shown

for comparison. Notice from the figure that the actual rate of A is significantly smaller

than the expected rate. This is because the MultPull2Push element does not get sufficient

CPU cycles to keep up with A’s packet arrivals, causing the packets to be dropped. On the

other hand, increasing the CPU share of MultPull2Push gives B the potential to be overly

aggressive and take away A’s intended share. The result demonstrates the difficulty of

assigning appropriate CPU shares to shared elements in Click, such that the logical flows

will get their desired actual CPU shares. In contrast, Fig. 11 shows the progress rates of

the two flows in CROSS/Linux. Notice that our straightforward flow rate assignments

easily result in the desired progress ratio of 2:1 for A relative to B. We conclude that flow-

based scheduling avoids complex rate assignment problems when elements can be shared

between flows. It thus enables simple and intuitive user control over system resource

allocations.

6.5 CPU and buffer provisioning

Packet arrivals from the network may happen quickly relative to the scheduling of the

software that processes the packets. If the software cannot run as soon as the packets

arrive, the packets may be lost unless there are sufficient buffers to absorb the burstiness.

23

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 10 20 30 40 50 60 70 80

C
P

U
 c

yc
le

s
co

ns
um

ed

Time (seconds)

Expected Flow A
Flow A
Flow B

Figure 10: Progress of Flow A and Flow B under element-based scheduling. Notice that

A’s progress rate deviates from the expected rate.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 20 40 60 80 100 120

C
P

U
 c

yc
le

s
co

ns
um

ed

Time (seconds)

Flow A
Flow B

Figure 11: Progress of Flow A and B under flow-based scheduling. The progress rate A

to B is very close to the expected ratio of 2:1.

24

Such loss may occur, for example, at the hardware network interface, if the input element

cannot read the packets and classify them quickly enough. It may also occur at a per-flow

packet queue if the per-flow element(s) cannot consume the packets fast enough. We

examine several issues that affect buffer provisioning in our system to achieve lossless

forwarding of packets.

6.5.1 CPU balance

Consider a general flow processing pipeline consisting of three stages: input, per-flow

processing, and output. CROSS/Linux can assign different relative CPU shares to the

three parts. Let i, f , and o denote the CPU shares given to input, processing, and output,

respectively. The ideal ratios between the quantities should depend on the time taken by

the corresponding stages. If a function is given too small a CPU share, packet loss may

result if the function is not able to keep up with the packet arrivals.

In an experiment, we configure a flow whose input, processing and output stages take

about 150 ns, 1.27 µs, and 130 ns, respectively. (Hence, the “ideal” CPU balance between

the three stages should be about 1:8:1.) We generate back-to-back 64-byte packets for the

flow at a rate of about 30K packets/s. In a set of runs, we allocate CPU shares for input,

processing and output in ratios of 1 : f : 1, where f is varied from 1 to 30. We then

measure the minimum buffer size (in number of packets) needed for the flow to achieve

lossless forwarding of its packets in each run. Polling mode is used. The results for

both Click and CROSS/Linux are shown in Fig. 12. Notice that when f is small, a large

buffer size is needed in both systems to prevent packet loss (for f = 1, Click requires 330

packets and CROSS/Linux requires 310 packets). As f increases, the required buffer size

decreases rather quickly, until f reaches about 8 which reflects the ideal CPU balance. In

25

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

Q
ue

ue
 s

iz
e

(p
ac

ke
ts

)

Processing share, f

CLICK
CROSS/Linux

Figure 12: Minimum queue size for lossless forwarding as a function of the processing

share f , for both Click and CROSS/Linux.

Click, the required buffer size first reaches the minimum value of 8 packets when f = 8

and stays the same when f further increases. In CROSS/Linux, the required buffer size is

17 when f = 8 and is 16 when f = 9 or higher. The buffer size stabilizes at different values

for Click and CROSS/Linux because the two systems have different implementations of

the input and queue elements, but further investigation is needed to pinpoint the exact

reasons.

In another experiment, we construct another input-processing-output pipeline where

processing corresponds to vanilla IP forwarding of packets. We allocate CPU shares to

the three stages corresponding to their ideal balance of about 1:10:1. We generate back-

to-back 64-byte packets for the flow at a rate of x packets/s, where x is varied to be 9927,

29937, 49355 and 70499 packets/s in a sequence of runs. We then measure the achieved

forwarding rate for the flow when the buffer size, denoted by b, is set to be 10, 100, and

1000 packets in different runs.

Table 1 shows the results for polling mode in CROSS/Linux. Notice that when b is

26

Input rate Forwarding rate % forwarded

(packets/s) (packets/s)

b = 10 b = 100/1000 b = 10 b = 100/1000

9927 9887 9927 99.6 100

29937 29833 29937 99.6 100

49355 49144 49355 99.5 100

70499 70198 70499 99.5 100

Table 1: Vanilla IP packet forwarding rate and percentage for buffer sizes of 10, 100 and

1000 packets, and at different offered 64-byte packet rates. Polling mode.

100 or 1000 packets, forwarding is lossless. When b is 10, however, some loss is observed,

and the percentage of forwarded packets ranges from about 99.6% to 99.5%. In the case of

interrupt mode, the loss rates vary much more for the different buffer sizes. The results

are shown in Fig. 13. Notice that for interrupt, a large buffer size (of about 1000 packets)

is needed to realize the packet forwarding capacity of the router.

6.5.2 Preemption granularity

The preemption granularity of the system, as discussed in Section 3.1, will also affect

buffer provisioning to achieve lossless forwarding. This is because when the preemption

granularity is coarse, then a flow (even if it has a sufficient long-term CPU rate to process

its packets) may have to wait longer before it will be given a chance to run. If packets ar-

rive for the flow during this waiting period, they will have to be buffered. Then, when the

flow runs, it may process a large number of backlogged packets in a burst. Hence, pro-

cessing for the flow may appear more bursty, necessitating a larger buffer size to absorb

the burstiness.

27

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 10000 20000 30000 40000 50000 60000 70000 80000 90000

F
or

w
ar

di
ng

 r
at

e
(p

ac
ke

ts
/s

)

Input rate (packets/s)

Queue=10 packets (error bar)
Queue=10 packets (average)

Queue=1000 packets (error bar)
Queue=1000 packets (average)

Queue=10000 packets (error bar)
Queue=10000 packets (average)

Figure 13: Interrupt mode vanilla IP forwarding rate and percentage with buffer sizes of

10, 1000 and 10000 packets and at different offered 64-byte packet rates.

In an experiment, we measure how the finer preemption granularity proposed in Sec-

tion 3.1 may impact resource (i.e., buffer) provisioning compared with Click’s original

mechanism. We configure two flows, A and B. A has only one simple processing element

that does little more than queuing each received packet for the output interface. B has the

same simple element as A, but in addition n delay elements – each artificially consuming

about 1 µs of CPU time – configured into a processing pipeline with no intervening Queue

elements. In the original mechanism, the pipeline of n+1 elements is not preemptible, but

it is preemptible at element boundaries with the proposed changes. We generate 64-byte

packet arrivals for the two flows at a rate of about 5200 packets/s. We vary n from 0 to

12 in a set of runs, and report the minimum buffer sizes needed by A to achieve lossless

fowarding in the original and new mechanisms, respectively. Fig. 14 shows the results.

Notice that for the original mechanism, the required buffer size for A increases roughly

linearly as n increases. With fine-grained preemption, however, the required buffer size

increases from 1 to 2 as n increases from 0 to 1, but stays at the value 2 as n further in-

28

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14

M
in

im
um

 lo
ss

le
ss

 q
ue

ue
 s

iz
e

(p
ac

ke
ts

)

n

Original Preemption
Fine-grained Preemption

Figure 14: Minimum buffer size for lossless forwarding by flow A, as a function n, the

number of delay elements used in competing flow B’s pipeline. Original versus fine-

grained preemption mechanisms.

creases. Hence, although both mechanisms can assure a long-term forwarding rate for A

independent of B’s processing pipeline, fine-grained preemption has the added advan-

tage of keeping A’s buffer requirement largely unchanged in the different runs.

6.6 Video scaling

Video scaling is designed to respond to network congestion, and is most useful for con-

nections without access to guaranteed link bandwidth. Hence, we do not perform real-

time link scheduling in our experiments. Instead, default FIFO packet scheduling is used

for each network output port.

The experimental network setup for video scaling is shown in Fig. ??. In the figure, a

wavelet video stream consisting of 300 frames and with a peak bandwidth requirement of

2.6 Mb/s is being sent at 25 frames/s from bolling to madrigal, through the CROSS/Linux

router cadiz. The video stream, encoded to have one base layer and 127 enhancement

29

layers, is displayed at madrigal when received. At cadiz, it competes for resources with

a cross traffic stream of UDP packets, sent at different bit rates and requesting different

per-flow processing, from sevilla to madrigal. The direct links shown between machines

are 10 Mb/s point-to-point ethernet connections. Interrupt I/O is being used.

In the presence of network congestion, CPU allocations have a significant impact on

the quality of the video received. In a set of experiments, we run the video flow with

a competing UDP flow generated at a rate of 12,499 packets/s (packet size of 64 bytes).

Each UDP packet receives CPU-intensive per-flow processing to create CPU congestion.

(The actual CPU utilization is 100% throughout each experiment.) When the video flow

is routed through the scaling service, we vary the CPU allocation of the flow to be 0.003%,

0.067% and 0.122%, respectively. The remaining CPU capacity, less 20% given to the

global router functions, is entirely allocated to the competing UDP flow. Fig. 15 pro-

files the PSNR of the received video. The average PSNR’s for 0.003%, 0.067% and 0.122%

of video CPU allocation are 20.56, 21.67 and 22.61 dB, respectively. All 300 frames are

displayed for each experiment using video scaling. For comparison, we also show the

received video quality with drop-tail and 0.183% CPU allocation to the video flow. In

spite of the relatively high CPU allocation, the video quality is very low – only 7 frames

are successfully displayed, with an average PSNR of 23.12 dB. We conclude that video

scaling, when given a sufficient CPU share to run, can significantly improve the video

application’s ability to gracefully respond to network congestion.

7 Related Work

Component-based synthesis of network protocols has been advanced in x-kernel [3], and

adopted in recent extensible software-based routers [1, 10, 12]. A notable example is

30

 16

 18

 20

 22

 24

 26

 28

 30

 0 50 100 150 200 250 300

P
S

N
R

 (
Y

 c
ha

nn
el

)

Frame Number

CPU alloc=0.122%(scaling)
CPU alloc=0.067%(scaling)
CPU alloc=0.003%(scaling)

CPU alloc=0.183%(drop tail)

only 7 frames displayed by drop tail

cpu=0.067%

cpu=0.122%

cpu=0.003%

Figure 15: Received video quality with the video scaling service running at different CPU

rates, under CPU and network congestion.

router plugins [1] – however, plugin gates are fixed in the IP forwarding path and cannot

be dynamically extended. Moreover, the previous work [1, 3, 10, 12] focuses neither on

scheduling issues for the software elements themselves nor issues in the context of a com-

plementary service control plane. Our forwarding plane implementation leverages Click

[5, 6]. We support the use of Click elements with push/pull data movement as router

service components, and exploit Click’s configuration language and system support in

constructing flow service pipelines. However, Click does not provide the control plane

discussed in this paper. Moreover, we have greatly extended Click in many aspects of

flow and control plane scheduling.

There has been recent work on resource management in software routers. Qie et al.

[8] present very interesting experimental results pertaining to balancing between input,

output, and per-flow processing in their software router. We have investigated similar

issues of CPU balance in our system. However, our focus is on a system that supports

configurable routing elements, whereas their system does not provide such support. To

31

reduce context switching, they use the technique of batching packets. Our system takes

a more fine-grained preemption approach that allows a flow’s packet to be preempted at

element boundaries. Moreover, important features of flow signaling and service exten-

sion, and their interactions with the forwarding plane, are not discussed in [8]. CROSS

[13] advances a multiresource scheduling architecture based on resource allocations. We

use resource allocations in system-level scheduling between the forwarding and control

planes. However, CROSS is not element-based and, therefore, does not address a lot of

the scheduling issues presented in this paper.

Recently, the use of network processors in a software router, chiefly for data plane ser-

vices, is reported in [10]. By using different processors (general purpose versus special-

ized) for various data and control plane services, new scheduling problems arise, which

is an interesting area for future research.

Lastly, our work complements existing work in resource scheduling algorithms [2,

11]. We have studied more generic QoS issues than the scheduler itself, including per-

flow resource acounting, flow preemption granularity, and CPU conservation for idle

elements. While we have used SFQ in our experimental evaluation, our work is relevant

in the context of diverse schedulers and can be used together with these schedulers.

8 Conclusions

We have presented the CROSS/Linux software router. The router allows more com-

plex router services to be constructed from simpler and well understood building blocks.

Moreover, it is truly dynamically extensible through the flow signaling and on the fly

service configuration mechanisms. We have examined in detail various issues of QoS

provisioning. For the forwarding plane, we discuss flow-based resource scheduling, and

32

exploit the lightweight nature of elements to support fine-grained preemption of flow

packets. We have also studied how buffers should be provisioned to achieve lossless

forwarding of packets under conditions of polling versus interrupt, and various CPU bal-

ance between input, output and processing. We have evaluated resource contention is-

sues between the forwarding and control planes. Diverse experimental results show that

our router can achieve robust lossless forwarding of packets, and can provide QoS sup-

port without excessive performance penalty. Finally, we have prototyped and evaluated

a video scaling service to demonstrate benefits for end users.

References

[1] D. Descaper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A software archi-

tecture for next generation routers. In Proc. ACM SIGCOMM, Vancouver, Canada,

Sept 1998.

[2] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler for multimedia oper-

ating systems. In Proc. 2nd USENIX OSDI, 1996.

[3] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing

network protocols. IEEE Trans. Software Engineering, 17(1):64–76, January 1991.

[4] R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser, and B. Plattner. An active

router architecture for multicast video distribution. In Proc. IEEE Infocom, March

2000.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular

router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

33

[6] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click modular router. In

Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP ’99),

pages 217–231, Kiawah Island, South Carolina, December 1999.

[7] K. Park and H. Lee. On the effectiveness of route-based packet filtering for dis-

tributed DoS attack prevention in power-law Internets. In Proc. ACM SIGCOMM,

San Diego, CA, August 2001.

[8] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Scheduling Computations on a Software-

Based Router. In Proceedings of the ACM SIGMETRICS 2001 Conference, pages 13–24,

June 2001.

[9] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for

IP traceback. In Proc. ACM SIGCOMM, Stockholm, Sweden, August 2000.

[10] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a Robust Software-Based

Router Using Network Processors. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP), October 2001. to appear.

[11] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service curve algorithm for

link-sharing, real-time and priority services. In Proc. ACM SIGCOMM, September

1997.

[12] D. Wetherall. Active network vision and reality: Lessons from a capsule-based sys-

tem. In Proc. ACM SOSP, December 1999.

[13] D. K. Y. Yau and X. Chen. Resource management in software-programmable router

operating systems. IEEE Journal on Selected Areas in Communications, 19(3), March

2001.

34

[14] D. K. Y. Yau and S. S. Lam. Adaptive rate-controlled scheduling for multimedia

applications. IEEE/ACM Trans. Networking, August 1997.

[15] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam. Defending against distributed denial-

of-service attacks with max-min fair server-centric router throttles. IEEE/ACM Trans.

Networking, February 2005.

35

