2230

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

VENUS: A System for Streamlined Graph
Computation on a Single PC

Qin Liu, Jiefeng Cheng, Zhenguo Li, and John C.S. Lui, Fellow, IEEE

Abstract—Recent studies show that disk-based graph computation systems on just a single PC can be as highly competitive as
cluster-based systems on large-scale problems. Inspired by this remarkable progress, we develop VENUS, a disk-based graph
computation system which is able to handle billion-scale graphs efficiently on a commodity PC. VENUS adopts a novel computing
architecture that features vertex-centric “streamlined” processing—the graph is sequentially loaded and an update function is executed
for each vertex in parallel on the fly. VENUS deliberately avoids loading batch edge data by separating read-only structure data from
mutable vertex data on disk, and minimizes random I0s by caching vertex data in the main memory whenever possible. The
streamlined processing is realized with efficient sequential scan over massive structure data and fast feeding the update function for a
large number of vertices. Extensive evaluation on large real-world and synthetic graphs has demonstrated the efficiency of VENUS. For
example, to run the PageRank algorithm on a Twitter graph of 42 million vertices and 1.4 billion edges, Spark needs 8.1 minutes with
50 machines and GraphChi spends 13 minutes using high-speed SSD, while VENUS only takes 5 minutes on one machine with an

ordinary hard disk.

Index Terms—Graph computation, disk-based computing, vertex-centric streamlined processing

1 INTRODUCTION

WE are living in a “big data” era due to the dramatic
advance made in the ability to collect and generate
data from various sensors, devices, and the Internet. Con-
sider the Internet data. The web pages indexed by Google
were around one million in 1998, but quickly reached one bil-
lion in 2000 and have already exceeded one trillion in 2008.
Facebook also achieved one billion users in 2012. It is of great
interest to process, analyze, store, and understand these big
datasets, in order to extract business value and derive new
business model. However, researchers are facing significant
challenges in managing these big datasets with our current
methodologies and data mining software tools.

Graph computing over distributed or multi-core plat-
form has emerged as a new framework for big data analyt-
ics, and it draws intensive interests recently [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11]. Notable systems include Pre-
gel [1], GraphLab [2], and GraphChi [3]. They use a vertex-
centric computing model, in which the user provides a sim-
ple update function to the system which is executed for
each vertex in parallel [1], [2], [3]. These developments sub-
stantially advance our ability to analyze large-scale graph
data that cannot be efficiently handled by previous parallel
abstractions such as MapReduce [12] due to the sparse com-
putation dependencies and iterative operations common in
graph computation [3].

e Q. Liuand].C.S. Lui are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong.
E-mail: {qliu, csluij@cse.cuhk.edu.hk.

o |. Cheng and Z. Li are with the Huawei Noah’s Ark Lab, Hong Kong.
E-mail: {cheng jiefeng, li.zhenguo}@huawei.com.

Manuscript received 10 Apr. 2015; revised 29 Sept. 2015; accepted 1 Nov.
2015. Date of publication 23 Nov. 2015; date of current version 5 July 2016.
Recommended for acceptance by R. Jin.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2015.2502938

Distributed computing systems such as Spark [13], Pre-
gel [1], PEGASUS [5], and GraphLab [2] can handle billion-
scale graphs, but the cost of having and managing a large
cluster is prohibitory for most users. On the other hand,
disk-based single machine graph computing systems such
as GraphChi [3], X-Stream [14], and TurboGraph [15] have
shown great potential in big graph analytics. For example,
to run the belief propagation algorithm on a Web graph
with 6.7 billion edges, PEGASUS takes 22 minutes with
100 machines [5], while GraphChi uses 27 minutes on a sin-
gle PC [3]. This striking result suggests that disk-based
graph computation on a single PC is not only highly com-
petitive even compared to parallel processing over large
clusters, but it is very affordable also.

In general, graph computation is performed by itera-
tively executing the update function for each of vertices.
The disk-based approach organizes the graph data into a
number of shards on disk, so that each shard can fit in the
main memory. Each shard contains all needed information
for computing updates for a number of vertices. One itera-
tion will execute all shards. A central issue is how to man-
age the computing states of all shards to guarantee the
correctness of processing, which includes loading graph
data from disk to the main memory, and synchronizing
intermediate results to disk so that the latest updates are
visible to subsequent computation. Therefore, there is a
huge amount of data to be accessed per iteration, which can
result in extensive IOs and becomes a bottleneck of the
disk-based approach. This generates great interests in
developing new architectures for efficient disk-based graph
computation.

The seminal work for disk-based graph computation is
the GraphChi system [3]. It organizes a graph into shards
and processes each in turn. To execute a shard, the entire
shard—its vertices and all of their incoming and outgoing

1041-4347 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

edges—must be loaded into memory before processing.
This constraint hinders the parallelism of computation and
IO. In addition, after the execution, the updated vertex val-
ues need to be propagated to all the other shards in disk,
which results in extensive IOs. The X-Stream system [14]
explores a different, edge-centric processing (ECP) model.
However, it is done by writing the partial, intermediate
results to disk for subsequent processing, which doubles
the sequential IOs while incurring additional computation
cost and data loading overhead. Since the ECP model uses
very different APIs from previous vertex-centric graph com-
putation systems, the user needs to re-implement many
graph algorithms on ECP which causes high development
overhead. Moreover, certain important graph algorithms
such as community detection [16] cannot be implemented
on the ECP model (explained in Section 5.2).

In this work, we present VENUS, a disk-based graph
computation system that is able to handle billion-scale prob-
lems very efficiently on a moderate PC. Our main contribu-
tions are summarized as follows.

1.1 A Novel Computing Model

VENUS supports the vertex-centric computing model with
streamlined processing. We propose a novel graph storage
scheme which allows to stream in the graph data while per-
forming computation. The streamlined processing can
exploit the large sequential bandwidth of a disk and paral-
lelize computation and disk IO. Particularly, the vertex val-
ues are cached in a buffer in order to minimize random IOs,
which is much more desirable in disk-based graph compu-
tation where the cost of disk IO is often a bottleneck. Our
system also significantly reduces the amount of data to be
accessed, generates much fewer shards than the existing
scheme [3], and effectively utilizes the main memory with a
provable performance guarantee.

1.2 Two New IO-Friendly Algorithms

We propose two IO-friendly algorithms to support efficient
streamlined processing. In managing the computing states
of all shards, the first algorithm stores vertex values of each
shard into the corresponding files for fast retrieval during
the execution. It is necessary to update on all such files timely
once the execution of each shard is finished. The second algo-
rithm applies merge-join to construct all vertex values on the
fly. Our two algorithms adapt to memory scaling with less
sharding overhead, and smoothly turn into the in-memory
mode when the main memory can hold all vertex values.

1.3 A New Analysis Method

We analyze the performance of our vertex-centric stream-
lined processing computing model and other models, by
measuring the amount of data transferred between disk and
the main memory per iteration. We show that VENUS reads
(writes) significantly less amount of data from (to) disk than
other existing models including GraphChi. Based on this
measurement, we further find that the performance of
VENUS improves gradually as the memory increases, until
an in-memory model is emerged where the least overhead
is achieved; in contrast, existing approaches cannot unify
the in-memory model and the disk-based model in a natural

2231

way, where the performance can be radically different. The
purpose of this new analysis methodology is to clarify the
essential factors for good performance instead of a thorough
comparison of different systems. Importantly, it opens a
new way to evaluate disk-based systems analytically.

1.4 Improved Preprocessing

To reduce IO cost, all disk-based graph computation sys-
tems [3], [14] employ preprocessing to convert the input
graph to an internal form on the disk. In preprocessing,
GraphChi scans the entire input graph four times [3], which
can be time-consuming for a big graph. In this paper, we
propose a new preprocessing scheme (Section 4.1) that
scans the graph only twice, and reduces the preprocessing
time in our previous work [17] by 40 percent. Our experi-
ments in Section 5.5 show that the preprocessing scheme of
VENUS is superior to that of GraphChi [3], and although
the preprocessing of X-Stream [14] does not need to sort
edge lists, VENUS is still at least twice faster than X-Stream
in terms of the total execution time.

1.5 Extensive Experiments

We did extensive experiments on both large-scale real-
world graphs and large-scale synthetic graphs to validate
the performance of our approach. Our experiments look
into several key performance factors to all disk-based sin-
gle-machine systems including computation time, the effec-
tiveness of main memory utilization, the amount of data
read and write, and the number of shards generated. We
found that VENUS is usually two to three times faster than
GraphChi and X-Stream, two state-of-the-art disk-based
systems, on a number of graph computing tasks including
connected components, shortest paths, and alternating
least squares. Its performance is also comparable to distrib-
uted platforms over clusters. For example, to run five
iterations of the PageRank algorithm on a Twitter graph of
42 million vertices and 1.4 billion edges, Spark needs
8.1 minutes with 50 machines (100 CPUs) on Amazon’s
EC2 [18] and GraphChi spends 13 minutes using high-
speed SSD [3], while VENUS only takes 5 minutes on one
machine with an ordinary hard disk.

The rest of the paper is organized as follows. Section 2
gives an overview of VENUS, which includes a disk-based
architecture, graph organization and storage, and an exter-
nal computing model. Section 3 presents algorithms to
substantialize our processing pipeline. Section 4 explains
important considerations in implementing VENUS. We
extensively evaluate VENUS in Section 5. Section 6 reviews
more related work. We discuss the expressiveness and limi-
tation of various computing models for graph computation
in Section 7. Section 8 concludes the paper.

2 SYSTEM OVERVIEW

VENUS is based on a new disk-based graph computation
architecture, which supports a novel vertex-centric stream-
lined processing (VSP) computing model such that the graph
is sequentially loaded and the update function is executed
for each of vertices in parallel on the fly. To support the
VSP model, we propose a graph storage scheme and an
external graph computing model that coordinates the graph

2232
graph storage on disk

me [>] >
graph

offline preprocessing

online processing

graph

computing

value
buffer

£/

shard
execution
in-memory graph computation

update
function

Fig. 1. The architecture of VENUS.

computation with CPU, memory, and disk access. By work-
ing together, the system significantly reduces the amount of
data to be accessed, generates much fewer shards than the
existing scheme [3], and effectively utilizes large main mem-
ory with provable performance guarantee.

2.1 Architecture Overview

The input is modeled as a directed graph G = (V, E), where
V' is a set of vertices and E is a set of edges. Like existing
work [19], [20], the user can assign a mutable vertex value
to each vertex and define an arbitrary read-only edge value
on each edge. Let (u,v) be a directed edge from vertex u to
vertex v. Vertex u is called an in-neighbor of v, and v an out-
neighbor of u. (u,v) is called an in-edge of v and an out-
edge of u, and v and v are called the source and destination
of edge (u,v) respectively.

Most graph tasks are iterative and vertex-centric in
nature, and any update of a vertex value in each iteration
usually involves only its in-neighbors’ values. Once a vertex
is updated, it will trigger the updates of its out-neighbors.
This dynamic continues until convergence or certain condi-
tions are met. The disk-based approach organizes the graph
data into a number of shards on disk, so that each shard can
fit in the main memory. Each shard contains all needed
information for computing updates of a number of vertices.
One iteration will execute all shards. Hence there is a huge
amount of disk data to be accessed per iteration, which may
result in extensive IOs and become a bottleneck of the disk-
based approach. Therefore, a disk-based graph computation
system needs to manage the storage, the use of memory,
and CPU in an intelligent way to minimize disk access.

VENUS, its architecture depicted in Fig. 1, makes use of a
novel management scheme of disk storage and the main
memory, in order to support vertex-centric streamlined
processing. VENUS decomposes each task into two stages:
offline preprocessing and online processing. In the offline
preprocessing, VENUS reads the input graph file and con-
structs the graph storage on disk, which is organized as a
number of shards. For each shard, the edges with their asso-
ciated edge values are stored in the structure table, while
the vertex data, including mutable vertex values, are kept
in the value table. In the online processing, a graph compu-
tation task is defined using an update function. Then
VENUS executes the update function for each vertex and
manages the interaction between CPU, memory, and disk.

2.2 Vertex-Centric Streamlined Processing
VENUS enables vertex-centric streamlined processing on
our storage system, which is crucial in fast loading of graph

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

10

Fig. 2. Example graph.

data and rapid parallel execution of the update function. As
we will show later, it has a superior performance with
much less data transfer overhead. Furthermore, it is more
effective in main memory utilization, as compared with
other schemes. We will elaborate on this in Section 2.3. To
support streamlined processing, we propose a new graph
sharding method, a new graph storage scheme, and a novel
external graph computing model. Let us now provide a
brief overview of our sharding, storage, and external graph
computing model.

2.2.1 Graph Sharding

Suppose the graph is too big to fit in the main memory.
Then how it is organized on disk will affect how it will be
accessed and processed afterwards. VENUS splits the verti-
ces set V into P disjoint intervals. Each interval defines a g-
shard and a v-shard, as follows. The g-shard stores all the
edges (and the associated attributes) with destinations in
that interval. The v-shard contains all vertices in the g-shard
which includes the source and destination of each edge.
Edges in each g-shard are ordered by destination, where the
in-edges (and their associated read-only attributes) of a ver-
tex are stored consecutively as a structure record. There are
|V| structure records in total for the whole graph. The g-
shard and the v-shard corresponding to the same vertex
interval make a full shard. To illustrate the concepts of
shard, g-shard, and v-shard, consider the graph with 12 ver-
tices as shown in Fig. 2. Suppose the vertices are divided
into three intervals: I} = [1,4], I, = [5,8], and I3 =[9,12].
Then, the resulting shards, including g-shards and v-shards,
are listed in Table 1.

In practice, all g-shards are further concatenated to form
the structure table, i.e., a stream of structure records (Fig. 3).
Such a design allows executing vertex update on the fly, and
is crucial for VSP. Using this structure, we do not need to
load the whole subgraph of vertices in each interval before
execution as in GraphChi [3]. Observing that more shards
usually incur more IOs, VENUS aims to generate shards as
few as possible. To this end, a large interval is preferred pro-
vided that the associated v-shard can be loaded completely
into the main memory, and there is no size constraint on the
g-shard. Once the vertex values of vertices in a v-shard is
loaded and then held in the main memory, VENUS can read-
ily execute the update function for all vertices in the interval
with only “one sequential scan” over the corresponding g-
shard. We will discuss how to load and update vertex values
for vertices in each v-shard in Section 3.

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC 2233
TABLE 1 TABLE 2
Sharding Example: VENUS Sharding Example: GraphChi
Interval L =11,4] I, =5,8] I3 =[9,12] Interval I, =[1,3] L=1[46] L =179 I,=1/[10,12]
v-shard I, U{6,7,9,10} I,U{1,3,10,11} I3U{2,3,4,6} Shard 1—-3 1—-46 2—-9 212
g-shard 79,10 — 1 6,7,811 —5 2,34,10,11 -9 2—3 2 -4 3—789 3—-12
6,10 — 2 1,10 —6 11— 10 6—23 6—4,5 4—-9 4—-11
126 —3 3,1011 —7 4,6 — 11 7 —1 7—45 6—8 6 — 11
1,2,6,7,10 — 4 3,611 —8 2,3,9,10,11 — 12 9—-1 8—5 10—7,9 9—-12
S([) 6 1 2 10—-1,2 10 — 4,6 11—-7,8,9 10— 12
7 3 3 11 -5 11 — 10,12
9 10 4
10 11 6

2.2.2 Graph Storage

We propose a new graph storage that aims to reduce data
access. Recall that the graph data consists of two parts, the
read-only structure records, called structure data, and the
mutable vertex values, called value data. We observe that in
one complete iteration, the entire structure data needs to be
scanned only once, while the value data usually needs to be
accessed multiple times, because a vertex value is involved
in each update of its out-neighbors. This suggests us to
organize the structure data as consecutive pages, and it
should be separated from the value data. As such, the access
of the massive volume structure data can be done highly
efficiently with one sequential scan (sequential IOs). Specifi-
cally, we employ an operating system file, called the struc-
ture table, which is optimized for sequential scan, to store
the structure data.

Note that the updates and repeated reads over the value
data can result in extensive random IOs. To cope with this,
VENUS deliberately avoids storing a significant amount of
structure data into the main memory, as required in Graph-
Chi [3], and instead caches value data in the main memory
as much as possible. VENUS stores the value data in a disk
table, which we call the value table. The value table is imple-
mented as a number of consecutive disk pages, containing
|V| fixed length value records, each per vertex. For simplicity
of presentation, we assume all value records are arranged
in ascending order (in terms of vertex ID).

2.2.3 External Computing Model

Given the above description of graph sharding and storage,
we are ready to present our graph computing model which
processes the incoming stream of structure records on the
fly. Each incoming structure record is passed for execution
as the structure table is loaded sequentially. A higher

value table
AM
LTI T [T T v-shard
E shard E E shard E E shard E
5 It et g-shard
b 0 —"

structure table

Fig. 3. Vertex-centric streamlined processing.

execution manager is deployed to start new threads to exe-
cute new structure records in parallel, when possible. A
structure record is removed from main memory after its
execution, so as to make room for next processing. On the
other hand, the required vertex values of the active shard
are obtained based on v-shard, and are buffered in main
memory throughout the execution of that shard. As a result,
the repeated access of the same vertex value can be done in
the buffer even for multiple shards. We illustrate the above
computing process in Fig. 3.

We use the graph in Fig. 2 to illustrate and compare the
processing pipelines of VENUS and GraphChi. The shard-
ing structures of VENUS are shown in Table 1, and those
for GraphChi are in Table 2 where the number of shards is
assumed to be four to reflect the fact that GraphChi usually
uses more shards than VENUS. To begin, VENUS first loads
v-shard of I; into the main memory. Then we load the g-
shard in a streaming fashion from disk. As soon as we are
done loading all the in-edges of vertex 1 (which include
edges (7,1), (9,1), and (10,1)), we can perform the value
update on vertex 1, and at the same time, we load the in-
edges of vertices 2, 3, and 4 in parallel. In contrast, to perform
computation on the first interval, GraphChi needs to load all
related edges (shaded edges in the table), which include all
the in-edges and out-edges for the interval. This means that
for processing the same interval, GraphChi requires more
memory than VENUS. So under the same memory con-
straint, GraphChi needs more (and smaller) shards. More
critically, because all in-edges and out-edges must be loaded
before computation can start, GraphChi cannot parallelize
IO operations and computations like VENUS.

2.3 Analysis

We now compare our proposed VSP model with two popu-
lar single-PC graph computing models: the parallel sliding
windows model (PSW) of GraphChi [3] and the edge-centric
processing model (ECP) of X-Stream [14]. Specifically, we
look at three evaluation criteria: 1) the amount of data trans-
ferred between disk and the main memory per iteration; 2)
the number of shards generated; and 3) the adaptation to
large memory.

There are strong reasons to develop our analysis based
on the first criterion, i.e., the amount of data transfer: (i) it is
fundamental and applicable for various types of storage
systems, including magnetic disk and solid-state disk (SSD),
and various types of memory hierarchies such as on-board
cache/RAM and RAM/disk; (ii) it can be used to derive 10O
complexity of disk-based algorithms as in Section 3.3; and
(i) it helps examine other criteria, such as the number of

2234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016
TABLE 3 TABLE 4
Notations Analysis of Graph Computing Models
Notation Definition category PSW ECP VSP
n,m n=|V|, m=|E| Data read Cn+2(C+D)ym Cn+(C+D)m C(n+8m)+ Dm
gs(I) g-shard of interval I Datawrite Cn+2(C+ D)m Cn+Cm Cn
vs(I) v-shard of interval I No. of shard Cnt2(C+Dym G Clntom)
S(1) {u & I|(u,v) € gs(1)} -
8 8 =22 15(D)I/m
P number of shards
M size of RAM split into three steps: (1) loading a subgraph from disk; (2)
C size of a vertex value record updating the vertices and edges; (3) writing the updated
D size of one edge field in a structure record values to disk. In steps 1 and 3, each vertex will be loaded
b size of a disk block accessed by a unit IO and written only once which incurs Cn data read and write.

shards and large memory adaptation. We summarize the
results in Table 4, and show the details of our analysis
below. Note that the second criterion is related closely to IO
complexity, and the third criterion examines the utilization
of memory.

For easy reference, we list the notation in Table 3. For our
VSP model, V is split into P disjoint intervals. Each interval
I defines a g-shard and a v-shard. A g-shard is defined as

gs(I) = {(u,v)|v € I},

and a v-shard is defined as
vs(I) = {ul|(u,v) € gs(I) V (v,u) € gs(I)}.

Note that vs(I) can be split into two disjoint sets I and S([),
where S(I) = {u & I|(u,v) € gs(I)}. Note that

SIS < Y lgs(n)] = m.

Let é be a scalar between 0 and 1 such that
> IS(D)] = sm.
T
It can be seen that

> los(D)] =D IS+ > 1] = m +n.

Let C be the size of a vertex value record, and let D be the
size of one edge field in a structure record. We use B
to denote the size of a disk block accessed in a unit IO.
According to [14], both SSDs and hard disks are saturated
with sequential access of size 16 MB, so we suppose B
equals to 16 MB.

2.3.1 Data Transfer

For each iteration, VENUS loads all g-shards and v-shards
from disk, which needs Dm and C(n + ém) data read in
total. After the computation is done, VENUS writes v-
shards back to disk which incurs Cn data write. Note that g-
shards are read-only.

Unlike VENUS where each vertex can access the values
of its neighbors through v-shard, GraphChi accesses such
values from the edges. So the data size of each edge in
GraphChi is (C + D). For each iteration, GraphChi pro-
cesses one shard at a time. The processing of each shard is

For edges data, in the worst case, each edge is accessed
twice (once in each direction) in step 1 which incurs
2(C'+ D)m data read. If the computation updates edges in
both directions in step 2, the size of data write of edges in
step 3 is also 2(C' + D)m. So the data read and write in total
are both Cn + 2(C' 4+ D)m.

In the disk-based engine of X-Stream, one iteration is
divided into (1) merged scatter/shuffle phase and (2) gath-
ering phase. In phase 1, X-Stream loads all vertex value data
and edge data, and for each edge it writes an update to
disk. Since updates are used to propagate values passed
from neighbors, we suppose the size of an update is C. So
for phase 1, the size of read is CUn + Dm and the size of write
is Cm. In phase 2, X-Stream loads all updates and updates
each vertex, so the size of read is Cm and the size of write is
Cn. So for one full pass over the graph, the size of read is
Cn + (C + D)m and the size of write is Cn + Cm in total.

2.3.2 Number of Shards

For interval I, VENUS only loads the v-shard wvs(I) into
memory and the g-shard gs(/) is loaded in a streaming fash-

ion. So the number of shards is determined by the total size

of v-shards and we have P = w In contrast, GraphChi

loads both vertex value data and edge data for each interval,

so the number of shards P in GraphChi is w In X-

Stream, edges data are also loaded in a streaming fashion,
so the number of intervals is P = %

We can see that the number of shards constructed in
VENUS is always smaller than that in GraphChi. In
Section 3, we will show that the smaller of the number of
shards, the lower of IO complexity.

2.3.3 Adaptation to Large Memory

As analyzed above, for our VSP model, the size of data read
in one iteration is C'(n + ém) + Dm. So one way to improve
performance is to decrease 8. Here we show that § does
decrease as the size of available memory increases, which
implies that VENUS can exploit the main memory effec-
tively. Suppose the memory size is M, and the vertex set V'
is split into P intervals I, I, ..., Ip, where vs(I;) < M for
i=1,...,P. Then, by definition, sm = 3., |S(I;)|. Now,
consider a larger memory size M’ such that M’ > |vs(I)| +
|vs(I3)] > M. Under the memory size M’, we can merge
interval I and I, into I, because |vs(l;)| < |us(Iy)| +
[vs(I2)] < M. Suppose §8'm = |S(L;)| + ZiP:g |S(I;)]. By the
definition of S(I), it can be shown that S(I;) C S(I;) U S(Iy),

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

and thus |S(1;)| < |S(11)| 4 |S(I2)|- Therefore we have §' < §,
which means as M increases, § becomes smaller. When
M > Cn, we have P = 1 where § = 0. In such a single shard
case, the data size of read reaches the lower bound Cn + Dm.

3 STORAGE AND COMPUTATION

In this section, we discuss the full embodiment of our ver-
tex-centric streamlined processing model, including the
details of our graph storage design, the online computing
state management, and the main memory usage. It consists
of two IO-friendly algorithms with different flavors and IO
complexities in implementing the processing of Section 2.
Note that the IO results here are consistent with the data
transfer size results in Section 2 because the results here are
obtained with optimization specialized for disk-based proc-
essing to transfer the same amount of data. Since the com-
putation is always centered on an active shard, the online
computing state mainly consists of the v-shard values that
belong to the active shard.

Our first algorithm materializes all v-shard values in
each shard, which supports fast retrieval during the online
processing. However, in-time view update on all such views
is necessary once the execution of each shard is finished. We
employ an efficient scheme to exploit the data locality in all
materialized views. And this scheme shares a similar spirit
with the parallel sliding window of [3], with quadratic IO
performance in P, the number of shards. In order to avoid
the overhead of view maintenance at run time, our second
algorithm applies “merge-join” to construct all v-shard val-
ues on-the-fly, and updates the active shard only. The sec-
ond algorithm has an IO complexity linear in P. Finally, as
the RAM becomes large, the two algorithms adapt to the
memory scaling with less sharding overhead, and finally
the two algorithms automatically work in the in-memory
mode to seamlessly integrate the case when the main mem-
ory can hold all vertex values.

3.1 Physical Design and The Basic Procedure
3.1.1 The Tables

The value table is implemented as a number of consecutive
disk pages, containing |V| fixed-length value records, each
per vertex. For the ease of presentation, we assume all value
records are arranged in the ascending order of their IDs in
the table. For an arbitrary vertex v, the disk page containing
its value record can be loaded in O(1) time. Specifically, the
number of the value records in one page, Np, is Np = ng,
where B is the page size and C' is the size of the vertex
value. Thus, the value record of v can be found at the slot
(vmod Np) in the |- |-th page.

Note that the edge attributes will not change during the
computation. We pack the in-edges of each vertex v and
their associated read-only attributes into a variable length
structure record, denoted as R(v), in the structure table. Each
structure record R(v) starts with the number of in-edges of
vertex v, followed by the list of source vertices of in-edges
and the read-only attributes. One structure record usually
resides in one disk page and can span multiple disk pages
for vertices of large degrees. Hence, there are |V| such
records in total. As an example, for the graph in Fig. 2, the

2235

structure record R(3) of vertex 3 contains incoming vertices
1, 2, and 6 and their attributes.

Procedure ExecuteVertex(v, R(v), VB, I)

input: vertex v, structure record R(v), value buffer VB, and
interval 1.

output: the updated record of v in the value table.

1 foreach s € R(v) do

2 let @ be the [-]-th page of the value table;

3 ifselANQ ¢ VBthen

4 Pin @ into VB;

5 let val be the value record of v in the value table;

6 val — UpdateVertexR(v), VB;

3.1.2 The Basic Procedure

In VENUS, there is a basic execution procedure, namely,
Procedure ExecuteVertex, which represents the unit task
that is being assigned and executed by multiple cores in the
computer. Moreover, Procedure ExecuteVertex also serves
as a common routine that all our algorithms are built upon
it, where the simplest one is the in-memory mode to be
explained below.

Procedure ExecuteVertex takes a vertex v € I, the struc-
ture record R(v), the value buffer VB (call-by-reference), and
the current interval I as its input. The value buffer VB main-
tains all latest vertex values of v-shard vs(I) of interval /. In
VB, we use two data structures to store vertex values, i.e., a
frame table and a map. Note that vs(I) can be split into two dis-
joint vertex sets I and S(I). The frame table maintains all
pinned value table pages of the vertices within interval /; the
map is a dictionary of vertex values for all vertices within
S(I). Therefore, VB supports the fast look-up of any vertex
value of the current v-shard vs(I). Procedure ExecuteVertex
assumes the map of VB already includes all vertex values for
S(I). How to realize this is addressed in Section 3.2. Suppose
vertex s is an in-neighbor of v, if the value table page of s has
not been loaded into the frame table yet, we pin the value
table page of s at Line 4. After all required vertex values for
R(v) are loaded into memory, we execute the user-defined
function, UpdateVertex (), to update the value record of v
at Line 6. This may implicitly pin the value table page of v.
All pages will be kept in the frame table of VB for later use,
until an explicit call to unpin them.

Consider the graph in Fig. 2 and its sharding structures
in Table 1. Suppose I = I,. For the value buffer VB, the
frame table contains value table pages of vertices 1, 2, 3, and
4 in I, and the map contains vertex values of vertices 6, 7, 9,
and 10 in S(I;).

We can now explain our in-memory mode. It requires
that the entire value table be held in the main memory and
hence only one shard exists. In this mode, the system per-
forms sequential scan over the structure table from disk,
and for each structure record R(v) we encountered, an exe-
cuting thread starts Procedure ExecuteVertex for it on the
fly. Note that in Procedure ExecuteVertex, I includes all
vertices in V' and the map in VB is empty. Upon the end of
each call of Procedure ExecuteVertex, R(v) will be no longer
needed and be removed immediately from the main mem-
ory for space-saving. So we stream the processing of all
structure records in an iteration. After an explicitly specified

2236

number of iterations have been done or the computation has
converged, we can unpin all pages in VB and terminate the
processing. To overlap disk operations as much as possible,
all disk accesses over structure table and value table are
done by concurrent threads, and multiple executing threads
are concurrently running to execute all subgraphs.

3.2 The Algorithms for Accessing Shards

When all vertex values cannot be held in main memory, the
capacity of VB is inadequate to buffer all value table pages.
The in-memory mode described above cannot be directly
applied in this case, otherwise there will be seriously system
thrashing. Based on the discussion of Section 2.2, we split V
into P disjoint intervals, such that the vertex values of each
v-shard can be entirely buffered into main memory.

In this case, we organize the processing of a single shard
to be extendible in terms of multiple shards. The central
issue here is how to manage the computing states of all
shards to ensure the correctness of processing. This can be
further divided into two tasks that must be fulfilled in exe-
cuting each shard:

e constructing the map of VB so that the active shard
can be executed based on Procedure ExecuteVertex
according to the previous discussion;

e synchronizing intermediate results to disk so that the
latest updates are visible to any other shard to com-
ply with the asynchronous parallel processing [3].

Note that these two tasks are performed based on the v-

shard and the value table. In summary, the system still per-
forms sequential scan over the structure table from disk, and
continuously loads each structure record R(v) and executes
it with Procedure ExecuteVertex on the fly. Furthermore, the
system also monitors the start and the end of the active
shard, which triggers a call to finish the first and/or the sec-
ond tasks. This is the framework of our next two algorithms.

3.2.1 The Algorithm Using Dynamical View

Our first algorithm materializes all v-shard values as a view
for each shard, which is shown in Algorithm 1. Specifically,
we associate each interval I with view(I) which materializes
all vertex values of vertices in S(I). Thus the first task is to
load this view into the map of VB, which is done for Line 2
or Line 9. Then, at the time when we finish the execution of
an active shard and before we proceed to the next shard, we
need to update the views of all other shards to reflect any
changes of vertex values that can be seen by any other shard
(Line 5 to Line 6). To do this efficiently, we exploit the data
locality in all materialized views.

Algorithm 1. Execute One Iteration with Views

1 let I be the first interval;

2 load view(I) into the map of VB;

3 foreach R(v) in the structure table do

4 ifv ¢ Ithen

5 foreach internal J # I do

6 view(J).UpdateActiveWindowToDisk();
7 unpin all pages and empty the map, in VB;
8

9

0

set I to be the next interval;
load view(I) into the map of VB;

1 ExecuteVertexwv, R(v), VB, I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

Specifically, the value records of each view are ordered by
their vertex ID. So in every view, say the ith view for the ith
shard, all the value records for the jth interval, i # j, are
stored consecutively. And more importantly, the value
records in the (j + 1)th interval are stored immediately after
the value records for the jth interval. Therefore, similar to
the parallel sliding window of [3], when the active shard is
shifted from an interval to the next, we can also maintain an
active sliding window over each of the views. And only the
active sliding window of each view is updated immediately
after we finish the execution of an active shard (Line 6).

Consider the example in Fig. 2 and Table 1. For computa-
tion on interval I, loading the vertex values in S(I5) can be
easily done with one sequential disk scan over view(Iy),
because the latest vertex values are already stored in
view(I,). After computation, we need to propagate the
updated value records to other intervals. In this example,
we update those vertex values in the active sliding windows
of view(I;) and view(I3) (shaded cells in Table 1).

3.2.2 The Algorithm Using Merge-Join

Our second algorithm uses merge-join over the v-shard and
the value table. Its main advantage is without the overhead
to maintain all views at run time. It is shown in Algorithm 2.
Specifically, we join S(I) for each interval I with the value
table to obtain all vertex values of S(I). Since both S(I) and
the value table are sorted by the vertex ID, it is easy to use a
merge-join to finish that quickly. The join results are
inserted into the map of VB at Line 2 and Line 7. All vertex
values are directly updated in the value table, and any
changes of vertex values are immediately visible to any
other shard.

Algorithm 2. Execute One Iteration with Merge-Join

1 let I be the first interval;
2 join S(/) and the value table to polulate the map of VB;
3 foreach R(v) in the structure table do
if v € I then
unpin all pages and empty the map, in VB;
set I to be the next interval;
join S(I) and the value table to populate the map of VB;
ExecuteVertexv, R(v), VB,

O N O U1 W=

Again, we consider the example in Fig. 2 and Table 1.
Suppose that we want to update interval I;. First, we need
to load S(I;) ={6,7,9,10} into the map of VB. To load
S(I1), we use a merge-join over the vertex table and S(I;).
Since the vertex table and S(;) are both sorted by vertex
ID, we just need one sequential scan over the vertex table.
The updated values of vertices in I; are written to the value
table directly which incurs only sequential IOs.

Finally, as the RAM becomes large enough to hold the
complete value table, only one shard and one interval for all
vertices presents. The view/merge-join is no longer needed.
Both algorithms automatically work in the in-memory mode.

3.3 10 Analysis

To compare the capabilities and limitations of the two algo-
rithms, we look at the IO costs of performing one iteration
of graph computation using the theoretical IO model [21].

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

2237

TABLE 6
Graph Datasets and Preprocessing Time

TABLE 5
Big-O Bounds in the 10 Model
System # Read IO # Write 10
i Cn+2(C+D)m Cn+2(C+D)m

GraphChi [3] Cnt2(C+Dm | p2 R 4+ p?
X-Stream [14] Cn+(%+D)m Coy %bg%p

C(n+8m)+Dm C(n+8m) 9
Alg. 1 CBD, BC+P2
Alg.2 P&y Dm c

In this model, the IO cost of an algorithm is the number of
block transfers from disk to main memory plus the number
of non-sequential seeks. So the complexity is parametrized
by the size of block transfer, B.

For Algorithm 1, the size of data read is C(n + ém) + Dm
(Table 4). Since loading does not require any non-sequential

seeks, the number of read IOs is W. On the other

hand, to update all v-shards data, the number of block

transfers is (’("ga’"). In addition, in the worst case, each inter-

val requires P non-sequential seeks to update the views of
other shards. Thus, the total number of non-sequential seeks

for a full iteration has a cost of P%. So the total number of

write IOs of Algorithm 1 is ") 4 p2,

For Algorithm 2, the number of read IOs can be analyzed
by considering the cost of merge-join for P intervals, and
then adding to this the cost of loading the structure table.
The cost of merge-join for each interval is <. The size of
structure table is Dm. Thus, the total number of read 1Os is
PS4 Bm For interval I, the cost of updating the value table

el : : Cll _ ¢
is %. Hence, the total number of write IOs is % =3

Table 5 shows the comparison of GraphChi, X-Stream,
and our algorithms. We can see that the IO cost of Algo-
rithm 1 is always less than GraphChi. Also, when P is small,
the numbers of read IOs of Algorithm 1 and Algorithm 2 are
similar, but the number of write IOs of Algorithm 2 is much
smaller than that of Algorithm 1. These results can guide us
in choosing proper algorithms for different graphs.

4 SYSTEM IMPLEMENTATION

In this section, we explain several important considerations
in the offline preprocessing and online processing of our
system, VENUS.

4.1 Offline Preprocessing
4.1.1 Structure Table

The offline processing converts the input graph into a num-
ber of shards, which are stored in the structure table and the
value table. The design of the value table is straightforward.
We will explain the structure table as follows. As described
in Section 2, all g-shards are concatenated to form the struc-
ture table which contains |V| structure records. The struc-
ture table is in binary format which allows fast construction
and access. To support different graph computation tasks,
where the associated edge values can vary, we use an adja-
cency file to store edges and an attribute file for the associated
edge values.

The adjacency file stores the neighbors for each vertex
with a list. All vertices with corresponding lists are

Preprocessing Time (sec.)

Dataset V] |E| GraphChi X-Stream VENUS
twitter-2010 41.7M 14B 817.7 258.8 617.6
clueweb12 9784M 425B 24,7054 3,708.3 15,545.3
Netflix 05M 99.0M 287.5 27.1 66.7
KDD-Cup 1.6M 2528M 571.2 66.6 192.2
Synthetic-4m 4M 54.37 M 254 12.0 17.8
Synthetic-6m 6M 86.04M 39.2 17.9 27.1
Synthetic-8m 8M 11858 M 55.5 20.3 355
Synthetic-10m 10M 151.99 M 69.4 259 47.6

arranged in the ascending order of the vertex ID. For each
vertex, the list starts with a number for the degree. Then,
the rest of the list consists all vertex IDs of the neighbors.
Each vertex only has one list for the in-neighbors by default,
and it is optional to store another list for the out-neighbors;
in the attribute file, all edge values are just stored as a flat
array of the user-defined type.

4.1.2 Two-Step Preprocessing

To construct the structure table from a given graph in vari-
ous formats such as edge list, adjacency list, or matrix for-
mat, we design the two-step preprocessing based on the
external merge sort algorithm which is efficient in IO and
with modest memory requirement (see Table 6).

In the first step, we maintain ¢ buffers, each in M/t MB
size, where M is the user-given memory budget in MB. We
read the input graph data sequentially and add each
encountered edge into some buffer which is not fully occu-
pied. If a buffer is full, we sort the edges in the buffer based
on the edge destination and write these edges into an inter-
mediate file, which we denote as chunk, to empty that
buffer. We repeat this process until the whole input file
is turned into a number of such sorted chunks. Note that
we can greatly accelerate this process with multiple threads:
we assign one thread for each fully occupied buffer to do
the sorting and construction of the chunk, while there is one
main thread to read the input data and distribute the input
edges. Therefore, at most ¢ threads are needed. In this paper,
we set t as 3.

The second step performs a k-way merge on all chunks
resulted from the first step to construct the structure table
directly. In summary, the preprocessing scans the input
graph with two passes in total. Therefore, its cost is propor-
tional to the graph size. We will further illustrate this cost in
our experiments in Section 5.5.

4.2 Online Processing
4.2.1 Sharding

Like GraphChi [3] and X-Stream [14], VENUS allows user to
explicitly specify a budget to limit the usage of main mem-
ory. It is interesting to notice that VENUS can perform
sharding with various memory budgets based on the same
structure table and value table. Its benefit is that we can test
VENUS under different memory budgets with just one and
the same preprocessing. This is done before executing the
update function during the online processing. In contrast,

2238

GraphChi has to perform preprocessing each time when the
memory budget changes.

In detail, VENUS scans the structure table and splits the
vertices set V into P disjoint intervals according to the mem-
ory budget for the value buffer VB. Then, VENUS initializes
the mutable vertex values in VB and also S(I) and wview(I)
for each interval I. After that, VENUS starts to execute the
update function for each vertex, where the details are already
explained in Section 3. Specifically, we spend half of the main
memory budget for the frame table in VB, which is managed
based on the LRU replacement strategy; and another § of the
main memory budget is for the map in VB, leaving the
remaining memory to store auxiliary data. Next, we present
other optimizations that speed up our computation.

4.2.2 Scheduler

In graph computation, the computation on some vertices
may converge faster than others. For example, in the single-
source shortest path problem (SSSP), we only need to
update the shortest path to a vertex when the shortest paths
to some of its neighbors change. It is useful if we can sched-
ule the vertices, so we can avoid the execution of the update
function for unscheduled vertices and also avoid loading
structure records of these vertices from disk. This feature is
called selective scheduling [3], [20]. In VENUS, we implement
a scheduler to support this feature. The scheduler allows a
vertex to choose some of its neighbors and add them to the
scheduler in the update function. In the case of SSSP, only
when a vertex changes the shortest path from the source to
itself in the update function, the vertex will add all of its
neighbors to the scheduler. In order to reduce the IO cost as
much as possible, VENUS is further optimized to avoid
accessing their structure records from disk for those vertices
not in the scheduler. In detail, VENUS represents the sched-
uler as a bitset to ensure that each vertex occupies only one
bit in memory. In the preprocessing, we split the structure
table into small blocks of size 64 MB and VENUS will skip
the blocks which do not contain scheduled vertices.

4.2.3 Multi-Threading

We use multi-threading to let VENUS overlap the IO opera-
tions and the execution of the update function to speed up
the overall computation time. In detail, VENUS loads the
structure table from disk using a dedicated IO thread. In
addition, there are multiple computing threads to parallel-
ize the execution of the update function for large amount of
vertices. Each time the IO thread loads a block of the struc-
ture table into memory to form in-memory vertex data,
which is a vector of multiple vertices and their structure
records. The multiple computing threads will simulta-
neously consume these in-memory vertex data by running
the update function among these vertices in parallel using
the OpenMP library [22]. In this way, we can leverage the
power of multi-core architecture of a single machine.

5 PERFORMANCE EVALUATION

In this section, we evaluate our system VENUS and com-
pare it with two most related state-of-the-art systems,
GraphChi [3] and X-Stream [14]. GraphChi uses the parallel

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

sliding window model and is denoted as PSW in all figures.
X-Stream employs the edge-centric processing model and
thus is denoted as ECP. Our system is built on the vertex-cen-
tric streamlined processing model which is implemented
with two algorithms: Algorithm 1 materializes vertex values
in each shard for fast retrieval during the execution, which is
denoted as VSP-I; Algorithm 2 applies merge-join to con-
struct all vertex values on the fly, which is denoted as VSP-II.
The two algorithms use the same vertex-centric update func-
tion for a graph task and an input parameter indicates which
algorithm should be used. All three systems are coded in C+
+. We ran each experiment three times and reported the aver-
aged execution time. All algorithms are evaluated using hard
disk, so we do not include TurboGraph [15] due to its require-
ment of SSD drive on the computer.

All experiments are conducted on a commodity machine
with Intel i7 quad-core 3.4 GHz CPU, 16 GB RAM, and 4 TB
hard disk, running Linux. Note that GraphChi and VENUS
use Linux system calls to access data from disk, where the
operating system caches data in its pagecache. This allows
GraphChi and VENUS to take advantage of extra main
memory in addition to the memory budget. On the other
hand, X-Stream uses direct IO and does not benefit from
this. Therefore, for the sake of fairness, we use pagecache-
management' to disable pagecache in all our experiments.

We mainly examine three important aspects of a system
which are key to its performance: 1) computation time;
2) the amount of data read and write; and 3) the number of
shards. We explain the effectiveness of main memory utili-
zation of VENUS based on these results. We experiment
over four large real-world graph datasets, twitter-2010 [23],
clueweb12 [24]?, Netflix [28], and Yahoo! Music user ratings
used in KDD-Cup 2011 [29] as well as synthetic graphs. We
use the SNAP graph generator’ to generate four random
power-law graphs, with increasing number of vertices,
where the power-law degree exponent is set as 1.8. The data
statistics are summarized in Table 6. We consider five graph
computing tasks in the following categories:

1) Graph mining: Computation of weakly connected
components (WCC) [16], community detection
(CD) [16], and single-source shortest paths (SSSP);

2) Sparse matrix-vector multiplication (SpMV) : Computa-
tion of PageRank [30];

3) Collaborative filtering: Computation of alternating
least squares (ALS) [31].

5.1 Exp-1: PageRank on the Twitter-2010 Graph

The first experiment runs 10 iterations of PageRank on the
twitter-2010 graph. We compare the four algorithms (PSW,
ECP, VSP-I, VSP-Il) under various memory budgets from
0.5 to 8 GB.

5.1.1 Overall Time

The results of processing time are reported in Fig. 4a, where
we can see that VSP is up to 6x faster than PSW and ECP.

1. https:/ /code.google.com/p/pagecache-mangagement/

2. This dataset is obtained from the Laboratory for Web Algorith-
mics [25] and decompressed using the WebGraph framework [26], [27].

3. http://github.com/snap-stanford /snap

https://code.google.com/p/pagecache-mangagement/

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

2239

—@— PSW —@— ECP
—&— VSP-I —— VSP-II

—@— PSW —aA— VSP-I
—&— VSP-II

r N F =
4,000 |- n =
B ::‘Lni:: B '\‘.f_’./c P
— r ~ 1,500 |- @ Eole
S oo | g Ry’
2 3,000 |- 2 F 2 ool |4
[} N [} [~ -
E F £ 1.000 | NE &
; 2,000 [: F 2 sl 4
51 r 51 [5] .
& - a - > ol
= r = r 2 £ |
M1 000 |- Mo 500 20 |- |A%
= n Folee
[t [Pt
g g a7 8
P I I I I o Ll I I I 0 = = S s O
0.5 1 2 4 8 0.5 2 4 8 0.5 1 2 4 8
Memory (GB) Memory (GB) Memory (GB)
(a) Overall Time (b) Waiting Time (c) Number of Shards
E [VSP-I (Read) I B VSP-II (Read) E B psw HEI ECP E[I PSW DD ECP
VSP-I (Write) VSP-II (Write) VSP-I VSP-II vsp-1 gl @ vsp-it
(o e Bavs @B Havselm
t I & 400 [¢
N [[- 0 " _ -
30,000 [@ L ! ¥ \ a r _
" r 9 100 | N I FN 9 300 | i L |
. = N N 4
9 [g | M % |4 g L dp! 4
b - = N qu L N A
20,000 |- r b # N b I
= N o [4 5 N
8 r 1) ™ 4 S 200 1
E [5% [N g h N r
] = N 50 (- 1 g N N 9 4
Z N n [N N « N N N
10,000 [s (N g 100 h N o
- < [~ ™ 1 o Iy
t a N a LI N A Y
. i l f ! \ f] y
[L [N 1 % N H 4
0 o LN ! . o L1 L d i
0.5 1 2 4 8 0.5 1 2 4 8
Memory (GB) Memory (GB) Memory (GB)

(d) Number of 10s

Fig. 4. PageRank on the twitter-2010 graph.

For example, in the case that the memory budget is 8 GB,
PSW takes 3,257.3 seconds and ECP takes 3,862.1 seconds.
However, VSP-l and VSP-Il just take 574.5 seconds and
574.1 seconds respectively. To further illustrate the effi-
ciency of VSP, we also examine various performance factors
including preprocessing, sharding, data access, and random
I0s, as shown below.

5.1.2 Effectiveness of Streamlined Processing

To see the benefit of the streamlined processing of VENUS,
we compare PSW and VSP in terms of the overall waiting
time before executing a next shard. Fig. 4b shows the wait-
ing time in this experiment. For PSW, it includes the load-
ing and sorting time of each memory shard; for VSP, it
includes the time to execute unpin calls, view updates, and
merge-join operations. Note that the time of scanning the
structure table is evenly distributed among processing all
vertices, and is not included here. It can be observed that
PSW spends a significant amount of time for processing the
shards before execution. In contrast, such waiting time for
VSP is much smaller. This is due to that VSP allows to exe-
cute the update function while streaming in the structure
data. For example, in the case that the memory budget is
8 GB, PSW takes 1,576.6 seconds. However, VSP-I and
VSP-Il just take 347.5 and 346.5 seconds respectively. Note
that about the half share of the processing time of PSW is
spent here, which spends far more time than our
algorithms.

(e) Data Size of Write

(f) Data Size of Read

5.1.3 Adaptation to Large Memory

As described in Section 2.3, VENUS can exploit the main
memory effectively: when the size of available memory
increases, § decreases. This can further reduce the number
of shards and the data size of read in VENUS. In this experi-
ment, as the memory budget increases from 0.5 to 8 GB, the
value of § becomes smaller and smaller as 0.164, 0.097, 0.025,
0, and 0. As a consequence, VSP also generates significantly
smaller number of shards than PSW, as shown in Fig. 4c. For
example, in the case that the memory budget is 0.5 GB and
1 GB, PSW generates 90 and 46 number of shards, respec-
tively. And these numbers for our algorithms are 22 and 9.
This is because VSP spends the memory budget on the value
data of a v-shard, while the space needed to keep related
structure data in memory is minimized. When the memory
budget is 4 GB, VSP can hold all vertex values in main mem-
ory and run in its in-memory mode. Note that as we increase
the memory budget to 8 GB, the processing time of VSP
remains the same as shown in Fig. 4a, because the time used
to read the structure table does not change. However, if we
are given a machine with much larger RAM that VENUS can
also cache the structure table in memory, then VENUS will
achieve much better performance. We do not elaborate on
such case as it is out of the focus of this paper.

5.1.4 Reducing Data Transfer

To see the improvement of accessing disk data, Figs. 4e and
4f show the amount of data write and read, respectively.

2240

’ ﬂ [psw (Overalt) [£ VSP-1 (Overall) ‘

D Brsw R Ece
E [vsp1 I [vsp-nn

’ [B psw wpdaee) [B vsp1 Update)

3,000 4,000

2,000
2,000

E 'E
o Erem (15 aﬁ
wcCC Cl

D SSSp

1,000

Elapsed Time (sec.)

Elapsed Time (sec.)

& 14 14 |4
i 2 4 8

Threads Task

(a) Scaling with Threads (b) Overall Time of Diffrent Tasks

Fig. 5. Different tasks on the twitter-2010 graph.

We observe that the data size written/read to/from disk is
much smaller in VSP than in the other systems. Specifically,
under the memory budget of 8 GB, PSW has to write
103.9 GB data to disk, and read 334.3 GB data from disk in
total. These numbers for ECP are 121.0 GB and 306.3 GB,
which are also very large and become a significant setback
of ECP in its edge-centric streamlined processing model. In
sharp contrast, VSP only writes 2.5 GB, which is 40X and
50X smaller than PSW and ECP, respectively. In terms of
data size of read, VSP reads 74.6 GB data. The superiority
of VSP in data access is mainly due to the separation of
structure data and value data and the effective utilization of
main memory.

5.1.5 Comparison of VSP-1 and VSP-II

Our two algorithms have different processing time when
the memory budget is small. Fig. 4d provides one reason for
this in terms of the IO costs of VSP-| and VSP-Il when the
memory budget is below 1 GB. The number of write IOs for
VSP-Il is always smaller than that of VSP-I which agrees
with the analysis in Section 3.3. When the memory budget
is 1 GB, VSP-Il is faster and incurs fewer I0s than VSP-I|
because it does not need to maintain the materialized view
in executing shards. When we further limit the memory

budget as 0.5 GB, the number of read IOs for VSP-I

increases slowly since it is bounded by O E0m) Hay.

ever, the number of read IOs for VSP — Il increases much
faster since it is bounded by P + 22 and linear in P. In
general, we suggest to use VSP-Il except in the case when
the memory budget is much smaller than the size of vertex
data and P is larger than ?* (e.g., we should choose VSP-I

when the memory budget is 0.5 GB).

5.1.6 Better Utilization of Multi-Core

To leverage the multi-core architecture of modern com-
puters, both PSW and VSP can use multi-threading to
accelerate the execution of the update function of each ver-
tex. With the same memory budget (4 GB), Fig. 5a shows
the performance of PSW and VSP improves by 4 and 31
percent respectively, as we increase the number of threads
from 1 to 8. Unfortunately, the performance does not
improve linearly as more threads are added, because the
overall time of either PSW or VSP is IO bounded and
multi-threading can only reduce the CPU time. If the task is
computationally more demanding, it can benefit more from
multi-threading. Moreover, while both PSW and VSP are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL.28, NO.8, AUGUST 2016

’ H E| w/o schedulern D w/ scheduler

.
B
i

0 AR EARERERRRER]
PSW VSP-I VSP-II

’ I‘] D w/o schcdulerB E w/ scheduler

s

0 EEEAARAEERARRNRRER]
PSW VSP-I VSP-II

1,500 [300

1,000 200

500 100

TTTTTTTTTTTTTTITTTT

TTTTT T T T T TTTTT

Elapsed Time (sec.)

Data Size of Read (GB)

(a) Overall Time (b) Data Size of Read

Fig. 6. WCC on the twitter-2010 graph with or without the scheduler.

IO bounded, VSP incurs significantly fewer IOs than PSW.
As a result, VSP benefits more from the increasing number
of threads compared with PSW. In other words, VSP uses
multi-core CPUs more effectively.

5.2 Exp-2: More Graph Computing Tasks
5.2.1 Experiment of WCC

After the evaluation under various RAM sizes, we further
compare the four algorithms for other graph computing
tasks. We set the memory budget as 4 GB for all algorithms.
In detail, Fig. 5b shows the processing time of running
WCC over the twitter-2010 graph. The existing algorithms,
PSW and ECP, spend 910.0 seconds and 4,516.8 seconds
respectively, while our algorithms VSP-I and VSP-II spend
538.2 seconds and 539.2 seconds respectively. In this task,
ECP is much slower than others. One reason is that both
PSW and our algorithms can employ the scheduler
described in Section 4.2.2 to skip unnecessary updates on
some vertices/shards. However, this feature is infeasible
for ECP because it is edge-centric and thus cannot support
selective scheduling of vertices.

To show the effectiveness of our selective scheduling
scheme, we also compare the overall time and the data size
accessed by PSW, VSP-I, and VSP-Il with or without the
scheduler. As shown in Fig. 6a, the scheduler reduces the
overall processing time for all three algorithms by around
40 percent. Furthermore, in Fig. 6b, the data size of read for
all algorithms is reduced by around 35 percent.

There is another reason why PSW is faster than ECP.
GraphChi employs z1lib to compress its edge values on
disk. In the tasks of WCC and CD, all edge values are inte-
gers and can be compressed considerably, which reduces
the IO cost dramatically (noting that PSW takes as long as
1,738.9 seconds for WCC without the compression). How-
ever, the advantage of compression cannot be found in
many other tasks such as PageRank, ALS, and SSSP, where
the edge values are real numbers.

5.2.2 Experiment of CD

For the CD task, Fig. 5b shows the performance of PSW and
our algorithms, where our algorithms, VSP-l and VSP-II,
clearly outperform PSW. In detail, PSW spends 2,225.0 sec-
onds. VSP-l and VSP-Il just take 888.3 seconds and 908.5 sec-
onds respectively. The CD task cannot be accomplished by
ECP, because CD is based on label propagation [16], where
each vertex chooses the most frequent label among its

4. This feature was not available in the version reported in [3] and
has to be explicitly enabled with all later versions.

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

HD PSW HE ECP
E B VSP-II B vsp-it

DE PSW BEI ECP
ﬁ F vsp1 I B vsp-r

5] = ~ 2] E /s
2 200 - A O 30 F / v
~ r ~ = - £ AN
Q N B 5] F £ AN
E = ~ % 20 F SN
= = N g 20p ZANf
- 100 - N & = AN
2] r ~ = = - s AN
& [N 8 10 e 24N
S [« N <] [] e £ AN
m k ~ o) FLAN N AN
o A o EELRSE 0

Netflix KDD-Cup Netflix KDD-Cup
Dataset Dataset

(a) ALS (b) Data Transfer

Fig. 7. ALS on the Netflix and KDD-Cup graph.

neighbors in the update function. The most frequent label
can be easily decided in terms of vertex-centric processing,
where all neighbors and incident edges are passed to the
update function. However, this is not the case for the edge-
centric processing while ECP cannot iterate all incident
edges and all neighbors to complete the required operation.

5.2.3 Experiment of ALS

This task is tested on Netflix and KDD-Cup. The overall proc-
essing time is given in Fig. 7a. In this experiment, our algo-
rithms, VSP-l and VSP-II, only outperform other competitors
slightly. The reason is that the datasets for this experiment are
so small that all four algorithms maintain the values for com-
putation (the latent factors in ALS) in the main memory.
Therefore, the total data size being accessed for the four algo-
rithms becomes almost the same as shown in Fig. 7b.

5.2.4 Experiment of SSSP

The result of the last task, SSSP, is shown in Fig. 5b. From
the result, we can conclude that our algorithms outperform
the other algorithms. Note that this is also another example
which shows the benefits of the scheduler in GraphChi and
VENUS.

5.3 Exp-3: The Synthetic Graphs

To see how a system performs on graphs with increasing
data size, we also did experiments over the four synthetic
datasets. We test with PageRank, WCC, and SSSP, and
report the running time in Fig. 8. Again, we see that VSP
uses just a fraction of the amount of time as compared to the
other two systems. Note that a base-10 log scale is used for
the Y axis in Fig. 8c.

In general, the processing time increases with the num-
ber of vertices. However, the processing time of PSW and
ECP increases much faster than VSP. For example, for the
task of PageRank, when the number of vertices increases
from 4 million to 10 million, the processing time of PSW
increases by 134.4 seconds; and the processing time of ECP
increases by 301.6 seconds. In contrast, the processing time
of VSP-l and VSP-Il just increases by 32.2 seconds and
31.1 seconds respectively. The superior performance of VSP
is mainly due to the less amount of data access, as shown in
Fig. 8d. There is a special case when the number of vertices
is 4 million, in which ECP loads the whole input graph into
the memory and outperforms other algorithms.

2241

—@— PSW —@— ECP
—&— VSP-I —s— VSP-II

—@— PSW —m— ECP
—A— VSP-I —— VSP-II

g 300 g 300 |-
<z N £
Q Q =
§ 200 g 200 |-
= = =
k=] k=] F
2 100 2 100 |-
& |
m m .
0 0 T bl
4 6 8 10 4 6 8 10
Number of Vertices (Million) Number of Vertices (Million)
(a) PageRank (b) WCC
—@— PSW —m— ECP
PSW ECP VSP-I VSP-II
—A— VSP-I —— VSP-IL ’ H e El g E g I i
-~ [)
g ./I/./. <)
~ 10° E [
i) |- 100—4)
= £
3 I ./0/”’4 e
<
2 1L 8
§. ol 3
m [
RN RN NN

4 6 8 10

Number of Vertices (Million) Number of Vertices (Million)

(c) SSSP (d) Data Transfer for PageRank

Fig. 8. PageRank, WCC, and SSSP on the synthetic graphs.

5.4 Exp-4: The Web-Scale Graph

In this experiment, we compare GraphChi, X-Stream, and
VENUS on a very large-scale web graph, clueweb12 [24],
which has 978.4 million vertices and 42.5 billion edges.
We choose not to use yahoo-web [32] which has been
used in many previous works [3], [14], because the den-
sity of yahoo-web is incredibly low where 53 percent of
nodes are dangling nodes (nodes with no outgoing
edges), and testing algorithms and systems on yahoo-web
might give inaccurate speed report. On the other hand,
the number of edges in clueweb12 are an order of magni-
tude bigger and only 9.5 percent of nodes in clueweb12
are dangling nodes. We run four iterations of PageRank
for each system. As shown in Table 7, VENUS signifi-
cantly outperforms GraphChi and X-Stream by reading
and writing less amount of data.

5.5 Exp-5: Preprocessing

In this experiment, we evaluate the preprocessing step of
GraphChi, X-Stream, and VENUS. GraphChi [3] provides a
program called Sharder to preprocess an input graph and
divide the graph into multiple shards. Sharder has 4 phases:
(1) converting the input graph into a binary adjacency list;
(2) counting the in-degree for each vertex and dividing ver-
tices into P intervals; (3) writing each edge to a temporary
file of the owning shard; and (4) sorting each shard. X-
Stream [14] does not require any partitioning or sorting.
They provide Python scripts to convert an input graph into

TABLE 7
Experiment Results: PageRank on the Clueweb12 Graph
System Runtime (hr) Read (GB) Write (GB)
PSW 10.8 2,939.1 955.6
ECP 16.0 4,654.1 2,127.4
VSP-| 3.12 977.9 73.0
VSP-II 3.11 1,012.2 42.4

2242

a binary edge list. For the sake of fairness, we reimplement
these scripts in C++.

In Table 6, we present the preprocessing time of Graph-
Chi, X-Stream, and VENUS under the 8 GB memory budget.
The preprocessing of VENUS is faster than that of Graph-
Chi, while it is slower than that of X-Stream. This is because
X-Stream does not sort the input graphs. However, if we
consider both the preprocessing time and the processing
time, VENUS is still the fastest one. For example, on the
clueweb12 graph, the total execution time of running Pag-
eRank on GraphChi, X-Stream, and VENUS are 17.7 hours,
17.0 hours, and 7.4 hours respectively.

Another advantage of our preprocessing method is that
we only need to preprocess the input graph once for differ-
ent memory budgets. In contrast, in order to achieve the
best performance, GraphChi must re-shard the input graph
if the memory budget changes.

6 RELATED SYSTEMS

There are several options to process big graph tasks: it is
possible to create a customized parallel program for each
graph algorithm in distributed setting, but this approach is
difficult to generalize and the development overhead can be
very high. We can also rely on graph libraries with various
graph algorithms, but such graph libraries cannot handle
web-scale problems [1]. Recently, graph computing over
distributed or single machine platform has emerged as a
new framework for big data analytics, and it draws inten-
sive interests [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
Broadly speaking, all existing systems can be categorized
into the so-called data-parallel systems (e.g. MapReduce/
Hadoop and extensions) and graph-parallel systems.

The data-parallel systems stem from MapReduce. Since
MapReduce does not support iterative graph algorithms
originally, there are considerable efforts to leverage and
improve the MapReduce paradigm, leading to various dis-
tributed graph processing systems including PEGASUS [5],
GBase [9], Giraph [33], and SGC [34]. On the other hand, the
graph-parallel systems use new programming abstractions
to compactly formulate iterative graph algorithms, includ-
ing Pregel [1], Hama [7], Kingeograph [10], Trinity [11],
GRACE [19], [20], Horton [35], GraphLab [2], and Paral-
lelGDB [36]. Due to the rapid development of many-core
processors, in particular graphical processing units (GPUs),
a high performance graph-parallel system that can leverage
the computing power of GPUs draws a broad interest [37],
[38], [39], [40], [41]. Current efforts focus on efficient high-
level abstraction for optimized parallelism and execution
over GPUs. There is also work trying to bridge the data-par-
allel and the graph-parallel systems, such as GraphX [42].

As a recent branch of graph-parallel systems, the disk-
based graph computing systems, such as GraphChi [3], X-
Stream [14], and TurboGraph [15], have shown great poten-
tial in graph analytics, which do not need to divide and dis-
tribute the underlying graph over a number of machines, as
did in previous graph-parallel systems. And remarkably,
they can work with just a single PC on very large-scale
problems. It is shown that disk-based graph computing on
a single PC can be highly competitive even compared to
parallel processing over large scale clusters [3]. A

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

distributed system called MOCgraph also supports out-of-
core execution, but there are extensive IOs in managing a
huge number of disk-resident messages which significantly
affects the overall performance [43].

6.1 Disk-Based Systems

The disk-based systems, including GraphChi [3], Turbo-
Graph [15], and X-Stream [14], are closely related to our
work. Both GraphChi and VENUS are vertex-centric. Like
our system VENUS, GraphChi also organizes the graph into
anumber of shards. However, unlike VENUS which requires
only a v-shard to be fit into the memory, GraphChi requires
each shard to be fit in main memory. As a result, GraphChi
usually generates many more shards than VENUS under the
same memory constraint (Fig. 4c), which incurs more data
transfer (Figs. 4e and 4f) and random IOs. Furthermore,
GraphChi starts the computation after the shard is
completely loaded and processes next shard after the value
propagation is completely done. In contrast, VENUS enables
streamlined processing which performs computation while
the data is streaming in. Another key difference of VENUS
from GraphChi lies in its use of a fixed buffer to cache the v-
shard, which can greatly reduce random IOs.

The TurboGraph system can process graph data without
delay, at the cost of limiting its scope on certain embarrass-
ingly parallel algorithms. In contrast, VENUS can deal with
almost every algorithms as GraphChi. Different from
VENUS that uses hard disk, TurboGraph is built on SSD. X-
Stream is edge-centric and allows streamlined processing
like VENUS, by storing partial, intermediate results to disk
for later access. However, this will double sequential IOs,
incur additional computation cost, and increase data load-
ing overhead.

VENUS improves previous systems in several important
directions. First, we separate the graph data into the fixed
structure table and the mutable value table file, and use a
fixed buffer for vertex value access, which almost eliminates
the need of batch propagation operation in GraphChi (thus
reducing random IOs). Furthermore, each shard in VENUS
is not constrained to be fit into memory, but instead, they are
concatenated together forming a consecutive file for stream-
lined processing, which not only removes the batch loading
overhead but also enjoys a much faster speed compared to
random IOs [14]. Compared to TurboGraph, VENUS can
handle a broader set of data mining tasks; compared to X-
Stream, VENUS processes the graph data just once (instead
of twice in X-Stream) and without the burden of writing the
entire graph to disk in the course of computation.

7 COMPARISON OF COMPUTING MODELS

Various computing abstractions/models for graph compu-
tation have been proposed since the seminal work [1]. It
may be interesting to have a discussion on their analogy
and differences, and expressiveness and limitation. This can
help decide the best system and model in implementing a
specific algorithm.

o Vertex-Centric: This is the seminal model for graph
computation proposed by Pregel [1], where a graph
algorithm is formulated in terms of a “tiny” vertex

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

update function. The input of an update function for
a vertex consists of data on the adjacent vertices and
edges. A vertex can also exchange messages with
any other vertices. GraphLab [2] and GraphChi [3]
use a similar model, but they only allow vertices to
exchange messages with their adjacent vertices.
MOCgraph [43] tries to improve the memory utiliza-
tion of Giraph [33] (an open-source implementation
of Pregel) by processing messages online, which
requires the messages to be commutative and thus
restricts its expressiveness [43].

o Gather-Apply-Scatter (GAS): This computing model is
made popular by PowerGraph [44], which further
refines the update function into three sub-functions:
gather, apply, and scatter. This abstraction enables
better graph partition for power-law graphs in a dis-
tributed setting [44]. However, PowerGraph uses a
user-defined sum operation to combine messages,
which must be commutative and associative like a
numerical sum. This makes the GAS model less
expressive than the vertex-centric model. Power-
Graph can emulate the vertex-centric model, but this
will eliminate the benefits of the GAS model [44].

e Edge-Centric: X-Stream [14] proposes an edge-centric
scatter-gather model, which can be seen as a variant
of the GAS model. In this model, there are only two
user-defined functions, scatter and gather, which are
executed on edges instead of vertices. This model is
even more restrictive than the GAS model, e.g., it is
unclear how to implement WCC under this model as
explained in Section 5.2.

e VSP: The proposed VSP model requires data on each
edge to be read-only. For most graph algorithms, the
mutable value on edge (v, w) can be computed based
on the mutable value of vertex v and the read-only
attribute on edge (v, w). As such, we can represent
all mutable values of the out-edges of vertex v by a
fixed-length mutable value on vertex v. A similar
design is also used in recent papers [19], [20]. This
constraint does prevent some algorithms from being
implemented in VENUS without modifications. One
example we found is belief propagation [45] in
which the mutable value on edge (v, w) must be com-
puted based on the mutable value of vertex v and
itself in the previous iteration recursively. To sup-
port algorithms like belief propagation, we could
extend VENUS by storing mutable edge values in
the value table, but this may eliminate the benefits of
the VSP model. We conclude that the VSP model is
general enough to support most graph algorithms
including many popular random walk models such
as [46], [47].

In some scenarios, graphs may evolve over time.
While we focus mostly on static graphs in this paper,
VENUS can also support evolving graphs with some
simple extensions. As discussed in Section 4, the
structure table stores graph edges sorted by destina-
tion and is physically organized into disk blocks.
This can be easily extended with an in-memory
buffer corresponding to each disk block. In handling
changes over the existing graph, new incoming

2243

edges can be maintained in the corresponding in-
memory buffer. Then, the operation of scanning the
structure table also needs to include retrieving edges
from the in-memory buffer. An in-memory buffer
will be written back to disk when it is full, followed
by necessary block splitting. Similar ideas can also
be applied for adding new vertices and v-shards
only need to be updated when a certain number of
new vertices have been added.

8 CONCLUSIONS

We have presented VENUS, a disk-based graph computation
system that is able to handle billion-scale problems efficiently
on just a single commodity PC. It includes a novel design for
graph storage, a new data caching strategy, and a new exter-
nal graph computing model that implements vertex-centric
streamlined processing. In effect, it can significantly reduce
data access, minimize random IOs, and effectively exploit
main memory. Extensive experiments on four large-scale
real-world graphs and four large-scale synthetic graphs
show that VENUS can be much faster than GraphChi and X-
Stream, two state-of-the-art disk-based systems.

ACKNOWLEDGMENTS

The work is partly supported by NSFC of China (Grant No.
61103049). The corresponding author of this paper is Jiefeng
Cheng.

REFERENCES

[11 G.Malewicz, M. Austern, and A. Bik, “Pregel: A system for large-
scale graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2010, pp. 135-145.

[2] Y. Low, D. Bickson, and J. Gonzalez, “Distributed GraphLab: A
framework for machine learning and data mining in the cloud,”
in Pro. Very Large Data Bases, 2012, vol. 5, no. 8, pp. 716-727.

[3] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 31-46.

[4] X. Martinez-Palau and D. Dominguez-Sal, “Analysis of partition-
ing strategies for graph processing in bulk synchronous parallel
models,” in Proc. 5th Int. Workshop Cloud Data Manage., 2013,
pp- 19-26.

[5] U.Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-
scale graph mining system implementation and observations,” in
Proc. 9th IEEE Int. Conf. Data Mining, 2009, pp. 229-238.

[6] R.Chen, X. Weng, B. He, and M. Yang, “Large graph processing in
the cloud,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp- 1123-1126.

[71 S.Seo, E.J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “HAMA:
An efficient matrix computation with the MapReduce frame-
work,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci.,
2010, pp. 721-726.

[8] E.Krepska, T. Kielmann, W. Fokkink, and H. Bal, “HipG: Parallel
processing of large-scale graphs,” SIGOPS Operating Syst. Rev.,
vol. 45, no. 2, pp. 3-13, 2011.

[9] U.Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “GBASE: A

scalable and general graph management system,” in Proc. 17th

ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011,

pp- 1091-1099.

R. Cheng, F. Yang, and E. Chen, “Kineograph: Taking the pulse of

a fast-changing and connected world,” in Proc. 7th ACM Eur. Conf.

Comput. Syst., 2012, pp. 85-98.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine

on a memory cloud,” in Proc. ACM SIGMOD Int. Conf. Manage.

Data, 2013, pp. 505-516.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Opearting Syst. Des.
Implementation, 2004, p. 10.

[10]

[11]

2244

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proc. 2nd
USENIX Conf. Hot Topics Cloud Comput., 2010, p. 10.

A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-cen-
tric graph processing using streaming partitions,” in Proc. 24th
ACM Symp. Operating Syst. Principles, 2013, pp. 472-488.

W. Han, S. Lee, K. Park, and J. Lee, “TurboGraph: A fast parallel
graph engine handling billion-scale graphs in a single PC,” in
Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2013, pp. 77-85.

X. Zhu and Z. Ghahramani, “Learning from labeled and unla-
beled data with label propagation,” Carnegie Mellon Univ., Pitts-
burgh, PA, Tech. Rep. CMU-CALD-02-107, 2002.

J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and C. He, “VENUS:
Vertex-centric streamlined graph computation on a single PC,” in
Proc. 31st Int. Conf. Data Eng., 2015, pp. 1131-1142.

L. Stanton and G. Kliot, “Streaming graph partitioning for large
distributed graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2012, pp. 1222-1230.

G. Wang, W. Xie, A. Demers, and]. Gehrke, “Asynchronous large-
scale graph processing made easy,” in Proc. 6th Biennial Conf. Inno-
vative Data Syst. Res., 2013.

W. Xie, G. Wang, and D. Bindel, “Fast iterative graph computation
with block updates,” Proc. VLDB Endowment, vol. 6, no. 14,
pp- 20142025, 2013.

A. Aggarwal and]. S. Vlller, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9,
pp- 1116-1127, 1988.

OpenMP Architecture Review Board, “OpenMP application pro-
gram interface version 3.0, May 2008, http://www.openmp.
org/mp-documents/spec30.pdf

H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. 19th Int. Conf. World Wide
Web, 2010, pp. 591-600.

(2013). Clueweb12 web graph[Online]. Available: http://www.
lemurproject.org/clueweb12/index.php

Laboratory for web algorithmics - datasets. (2015). [Online].
Available: http:/ /law.di.unimi.it/ datasets.php

P. Boldi and S. Vigna, “The WebGraph Framework I: Compres-
sion techniques,” in Proc. 20th Int. Conf. World Wide Web, 2004,
pp- 595-602.

P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propa-
gation: A multiresolution coordinate-free ordering for compress-
ing social networks,” in Proc. 20th Int. Conf. World Wide Web, 2011,
pp. 1-13.

J. Bennett and S. Lanning, “The netflix prize,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining Workshop, 2007,
pp- 3-6.

G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The Yahoo!
music dataset and KDD-Cup’11,” in Proc. JMLR, 2012, pp. 3-18.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Stanford InfoLab,
Stanford, CA, Tech. Rep. SIDL-WP-1999-0120, 1999.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale par-
allel collaborative filtering for the Netflix prize,” in Proc. 4th Int.
Conf. Algorithmic Aspects Inf. Manage., 2008, pp. 337-348.

Yahoo! AltaVista Web Page Hyperlink Connectivity Graph, circa
2002 [Online]. Available: http:/ /webscope.sandbox.yahoo.com/
Giraph [Online]. Available: http://giraph.apache.org/

L. Qin, J. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable
big graph processing in MapReduce,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2014, pp. 827-838.

M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel, “Horton+: A dis-
tributed system for processing declarative reachability queries
over partitioned graphs,” Proc. VLDB Endowment, vol. 6, no. 14,
pp- 1918-1929, 2013.

L. Bargund, D. Dominguez-sal, V. Muntés-mulero, and P. Valdur-
iez, “ParallelGDB: A parallel graph database based on cache spe-
cialization,” in Proc. 15th Symp. Int. Database Eng. Appl., 2011,
pp- 162-169.

J. Zhong and B. He, “Medusa: Simplified graph processing on
GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1543—
1552, Jun. 2014.

F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha: Ver-
tex-centric graph processing on GPUs categories and subject
descriptors,” in Proc. Int. Symp. High Perform. Distrib. Comput.,
2014, pp. 239-251.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Z. Fu, M. Personick, and B. Thompson, “MapGraph: A high level
API for fast development of high performance graph analytics on
GPUs,” in Proc. Workshop GRAph Data Manage. Experience Syst.,
2014, pp. 1-6.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
GPU,” in Proc. 20th ACM SIGPLAN Symp. Principles Practice Paral-
lel Program., 2015, pp. 265-266.

S. Che, “GasCL: A vertex-centric graph model for GPUs,” in Proc.
High Perform. Extreme Comput. Conf., 2014, pp. 1-6.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. 11th Conf. Symp. Opearting Syst. Des.
Implementation, 2014, pp. 599-613.

C. Zhou, J. Gao, B. Sun, and J. X. Yu, “MOCgraph: Scalable distrib-
uted graph processing using message online computing,” Proc.
VLDB Endowment, vol. 8, no. 4, pp. 377-388, 2014.

J. E. Gonzalez, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in
Proc. 10th Conf. Symp. Opearting Syst. Des. Implementation, 2012,
pp- 17-30.

J. Pearl, “Reverend Bayes on inference engines: A distributed hier-
archical approach,” in Proc. Nat. Conf. Artif. Intell., 1982, pp. 133—
136.

X.-M. Wu, Z. Li, A.M.-C. So,]. Wright, and S.-F. Chang, “Learning
with partially absorbing random walks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1-9.

Z.Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and J. C. Lui, “Walking
in the cloud: Parallel SimRank at scale,” Proc. VLDB Endowment,
vol. 9, no. 1, pp. 24-35, 2015.

Qin Liu received the bachelor's degree in com-
puter science from the Shanghai Jiao Tong Uni-
versity. He is currently working toward the PhD
degree in the Department of Computer Science
& Engineering, The Chinese University of Hong
Kong. His research interests are mainly in
computer systems, graph mining, and algo-
rithm design.

Jiefeng Cheng received the PhD degree from
The Chinese University of Hong Kong, in 2007.
From 2007 to 2010, he worked as a research fel-
low at The Chinese University of Hong Kong and
the Hong Kong University, respectively. He is a
researcher at the Huawei Noah’s Ark Laboratory,
Hong Kong. Prior to joining Huawei, he was a fac-
ulty member with the University of Chinese Acad-
emy of Sciences, China. His research interests
include graph mining and management.

LIU ETAL.: VENUS: A SYSTEM FOR STREAMLINED GRAPH COMPUTATION ON A SINGLE PC

Zhenguo Li received the BS and MS degrees
from the Department of Mathematics, Peking
University, in 2002 and 2005, respectively, and
the PhD degree from the Department of Informa-
tion Engineering, Chinese University of Hong
Kong, in 2008. He is currently a researcher at the
Huawei Noah’s Ark Lab, Hong Kong. He was an
associate research scientist with the Department
of Electrical Engineering, Columbia University.
His research interests include machine learning
and artificial intelligence.

2245

John C.S. Lui received the PhD degree in com-
puter science from UCLA. He is currently a full
professor in the Department of Computer Sci-
ence & Engineering, The Chinese University of
Hong Kong. After his graduation, he joined the
IBM Almaden Research Laboratory/San Jose
Laboratory and participated in various research
and development projects on file systems and
parallel 1/0 architectures. His current research
interests are in Internet, network sciences with
large data implications (e.g., online social net-
works), machine learning on large data analytics, network/system secu-
rity (e.g., cloud security and mobile security), network economics, cloud
computing, large scale distributed systems, and performance evaluation
theory. He has been serving on the editorial boards of the IEEE/ACM
Transactions on Networking, IEEE Transactions on Computers, |IEEE
Transactions on Parallel and Distributed Systems, Journal of Perfor-
mance Evaluation, Journal of Network Science, and International Jour-
nal of Network Security. He received various departmental teaching
awards and the CUHK Vice-Chancellor's Exemplary Teaching Award.
He also received the CUHK Faculty of Engineering Research Excellence
Award (2011-2012). Dr. Lui is a corecipient of the Best Paper Award in
the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS 2006, and SIM-
PLEX 2013. He is an elected member of the IFIP WG 7.3, Fellow of
ACM, Fellow of IEEE, Senior Research Fellow of the Croucher Founda-
tion and is currently the chair of the ACM SIGMETRICS.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

