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Abstract— Indoor localization plays an important role as the
basis for a variety of mobile applications, such as navigating,
tracking, and monitoring in indoor environments. However, many
such systems cause potential privacy leakage in data transmission
between mobile users and the localization server (LS). Unfortu-
nately, there has been little research done on privacy issue, and
the existing privacy-preserving solutions are algorithm-driven,
each designed for specific localization algorithms, which hinders
their wide-scale adoption. Furthermore, they mainly focus on
users’ location privacy, while the LS’s data privacy cannot
be guaranteed. In this paper, we propose a Privacy-Preserving
Paradigm-driven framework for indoor LOCalization (P3-LOC).
P3-LOC takes the advantage that most indoor localization
systems share a common two-stage localization paradigm: infor-
mation measurement and location estimation. Based on this, P3-
LOC carefully perturbs and cloaks the transmitted data in these
two stages and employs specially designed “k-anonymity” and
“differential privacy” techniques to achieve the provable privacy
preservation. The key advantage is that P3-LOC does not rely on
any prior knowledge of the underlying localization algorithms,
and it guarantees both users’ location privacy and the LS’s data
privacy. Our extensive experiments from the measured data have
validated that P3-LOC provides privacy preservation for general
indoor localization techniques. In addition, P3-LOC is compara-
ble with the state-of-the-art algorithm-driven techniques in terms
of localization error, computation, and communication overhead.
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I. INTRODUCTION

AS AN enabling technology for the future Internet of
Things, indoor localization has a variety of applications

in indoor environments, such as navigating, tracking, and mon-
itoring. As such it has attracted growing commercial and aca-
demic interest [1]–[3]. Unfortunately, when this services are
offered, either users’ locations may be exposed to the untrusted
localization server (LS), or a trusted LS’s localization-related
information could be breached by malicious users [4]–[7].

A. Privacy Concerns in Indoor Localization

Existing indoor localization systems largely fall into
fingerprint-based [8], [9], model-based [10]–[12], and dead-
reckoning-based indoor localization [13], [14]. In fact, each
of them has security concerns with respect to users’ location
privacy and LS’s data privacy [15], [16].

Fingerprint-based indoor localization estimates users’ loca-
tions by mapping users’ measured signal against the pre-
built fingerprint database. Model-based indoor localization
calculates users’ locations based on geometrical models that
characterize the relationship between signal transmitters and
receivers. Dead-reckoning-based indoor localization utilizes
inertial sensors to estimate the position change since the
last update. Overall, to provide localization services, in these
three kinds of indoor localization techniques, the LS needs to
provide users localization-related information, e.g., fingerprint
database, radio transmission parameters, radio map, and floor
plan, etc. (cf. Steps (1) and (3) in Fig. 1). Likewise, to be
localized, users are supposed to send LS the measured signal
(hereafter geo-information), e.g., the Wi-Fi received signal
strength (RSS), time of arrival (ToA), angular velocity, etc
(cf. Steps (2) and (4) in Fig. 1). However, the LS may
be untrusted and disclose users’ locations deduced from the
geo-information to attackers or advertisers, and therefore
users’ location privacy is breached. Similarly, users may
be malicious, tampering the estimated locations of other
users using the localization-related information, or disclosing
the localization-related information to attackers. As a result,
the LS’s data privacy is disclosed. In summary, location
privacy and data privacy could be disclosed in the above three
kinds of indoor localization techniques.
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Fig. 1. A two-stage indoor localization paradigm. Stage 1 (information
measurement) includes Steps (1) and (2); Stage 2 (location estimation)
includes Steps (3)-(5), or (4)-(6)-(7). In Stage 2, (4)-(6)-(7), geo-information
is provided to the LS; in Stage 2, (3)-(5), the localization-related information
is transmitted to users.

To make matters worse, users and the LS are vulnerable
to serious attacks [4]–[6], [17], in the event of location/data
privacy disclosure. Specifically, when the location privacy
of users is breached by an untrusted LS, sensitive personal
information such as one’s life style, social relationship, and
political beliefs, etc., can be easily revealed, thereby exposing
users to spams, or even blackmails and physical violence [18],
etc. Likewise, when the database of the LS (e.g., fingerprint,
radio map, and floor plan, etc.) is breached by malicious users,
malicious users can (i) infer the estimated locations of other
users, incurring location privacy risks, and then breach users’
habits, relationships, and interests, etc., leading to more serious
privacy leakage [19]; (ii) attack the localization infrastructure,
e.g., wireless routers, sensor nodes, etc., according to the
locations of infrastructure recorded in the database [20], [21].

B. Existing Work

There are only few studies proposed to address the privacy
concerns for indoor localization. Li et al. conducted a pio-
neering work, where users encrypted the measured RSS using
homomorphic encryption, and the LS randomly chose several
APs to locate users. In [17], a similar privacy-preserving
technique via homomorphic encryption and fuzzy logic was
proposed. Similarly, Armengo et al. [6] considered an indoor
environment where privacy can be preserved using an encryp-
tion algorithm. Higuchi et al. [5] focused on extending the
existing crowd-tracking system to preserve privacy.

The problems of existing studies are two-fold. First, they
are algorithm-driven: solutions are designed for a specific
indoor localization algorithm, and thus cannot be applied
to others. Specifically, [6], [17], and [22] are designed
for a specific RSS or CSI fingerprint-based localization
algorithm which searches for k closest matches. Therefore
they cannot be applied to model-based [10]–[12], dead-
reckoning-based techniques [13], [14], or other fingerprint-
based techniques [8], [9]. Furthermore, the work in [5]
heavily relies on special hardware (crow tracking system),
inevitably resulting in the limited applicability to other local-
ization algorithms.

Second, existing efforts [5], [6], [17], [22] mainly focus
on users’ location privacy, while the localization server (LS)’s
data privacy cannot be guaranteed. Specifically, the fingerprint
locations were disclosed and thus the fingerprint data can
be disclosed in [6] and [22]. The study in [5] ignored the
important issue of LS’s data privacy. It is noted that while
Wang et al. [17] claimed that the data privacy threat on
the LS can be addressed in common cases, malicious users
could disclose LS’s fingerprint database via purpose-designed
operations. Attackers, by sending localization queries at both
the reference locations and users’ locations at the same time,
purposely construct dependent equations whose solutions are
exactly the fingerprint data.

C. Our Approach

To address the above-mentioned two problems, we propose
P3-LOC, a Privacy-Preserving Paradigm-driven framework
for indoor LOCalization. Our key observation is that most
if not all of indoor localization systems share a two-stage
localization paradigm [23]: Stage 1, information measure-
ment (i.e., Steps (1), (2) in Fig. 1), and Stage 2, location
estimation (i.e., Steps (3), (4), (5), (6), and (7) in Fig. 1).
To concrete, the localization-related information (resp. geo-
information) measured in Stage 1 needs to be transmitted to
users (resp. the LS) in Stage 2, to perform the localization
process. Therefore, we investigate a general framework for
indoor localization where the data is transmitted in an indis-
tinguishable manner.

On this basis, P3-LOC perturbs and cloaks the data which
is transmitted in Stage 1 and Stage 2, i.e., Steps (3), (4),
and (7) in Fig. 1, without reliance on any prior knowledge of
the underlying localization algorithms. Specifically, to preserve
users’ location privacy against LS in Step (4), P3-LOC first
segments the geo-information into pieces, and then utilizes
specially designed “k-anonymity” and “differential privacy”
techniques to perturb and cloak the pieces. The perturbed
and cloaked pieces, i.e., the inputs of location estimation, can
prevent users from getting access to the localization-related
information in Step (3) and other users’ estimated locations in
Step (7). By doing so, LS’s data privacy is preserved against
users, and an individual user’s location privacy is preserved
against the LS and other users.

Contributions: To the best of our knowledge, P3-LOC is
the first work with provably guaranteeing both users’ location
privacy and the LS’s data privacy, and meanwhile can be
applied to any localization system that complies with the
two-stage localization paradigm. P3-LOC also offers several
salient features. First, it is largely distributed, incurring neg-
ligible overhead to the server. Each user locally segments,
perturbs, and cloaks his own geo-information, and identifies
his estimated location (i.e., the localization outcome). Second,
it is user-friendly, as users can predefine their desired privacy
requirements. Lastly, it is scalable, only requiring a small
amount of computation and communication overhead. Our
extensive experiments from measured data have demonstrated
the effectiveness and efficiency of P3-LOC compared to other
state-of-the-art solutions.
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Fig. 2. The work flow of P3-LOC.

The remainder of this paper is organized as follows.
Section II presents some preliminary knowledge of our
approach. Section III describes our solution in detail, fol-
lowed by the performance evaluation in Section IV. Finally,
Section V concludes the paper.

II. PRELIMINARY

A. Attacker Model

In this paper, we consider the potential privacy disclosure
at two kinds of entities: users and the LS.

(a) LS’s attacks. Like [17], [22], and [24], we consider
the LS is semi-honest. That is, the LS will strictly execute
the indoor localization algorithm, i.e., honestly estimate and
return users’ locations. But it may attempt to disclose users’
location privacy in the localization process. Specifically, in the
building block (cf. Fig. 2), Estimating location, the LS tries to
identify each user’s geo-information and then takes one step
further getting the user’s estimated location with the help of
the localization algorithm.

(b) Users’ attacks. Like [17], [22], and [25], we con-
sider the users are curious-but-honest. A specific user may
intend to disclose other users’ locations in the building blocks
(cf. Fig. 2), Cloaking data and Identifying location, via iden-
tifying other users’ geo-information and estimated locations
respectively. Furthermore, it also tries to get access to the LS’s
localization-related information in the building block, Identi-
fying location. However, it will honestly perform localization
operations (i.e., honestly send their geo-information).

Note that users and the LS may send tampered geo-
information and tampered locations respectively. But such a
case does not exist in the scenario we considered, where users
and the LS honestly send exact geo-information and estimated
locations respectively. Moreover, attacks in such a case are
always named location injection attacks or spoofing attacks,
etc. The corresponding privacy preserving algorithms against
these attacks is another topic. What’s more, a larger number
of existing studies, e.g., [7], [26], [27], have designed effective
algorithms to resist these attacks. In addition, it is out of the
scope of this paper to address how to encourage users and
LS to honestly execute algorithms. We refer interested users
to [25] and [29] for additional information.

B. Design Goals

P3-LOC is designed to preserve users’ location privacy and
the LS’s data privacy in indoor localization systems as long
as they comply with the two-stage paradigm. In particular,
to preserve location privacy, each user’s geo-information and
localization outcome should be only identified by himself,
and be indistinguishable by other users as well as the LS.
To preserve data privacy, the localization-related information
should be only available to the LS.

C. k-Anonymity

k-Anonymity is first proposed in [29] to protect the infor-
mation leakage in data release. The definition is as follows:

Definition 1: The “attributes” of table T (A1, . . . , An) are
{A1, . . . , An}, and a quasi-identifier of the table denoted
by QT is a set of sensitive attributes {Ai, . . . , Aj} ⊆
(A1, . . . , An) [29].

Note that sensitive attributes are recognized by data holder
and regarded as the quasi-identifier.

Definition 2: When each sequence of values in T [QT ] has
no less than k duplicates in T [QT ], T (A1, . . . , An) meets
“k-anonymity”. The duplicates of each sequence of values
in T [QT ] constitute a “cloaking set”(CS), and each of the
duplicates is cloaked in this CS [29].

For example, the attributes in Table I are {Gender, ZIP,
Problem}, the quasi-identifier recognized by the data holder is
QT ={Gender, ZIP}, and each sequence of values in T [QT ]
(e.g., T [Gender=“F”], T [ZIP=“0214∗”]) appears with k =
2 occurrences. Therefore u1 and u3 cannot be distinguished.
That is, u1 and u3’s problems are cloaked in a CS (k = 2).

However, k-anonymity cannot be directly applied for
P3-LOC, as a specific user’s geo-information is disclosed
to other users who are cloaked in the same CS. There-
fore, we propose to segment the geo-information into pieces
and cloak every piece so that each of the other users can
only obtain one piece of the specific user’s geo-information
(cf. Sections III-B, III-C).

D. ε-Differential Privacy

The formal definition of ε-differential privacy is as follows:
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TABLE I

AN EXAMPLE OF k-ANONYMITY; QT ={GENDER, ZIP}, k = 2

Definition 3: A randomized algorithm Alg gives
ε-differential privacy if for any dataset D, any tuple
t ∈ D, and any S ∈ Range(Alg) [30], we have

e−ε ≤ Pr[Alg(D) = S]
Pr[Alg(D−t) = S]

≤ eε, (1)

where Range(Alg) is the output range of Alg; D−t is the
dataset where the tuple t is removed from D; and ε ∈ (0, 1).

ε-Differential privacy can prevent the information disclosure
caused by the absence of any single tuple in D. However,
it cannot be directly applied to P3-LOC, as we aim to prevent
information disclosure caused by the absence of any λ tuples
in D, where λ is the number of missing tuples in D, and
λ ≥ 1. Thus, we propose the (λ, ε)-differential privacy
(cf. Definition 5) to prevent information disclosure caused by
any λ tuples.

ε-Differential privacy is composable as stated below.
Theorem 4 (Sequential Composition [30]): Assume each

of mechanisms Mi, i = (1, . . . , r), provides εi-differential
privacy. M performs Mi, i = (1, . . . , r) with independent
randomness. Then M satisfies

∑r
i=1 εi-differential privacy.

On the basis of Theorem 4, we can obtain the composi-
tion property of (λ, ε)-differential privacy (cf. Theorem 7).
By incorporating this composition property, we then pro-
pose a novel data perturbation mechanism to achieve the
(λ, ε)-differential privacy (cf. Section III-C).

III. DESIGN OF P3-LOC

A. Overview

P3-LOC includes six building blocks, as shown in Fig. 2.
(1) Segmenting data. Each user segments his geo-

information measurements into data pieces.
(2) Perturbing data. A data perturbation mechanism based

on the ε-differential privacy technique is conducted, in order
to inject noise into each piece.

(3) Signing Pieces. Each user labels his pieces that will
be exchanged with other users’ data, through adapting the
cryptographic hash function.

(4) Cloaking data. P3-LOC performs a distributed data
transfer strategy where every user can cloak each of his pieces
into a cloaking set (CS). Then the user sends cloaked pieces
to the LS.

(5) Estimating location. Upon receiving the pieces from
users, the LS conducts the location estimation and returns the
data tuples containing the cloaked locations.

(6) Identifying location. Since each user’s geo-information
is available to himself, his real location can be identified when
he receives the data tuples from the LS.

B. Segmenting Data
Assume there are NU users u1, u2,. . . , uNU , and each

user ui (i ∈ {1, . . . , NU}) has a geo-information xi and
privacy parameters (ki, λ) predefined by himself. xi is the
RSS or CSI (channel signal information), etc., in e.g., WiFi
fingerprint-based indoor localization. Moreover, in model-
based indoor localization, xi may be ToA, TDoA (time
difference of arrival), etc. Furthermore, in dead-reckoning-
based indoor localization, xi may be the angular velocity,
acceleration, azimuth angle, etc. The privacy parameter ki

means that his geo-information (resp. his estimated location)
should be cloaked in a CS containing no less than (ki−1) other
users’ geo-information (resp. estimated locations). Parameter
λ is the length of event sequence to be defined below.

To protect users’ geo-information against the LS, a straight-
forward method is to cloak every user ui’s geo-information
into a CS with no less than (ki − 1) other users’ geo-
information using k-anonymity techniques, so that the LS
cannot distinguish ui’s geo-information from others cloaked in
the CS. Unfortunately, this simple method cannot preserve a
specific user’s location privacy against other users whose geo-
information is cloaked in the same CS with the user, as the
user has to share geo-information with others to complete the
k-anonymity operation.

In contrast, in P3-LOC, each user (say, the user ui) first
breaks his owned geo-information xi into κi (κi is set to
be ki) random pieces xiγ (γ ∈ {1, . . . , κi}) such that xi =∑κi

γ=1 xiγ . To concrete, we assign random to pieces xiγ

(γ ∈ {1, . . . , κi − 1}), and let xiκi = xi −
∑κi−1

j=1 xij . Then,
we cloak each of these pieces with the pieces from neighbors.
That is, ui’s geo-information xi is cloaked with (κi − 1) geo-
information from other users. As a result, each user in same
CS with ui has the knowledge of only one of ui’ pieces,
and the LS cannot distinguish xi from no less than (κi − 1)
geo-information from other users. It is important to note that
segmenting xi into more pieces is still workable, but at the
expense of increasing the computation and communication
cost.

After that, the geo-information blocks of all users are
[

X1 X2 · · · Xi · · · XNU

O1 O2 · · · Oi · · · ONU

]
(2)

where Xi = [xi1, xi2, · · · , xiκi ]T , Oi = [0, 0, · · · , 0]Tκi
′×1,

and κi
′ = max{κ1, κ2, · · · , κNU}− κi.

It is noted that for the purpose of locally cloaking data (the
details can be found in Section III-E), similar to [31], P3-LOC
demands that nearby users can directly communicate with
each other (say via Bluetooth or WiFi interface). As a result,
the neighbors whose data pieces cloaked with the user ui may
collude with each other to infer the user ui’s geo-information,
and then further breach other personal information, resulting
in serious privacy risks. To address such privacy concern,
before locally cloaking data, we propose a data perturbation
mechanism based on differential privacy in the next section.

C. Perturbing Data

The goal of the data perturbation mechanism is to inject
noise into pieces xiγ so that neighbors whose data pieces
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cloaked with the user ui cannot infer the geo-information of
user ui when no more than λ neighbors collude with each
other.

Motivated by the properties of ε-differential privacy
(cf. Definition 3) that it can prevent the information dis-
closure caused by the absence of any single tuple in D,
we try to propose a relaxed version of ε-differential privacy,
(λ, ε)-differential privacy. (λ, ε)-differential privacy can pre-
vent information disclosure caused by the absence of no more
than λ tuples in D. That is, when less than λ malicious
neighbors collude with each other, they cannot infer the user
ui’s geo-information. Note that when the number of colluded
users increases to be larger than λ, P3-LOC cannot protect
users’ location privacy against the above collusion attacks.

Inherited from ε-differential privacy, a formally defined
(λ, ε)-differential privacy and the event sequence are given
by

Definition 5: A randomized algorithm M satisfies
(λ, ε)-differential privacy if for any input dataset Sn, any
tuple Di ∈ Sn, and any R ∈ Range(M), it holds that:

e−ε ≤ Pr[M(Sn) = R]
Pr[M(S′

n) = R)]
≤ eε, (3)

where Sn = (D1, D2, . . . , Dn), Sn[i] = Di, Di is a dataset;
for each Sn[i1], Sn[i2], S′

n[i1], S′
n[i2], i1 < i2, Sn[i1] '=

S′
n[i1], and Sn[i2] '= S′

n[i2], it holds i2 − i1 + 1 ≤ λ;
S′

n[i1] is obtained by removing or adding a row in Sn[i1];
M(Sn[i]) = R[i].

Definition 6: An event sequence of length λ′ is
{S′

n[i1], . . . , S′
n[iλ′ ]}, where Sn[i1] '= S′

n[i1], Sn[i2] '= S′
n[i2],

. . . , Sn[iλ′ ] '= S′
n[iλ′ ].

According to Definitions 5 and 6, (λ, ε)-differential pri-
vacy can prevent information disclosure caused by an event
sequence of length λ′ (λ′ ≤ λ). That is, (λ, ε)-differential
privacy can preserve the user’s location privacy when less than
λ malicious users collude with each other.

Combing Theorem 4 with Definition 5, we have:
Theorem 7: The randomized algorithm M can be decom-

posed into n algorithms M1, M2, . . . , Mn, and each Mi

generates independent randomness. Then M meets (λ, ε)-
differential privacy, if






Mi(D[i]) = R[i],

e−ε ≤ Pr[Mi(Di) = R[i]]
Pr[Mi(D′

i) = R[i]]
≤ eε

∑i+λ−1

γ=i
εγ ≤ ε, i ∈ (1, . . . , n)

Proof: See Appendix A.
Theorem 7 implies that the privacy budget ε can

be viewed as the sum of the privacy budget in every
sub-sequence of length λ in Sn (e.g., Sn[1], . . . , Sn[λ]).
Namely, any sub-sequence of length λ do meet the
ε-differential privacy. Accordingly, we propose the following
data perturbation mechanism M to inject noise into pieces as
follows.

Denote the set of user ui’s data pieces as Di =
{Di1, Di2, . . . , Di1, . . . , Diκi}, where Dil = [xil]d×1. The
inputs of the data perturbation mechanism M are users’ pieces

Algorithm 1 DATA PERTURBATION MECHANISM M
Require: Dil, oi1, oi2, . . . , oi(l−1), ε1,ε2, . . . , and εl−1

Ensure: oil , εl

1: // Sub mechanism Ml1

2: Compute cil = Q(Dil)

3: Set ωl,1 = 2λxi/(εd), dis = 1/d d
j=1 | oi(l−1)[j] − cil[j] |

+Lap(ωl,1)
4: εl,1 = ε/(2λ)

5: // Sub mechanism Ml2

6: Set remaining privacy budget εl,2 = ε/2 − l−1
τ=l−λ+1 ετ,2

7: Set ωl,2 = 2xi/εl,2

8: if dis > ωl,2 then oil = cil + 〈Lap(ωl,2)〉d

9: elseoil = oi(l−1)

10: εl = εl,1 + εl,2

Di, and M can be decomposed into mechanisms M1, . . . ,
Ml, . . . , Mκi such that Ml(Di1) = oil ∈ Range(M). Each
mechanism Ml generates independent randomness and meets
εl-differential privacy.

Next, we need to determine the output oil and privacy
budget εl. First of all, we define the following symbols. Let
an statistic function be Q: Dil −→ Rd; Q(Dil) = cil; cil[j]
is the count of column j of Dil; ∆(Q) = maxDil,D′

il∈D ‖
Q(Dil)−Q(D′

il) ‖1= xi. We adapt the budget distribution in
study [32] to our settings, and design the algorithm of data
perturbation mechanism M as follows.

As shown in Algorithm 1, mechanism Ml is decomposed
into two sub mechanisms Ml1 and Ml2. Ml1 computes the
dissimilarity, according to Di1, oi1, oi2, . . . , oi(l−1), ε1,ε2,
. . . , and εl−1. According to the dissimilarity, Ml2 computes
oil and εl. Sub mechanism Ml1 computes the statistical result
cil on Dil (Line 2). Then it computes the dissimilarity dis
and injects Laplace noise with scale ωl,1 into dis (Line 3).
εl,1 is set to be ε/(2λ) to perturb the dis (Line 4). Ml2 first
computes the remaining privacy budget εl,2 and Laplace noise
with scale ωl,2 (Lines 6 and 7). Then it outputs oil and εl

(Lines 8, 9 and 10).
On top of the data perturbation mechanism, we have
Theorem 8: The proposed data perturbation mechanism M

satisfies the requirement of (λ, ε)-differential privacy.
Proof: See Appendix B.

This shows that the data perturbation mechanism can pre-
serve users’ location privacy. The users’ pieces are processed
via our proposed data perturbation mechanism listed above,
and the following geo-information blocks of all users are
obtained.

[
X̂1 X̂2 · · · X̂i · · · X̂NU

O1 O2 · · · Oi · · · ONU

]
, (4)

where X̂i = [x̂i1, x̂i2, · · · , x̂iκi ]T . Thereafter, with the geo-
information blocks, users need to sign their pieces such that
the LS knows which pieces are coming from the same user
end for the purpose of location estimation in Section III-F.

D. Signing Pieces

A user ui signs his pieces X̂i with the signature tagi. Since
the signature composed of ui’s ID IDi will reveal the identity
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Fig. 3. An example of generating signatures.

privacy of ui, we propose to generate the signature using the
following cryptographic hash function:

tagi = H(IDi ‖ randomi), (5)

where randomi is an random number, H is a cryptographic
hash function, and ‖ is string concatenation operation. For
example, in Fig. 3, u1’s ID “101713615” is appended to
random number “0”, and then is hashed into the signature
“2BF8 . . . . . . 3986”.

Next, users exchange pieces with each other to cloak the
pieces according to the data transfer strategy explained in
Section III-E.

E. Cloaking Data

To cloak users’ geo-information using k-anonymity tech-
nique, the number of users should be no less than the
maximum of the number of each user’s pieces (cf. Def-
inition 2). We assume (NU − 1) users denoted by
u1, u2, . . . , uNU−1 are waiting for being located since NU −
1 < max(κ1, κ2 . . . , κNU−1), and a new user uNU requests
for localization service. uNU broadcasts a hello message con-
sisting of the number of his pieces κNU via Bluetooth or WiFi
interface [31]. Upon receiving the hello message, every user
(say, the user ui) sends back an acknowledgement consist-
ing of κi. Thereafter uNU determines whether NU is no
less than max(κ1, κ2 . . . , κNU ). If so, uNU sends back an
acknowledgement. Each user performs his transfer strategy in
a distributed manner. He keeps one piece to himself and sends
all the remaining pieces to other users according to his transfer
strategy, so as to cloak his pieces using the k-anonymity
technique. Note that existing work [33], [34] can be directly
applied to motivate users to exchange their pieces with others
to complete k-anonymity, which is out of the scope of this
work.

A straightforward method to exchange pieces is to randomly
transfer pieces to other users. If so, some selfish users may
free-ride on others’ efforts. That is, these selfish users send
less pieces to the LS than their pieces, but in fact each user
should send the same number of pieces as his own pieces to
the LS. Conversely, these users offering free rides send more
pieces to the LS than their pieces. For example, in Fig. 4(a),
u3 free-rides on efforts of u1 and u2, since u3 sends three
pieces to u1, u2, u4 and only receives one piece from u4.
Therefore u3 only needs to send two pieces to the LS (2 <
κ3 = 4), and u1 (resp. u2) has to send four pieces to the LS
(4 > κ1 = κ2 = 3). To this end, we propose the following
effective transfer strategy.

Definition 9: The effective transfer strategy among NU

users meets: arg min
∑γ=NU

γ=1 f3(κγγ − (κγ − 1)), where κγγ

Fig. 4. (a) Non-effective transfer strategy. (b) The effective transfer strategy,
where N is an even. (c) The effective transfer strategy, where N is an odd.

is the number of pieces the user uγ receives from others, and
f3(x) = x when 0 ≤ x, otherwise f3(x) = 0.

For example, in Fig. 4(a),
∑γ=4

γ=1 f3(κγγ − (κγ − 1)) = 2
which means u1 and u2 have to send one more piece to the
LS, compared to κ1 and κ2. Namely, u1 and u2 offer free rides
for other users. But in Fig. 4(b), each user ui (i ∈ (1, . . . , 4))
only sends κi pieces to the LS, as

∑γ=4
γ=1 f3(κγγ − κγ) =

0. Namely, no user offers free ride. Therefore, the transfer
strategy in Fig. 4(b) is the effective transfer strategy.

Based on the definition of the effective transfer strategy,
we have the following result.

Theorem 10: If the number of pieces to be exchanged
(denoted by N ) is even (resp. odd), there must be even (resp.
odd) users sending one more piece to the LS than their pieces
in the effective transfer strategy.

Proof: See Appendix C.
For instance, in Fig. 4(c), one user (i.e., u1) needs to send

one more piece to the LS due to N = 9.
Motivated by Theorem 10 and Definition 9,

the proposed data transfer strategy is as follows. When
max(κ1, κ2 . . . , κNU ) ≤ NU , each user performs the
following steps to compute his transfer strategy to cloak
his pieces with k-anonymity technique. Without loss of
generality, we assume κNU ≤ · · · ≤ κ2 ≤ κ1. As shown
in Fig. 5(a), we define fγ1γ2 = 1 when uγ1 and uγ2 exchange
pieces, and fγ1γ2 = fγ2γ1 (γ1 '= γ2, γ1, γ2 ∈ (1, . . . , NU )).
Then we get






f12 = f(κ1 − 1 − 1) = f(κ1 − 2)
f13 = f(κ1 − 1 − f12 − 1)
...

f1γ = f(κ1 − 1 −
γ−1∑

τ=2

f1τ − 1),

(6)

where γ ∈ (2, . . . , NU ); f(x) = 1 when 0 ≤ x, and otherwise,
f(x) = 0.






f23 = f(κ2 − 1 − f12 − 1) × f2(f13 − (κ3 − 1))
...

f2γ =f(κ2−1−f12−
γ−1∑

τ=3

f2τ −1) × f2(f1γ−(κγ−1)),

(7)
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Fig. 5. (a) The illustration of computing the effective transfer strategy. (b) (c) Examples of computing effective transfer strategy. (b) N is an even, and
κ1 = κ2 = κ3 = κ4 = 5, κ5 = 3. (c) N is an odd, and κ1 = κ2 = κ3 = κ4 = 5, κ5 = 4.

where γ ∈ (3, . . . , NU ); f2(x) = 1 when 1 ≤ x, and otherwise
f2(x) = 0. We can generalize Eqs. (6) and (7) as






fγ(γ+1) = f(κγ − 1 −
γ−1∑

τ=1

fτγ − 1)

×f2(
γ−1∑

τ=1

fτ(γ+1) − (κγ+1 − 1))

fγ(γ+z) =f(κγ − 1 −
γ−1∑

τ=1

fτγ −
γ+z−1∑

τ=γ+1

fγτ−1)

×f2(
γ−1∑

τ=1

fτ(γ+z)−(κγ+z−1)),

(8)

where z ∈ (2, . . . , NU − γ), γ ∈ (1, . . . , NU ). Thereafter,
each user ui only needs to compute the following equation to
determine his transfer strategy fiτ :

∑m

τ=1,τ %=i
fτ i = κi − 1, 1 ≤ m ≤ NU . (9)

It is important to note that, according to Theorem 10, some
users cannot compute their transfer strategy using Eqs. (8)
and (9). Taking Fig. 5(b) as an example, N is 18; u1, u2,
and u5 can get their transfer strategy respectively according to
Eqs. (8) and (9), but obviously one piece of u3 and one piece
of u4 are not cloaked. In summary, the above data transfer
strategy needs to be modified.

Before diving into the details of how to modify the above
data transfer strategy, we present the following result.

Theorem 11: When N pieces of NU users need to be
exchanged, there will be N − 2

∑NU−1
γ1=1

∑NU

γ2=γ1+1 fγ1γ2

pieces which cannot be transferred to other users, according
to Eqs. (8) and (9).

Proof: See Appendix D.
For example, in Fig. 5(c), one piece of u4 cannot be cloaked,

as (N − 2
∑4

γ1=1

∑5
γ2=γ1+1 fγ1γ2) = 1.

According to Theorem 11, we propose to adjust the transfer
strategy as follows. First, all users compute transfer strategy
as Eqs. (8) and (9). We denote these users of which some
pieces are not transferred to other users (recall Theorem 11)
as uν , uν+1, . . . , uν+η, ν ∈ (1, . . . , NU ), η ∈ (0, . . . , NU−ν).
Then, every user ui (i ∈ (ν, . . . , ν + η)) randomly sends the
remaining pieces to κi − (

∑NU

τ=1,τ %=i fτ i +1) other users each
of which (e.g., uγ) meets fiγ = 0.

In summary, we design a distributed transfer strategy in this
section. Next, each user sends cloaked pieces to the LS for
location estimation.

Fig. 6. Illustration of localization process, κ1 = κ2 = κ3 = κ4 = 2.

F. Estimating Location

Although users’ pieces are cloaked, the localization outcome
of a specific user cannot be protected against other users who
have received the user’s pieces. For example, in Fig. 6, u1

sends one of his piece x̂12 and one of u2’s piece x̂21 to the
LS. Since the LS cannot distinguish u1 and u2, both locations
of u1 and u2 are returned to u1. As u1 can identify his location,
the possibility that u1 identifies u2’s location is 1, which is
larger than u2’s privacy requirement 1/k2 = 1/2. As a result,
u2’s location privacy is disclosed to u1.

To that end, we design a privacy-preserving localization
strategy performed at the server side. Specifically, upon
receiving pieces from the NU users, the LS first computes the
geo-information of each user ui, according to the signatures,
i.e., xi =

∑γ=κi

γ=1 x̂iγ . Then the LS carries out the underlying
localization algorithm to locate each user ui using xi. Assume
a specific user uj sends pieces x̂jγ , x̂(j+1)γ , . . . , x̂(j+r)γ

to the LS. Denote the corresponding localization outcomes
as l̂j , l̂j+1, . . . , l̂j+r , and the set of tuples consisting of the
(r + 1) geo-information and (r + 1) localization outcomes
as L1 = {(xj , l̂j), (xj+1, l̂j+1), . . . , (xj+r , l̂j+r)}. To
meet different privacy requirements (i.e., kj+1, . . . , kj+r)
of users uj+1, . . . , uj+r, the LS randomly selects
[max(kj+1, . . . , kj+r)−r] other tuples (denote the set of these
tuples as L2) from L, which meet the following constraints:
L2∩L1 = ∅, L2 ⊂ L, where L = {(x1, l̂1), . . . , (xNU , l̂NU )}
is the set of tuples consisting of these NU users’ geo-
information and localization outcomes. Lastly, the LS returns
tuples (that is, the cloaked location) in L2 ∪ L1 to uj .

Taking Fig. 6 as an illustrative example, except for tuples
(x1, l̂1) and (x2, l̂2) that should be returned to u1, tuple
(x3, l̂3) is also sent to u1 as k2 = 2.

G. Identifying Location

Since each user’s geo-information is revealed to himself
(and only to himself), his real location can be identified
through checking whether his geo-information is contained in
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Fig. 7. Illustration of identifying locations.

the tuples returned by the LS. For example, in Fig. 7(a), upon
receiving the tuples (x1, l̂1), (x2, l̂2), and (x3, l̂3) returned
by the LS, u1 can identify his estimated location l̂1 through
detecting whether the geo-information contained in these
tuples is the same as his geo-information x1. Likewise, u2, u3,
and u4 in Figs. 7(b-d) can identify their estimated locations.

H. Discussions

P3-LOC provides several salient features, as presented in
the following theorems.

Theorem 12: P3-LOC guarantees each user’s location pri-
vacy against other users and the LS at the expected level (1/k)
when no users collude. Moreover, when less than λ users
collude with each other, P3-LOC provides (λ, ε)-differential
privacy on the user’s location privacy against other users and
protects the user’s location privacy against the LS at the
expected level (1/k). Furthermore, P3-LOC protects the LS’s
data privacy.

Proof: See Appendix E.
Theorem 13: P3-LOC guarantees the data utility with the

average error 4xi(2
λ−1)

ελ + 2xiλ
εd in data perturbation mechanism

M, for a specific user ui.
Proof: See Appendix F.

Theorem 14: Both the computation cost and the communi-
cation cost introduced by P3-LOC are at most O(NU ) where
NU is the total number of mobile users.

Proof: See Appendix G.
Theorem 12 characterizes the degree of privacy preserva-

tion, Theorem 13 implies the guarantee on data utility, and
Theorem 14 shows the scalability of P3-LOC.

IV. PERFORMANCE EVALUATION

We conduct extensive experiments via measured data, and
compare P3-LOC with PriWFL [22] and MCA [6], privacy-
preserving algorithms for fingerprint–based indoor localiza-
tion. As there is no prior work on privacy preservation in
model based and dead-reckoning based indoor localization,
we simply compare P3-LOC with a model-based indoor
localization algorithm [10] (dubbed as ZERO) and a dead-
reckoning based indoor localization algorithm [35] (dubbed
as IPLOS). Note that ZERO and IPLOS do not provide any
privacy guarantees.

In the fingerprint-based indoor localization, each of the WiFi
fingerprints is the average value of 100 RSS values measured
at each sampling location labeled by red spots (cf. Fig. 8(a)).
In model-based indoor localization, we periodically measure
the RSS from all APs (cf. Fig. 8(b)), map RSS to geographical
distances, and calibrate signal-distance mapping parameters.
In dead-reckoning based indoor localization, users’ locations
are estimated by an accelerometer. The movement speed is
2 steps/sec, and the stride length is set as 70cm.

Fig. 8. The layout of the office building for (a) fingerprinting-based and
(b) model-based indoor localization.

Other default parameter settings are as follows: NU = 80,
ε = 1; κi = ki ∈ [2, 5], λ ∈ [1, 4]; every real number
is represented by 24 bits; the tolerable delay dt = 0.01s;
the query interval is 15s. The RSS data and sensor data are
measured by Samsung Galaxy S5; all the experiments are
implemented in C++ and conducted on a desktop PC with
an Intel Core i5 3.30 GHz processor and 8G memory.

A. Privacy Preservation

We propose the following metrics: the degree of location
privacy preservation (LPP) and the degree of data privacy
preservation (DPP) to quantify the privacy preservation. LPP
refers to the proportion of users whose location is identified
with a probability less than 1/k. When all users cannot get
access to the localization-related information except for their
estimated locations, the data privacy of LS is protected, and
DPP equals 1. That is, when users get partial information
about localization-related information with a probability 0,
DPP is set to 1; otherwise 0. For example, in the WiFi
fingerprint-based indoor localization [22], the locations of
fingerprints recorded in fingerprint database are disclosed
to users, and malicious users can get a similar fingerprint
database. Namely, users have a certain belief about partial
information of localization-related information. In such a case,
LS’s data privacy is not protected, and DPP is set to 0.

1) Privacy Preservation in Fingerprint Based Indoor
Localization: Fig. 9(a) shows the privacy preservation in
default settings. It shows that P3-LOC can protect data privacy
and provide more than 93% LPP in existing three kinds of
localization techniques. In contrast, PriWFL and MCA are
only applicable to the fingerprint-based localization algorithm
which searches for nearest matches, and can only protect 60%
and 58% users’ location privacy without any protection for
data privacy. That is because (i) no user can access the database
in the LS in P3-LOC (proved in Theorem 12), while the
locations of fingerprints are disclosed to users in PriWFL and
MCA; (ii) P3-LOC is a paradigm driven general framework,
and therefore is applicable to all underlying localization sys-
tems; (iii) PriWFL and MCA employs homomorphic encryp-
tion resulting in many expired queries, and thus less users’
location privacy can be protected.

Fig. 9(b) shows the impact of NU on the privacy preserva-
tion. First, the LPP in PriWFL, MCA, and P3-LOC decrease
with the increase of NU , as more users to be processed result
in more expired queries, and thus less users’ location privacy
can be protected. Second, the LPP in P3-LOC is more robust
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Fig. 9. (a) The privacy preservation in default setting; “F”, “M”, and “D” refer to fingerprinting-based, model-based, and dead-reckoning based localization,
respectively. (b) The impact of NU on privacy preservation in F; (c) The privacy preservation varying with dt in F. (d) The privacy preservation varying with
NU in M and D. (e) The privacy preservation varying with k. (f) The privacy preservation varying with dt in M and D.

to NU , as it takes less time to process users’ queries in
P3-LOC than PriWFL. Lastly, the DPP in the three algorithms
do not vary with NU . The reason is that PriWFL and MCA
cannot protect data privacy while P3-LOC does. Also, P3-LOC
outperforms PriWFL and MCA in terms of both LPP and DPP.

Fig. 9(c) shows the impact of dt. It shows that the pri-
vacy preservation increases with dt, as a larger dt enables
algorithms to process more queries. In addition, the LPP in
P3-LOC is more robust to dt, since more expired queries in
PriWFL and MCA can be processed when we prolong the dt.

Since PriWFL does not use k-anonymity, we only focus
on the impact of k on the performance of P3-LOC. A larger
k results in more pieces to be processed and more expired
queries. As such, in Fig. 9(e), the LPP in P3-LOC decreases
when we increase k. Lastly, the DPP in P3-LOC is also not
affected by k.

2) Privacy Preservation in Model-Based Indoor Localiza-
tion: Since ZERO and IPLOS do not protect privacy, we only
focus on the privacy preservation in P3-LOC.

In model-based indoor localization, the LPP in P3-LOC
decreases with NU (cf. Fig. 9(d)) and k (cf. Fig. 9(e)), and
increases with dt (cf. Fig. 9(f)). The reason is that increasing
NU and k result in more expired queries, and thus less
users’ location privacy can be protected. Moreover, a larger
dt enables more queries to be processed.

3) Privacy Preservation in Dead-Reckoning-Based Indoor
Localization: More users and larger k deteriorate the LPP in
P3-LOC, which is shown in Figs. 9(d) and 9(e). In addition,
in Fig. 9(f), P3-LOC benefits from a larger dt.

B. Data Utility Guarantee

The data utility loss is resulted from the data perturba-
tion mechanism M that meets (λ, ε)-differential privacy and
injects Laplace noise into pieces. Then, the geo-information

containing noise further affects the localization accuracy. That
is, the settings of parameters λ and ε affect the data utility of
users’ geo-information (i.e., the localization accuracy), as the
scale of Laplace noise is determined by λ and ε. Therefore,
we propose the metric, cumulative distribution function (CDF)
of the localization errors, to quantify the data utility loss. The
localization error of a specific user ui is measured as |l̂i − li|,
where l̂i is the estimated location of ui, and li is the exact
location (i.e., ground truth).

The cumulative distribution function (CDF) of local-
ization errors in fingerprint-based localization is shown
in Figs. 10(a) and 10(b). We observe from Fig. 10(a) that
the performance of P3-LOC is comparable to that of PriWFL
and MCA, as 50% of the localization errors in P3-LOC and
PriWFL and MCA are less than 2.2m, the remaining 50%
of the localization errors are around 3.1m, and the average
localization errors are about 2.17m, 2.16m, and 2.09m. That
is because, PriWFL uses the homomorphic encryption, and
P3-LOC provides differential privacy. Moreover, in Fig. 10(a),
the localization errors in P3-LOC increase with the increasing
parameter λ, because a larger parameter λ enlarges the noise.
Furthermore, Fig. 10(b) shows that the localization errors in
P3-LOC decrease with the increasing parameter ε, as increas-
ing ε decreases the scale of noise.

In model-based localization, ZERO does not outperform
P3-LOC, as the average localization errors in P3-LOC and
ZERO are about 2.36m and 2.24m (cf. Fig. 10(c)). In addition,
the localization errors in P3-LOC increase with the increasing
parameter λ, and decrease with the parameter ε, which is
shown in Figs. 10(c) and 10(d). The reasons are analyzed
as above. Likewise, in dead-reckoning-based localization,
P3-LOC is still preferable, since the average localization errors
in P3-LOC and IPLOS are 1.19m and 1.13m (cf. Fig. 10(e)).
Furthermore, the localization errors in P3-LOC vary with
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Fig. 10. The localization error in (a) (b) fingerprint-based, (c) (d) model-based, and (e) (f) dead-reckoning-based localization.

Fig. 11. The computation cost in (a) fingerprint-based, (b) model-based and (c) dead-reckoning-based localization.

Fig. 12. The communication cost in (a) fingerprint-based, (b) model-based and (c) dead-reckoning-based localization.

parameters λ and ε (cf. Figs. 10(e) and 10(f)), which is same
to the trends in Figs. 10(a) and 10(b).

C. Robustness

We propose the metrics, computation overhead (CPO) and
communication overhead (CMO) to quantify the scalability of
P3-LOC.

1) Computation Cost: In fingerprint-based localization,
the CPO in P3-LOC, PriWFL, and MCA indeed increases
with NU , because more users result in more computation
operations (cf. Fig. 11(a)). In addition, the CPO in PriWFL
and MCA are about 103 times larger than that in P3-LOC,
which is attributed to the homomorphic encryption employed

in PriWFL and MCA. Lastly, the CPO in P3-LOC is more
robust to NU than that in PriWFL and MCA, which is resulted
from the heavy computation overhead in PriWFL and MCA.

In model-based and dead-reckoning-based localization,
the CPO in all algorithms increases with NU , as algorithms
have to locate more users (cf. Figs. 11(b) and 11(c)). Further-
more, the CPO in P3-LOC is a bit larger than that in ZERO
and IPLOS, because ZERO and IPLOS ignore the privacy
preservation. Lastly, P3-LOC is still preferable, as it only
incurs microsecond-level computation cost.

2) Communication Cost: In fingerprint-based indoor local-
ization, the CMO in PriWFL is about 150 times larger than that
in P3-LOC (cf. Fig. 12(a)). Because the length of the ciphertext
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is 1024 bits, which is quite larger than the 24 bits in P3-LOC.
Second, the CMO in P3-LOC and PriWFL increases with NU ,
as more users lead to more pieces. Lastly, the CMO in P3-LOC
is more robust than that in PriWFL, which is attributed to the
homomorphic encryption in PriWFL.

In model-based and dead-reckoning-based localization,
as shown in Figs. 12(b) and 12(c), the CMO in all algorithms
is proportional to NU . In addition, the CMO in P3-LOC is a
bit larger than that in ZERO and IPLOS.

V. CONCLUSION

In this paper, we have presented P3-LOC, a privacy-
preserving paradigm-driven framework for indoor localization.
It guarantees both users’ location privacy and the LS’s data
privacy. Moreover, it is applicable to any localization system
which complies with the aforementioned two-stage indoor
localization paradigm. Extensive experiments via measured
data have demonstrated the effectiveness and efficiency of
P3-LOC in terms of both privacy preservation and QoS guar-
antees.

The temporal-spatial correlation of the location dataset
enables adversary to launch spatio-temporal correlation
attacks [36], location-depend attacks [24], inference
attacks [19], etc. It is another topic, protecting location
privacy against these attacks, but the corresponding privacy
preserving solutions [24], [37], [38] can be combined with
our scheme. So in terms of the future work, we plan to
explore the temporal-spatial correlation among locations to
enhance our scheme.

APPENDIX

A. Proof of Theorem 7

Proof: Since each Mi generates independent randomness,
so

Pr[M(Sn) = R] =
n∏

γ=1

Pr[Mγ(Sn[γ]) = R[γ]] (10)

Similarly, for S′
n of Sn, the following holds:

Pr[M(S′
n) = R] =

n∏

γ=1

Pr[Mγ(S′
n[γ]) = R[γ]] (11)

According to Definition 5, for 1 ≤ γ ≤ i−1 and i+λ ≤ γ ≤ n,
Sn[γ] = S′

n[γ]. Thus, we get,

Pr[M(Sn) = R]
Pr[M(S′

n) = R]
=

i+λ−1∏

γ=i

Pr[Mγ(Sn[γ]) = R[γ]]
Pr[Mγ(S′

n[γ]) = R[γ]]
(12)

As Mi satisfies εi-differential privacy, and S′
n[γ] and Sn[γ]

differ on at most one record, thus Pr[Mγ(Sn[γ])=R[γ]]
Pr[Mγ(S′

n[γ])=R[γ]] ≤ eεγ .
We further get,

Pr[M(Sn) = R]
Pr[M(S′

n) = R]
≤

i+λ−1∏

γ=i

eεγ = e
i+λ−1
γ=i εγ (13)

Since
∑i+λ−1

γ=i εγ ≤ ε, therefore Pr[M(Sn)=R]
Pr[M(S′

n)=R] ≤ eε. Accord-
ing to Definition 5, M meets (λ, ε)-differential privacy.

In summary, Theorem 7 holds.

B. Proof of Theorem 8

Proof: We first need to prove that Ml1 meets εl,1-
differential privacy with εl,1 = ε/(2λ), and Ml2 is εl,2-
differentially private for εl,2 = ε/2 −

∑l−1
τ=l−λ+1 ετ,2.

To begin with, we give the following lemma in existing
work [39].

Lemma 15: For all f : D −→ Rd, the following mech-
anism is ε-differentially private [39]: Mf (x) = f(x) +
〈Lap(∆(f)/ε)〉d, where 〈Lap(∆(f)/ε)〉d means injecting a
zero-mean Laplace distribution with scale ω = ∆(f)/ε to
each of the d output values of f(D) [32].
Ml1 outputs Q′(Di) = 1/d

∑d
j=1 | oi(1−1)[j] − cil[j] |

+Lap(ωl,1). So the absence of a row in Di changes the
above result by ∆(Q′) = xi

d . Then Ml1 injects Laplace noise
with scale 2λxi/(εd). According to Lemma 15, Ml1 is εl,1-
differential privacy for εl,1 = ε/(2λ). Ml2 outputs Q(Di1) =
cil. The sensitivity of Q is ∆(Q) = xi, and it injects Laplace
noise with scale 2xi/(ε/2−

∑l−1
τ=l−λ+1 ετ,2). Thus, according

to Lemma 15, Ml2 is εl,2-differentially private, where εl,2 =
ε/2 −

∑l−1
τ=l−λ+1 ετ,2.

Then we need to prove that in any sliding window of length
λ,

∑l+λ−1
τ=l ετ ≤ ε, l ∈ (1, . . . , κi), according to Theorem 7.

In Ml, ετ = ετ,1 + ετ,2. So we need to prove
∑l+λ−1

τ=l ετ,1 +∑l+λ−1
τ=l ετ,2 ≤ ε. Since

∑l+λ−1
τ=l ετ,1 =

∑l+λ−1
τ=l ε/(2λ) =

ε/2, we only need to prove
∑l+λ−1

τ=l ετ,2 ≤ ε/2. As Ml2 uses
half of the available privacy budget,

∑l+λ−1
τ=l ετ,2 ≤ ε/2 holds.

In summary, Theorem 8 holds.

C. Proof of Theorem 10

Proof: 2C2
NU

= NU (NU − 1) pieces at most can be
exchanged among NU users. It is obviously NU (NU − 1) is
an even. Thus there must be even pieces that can be pairwise
exchanged among the NU users. Furthermore, when N is an
even, there must be even pieces that cannot be transferred to
others and therefore even users have to send one more piece
to the LS. Likewise, there are odd users sending one more
piece to LS than their pieces, when N is an odd.

Thus, Theorem 10 holds.

D. Proof of Theorem 11

Proof: First, users compute their transfer strategy accord-
ing to Eqn. (8) and (9). Then

∑NU

γ1=1

∑NU

γ2=γ1+1 fγ1γ2 pairs
of users can pairwise exchange pieces. Thus, the number
of pieces exchanged among

∑NU

γ1=1

∑NU

γ2=γ1+1 fγ1γ2 pairs
of users is 2

∑NU

γ1=1

∑NU

γ2=γ1+1 fγ1γ2 , and therefore, (N −
2

∑NU

γ1=1

∑NU

γ2=γ1+1 fγ1γ2) pieces are left and cannot be trans-
ferred to other users.

In summary, Theorem 11 holds.

E. Proof of Theorem 12

Proof: In first three building blocks, every user can only
access his pieces. In fourth block, each user can only access the
perturbed pieces of other users, and thus cannot get the exact
geo-information of others, incurring protection for location
privacy of users. In summary, the location privacy is preserved
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Fig. 13. The illustration of privacy preservation for the users in Fig. 6. (a) Location privacy preservation in the first four building blocks; (b) Location
privacy preservation in the fifth building block; (c) Location privacy preservation in sixth building block; (d) Data privacy preservation in P3-LOC, and µ(k)
is a negligible function with respect to the privacy parameter k; (e) Legend.

in first four building blocks, which is shown in Fig. 13(a).
In the fifth block, i.e., estimating data, the LS cannot identify
the geo-information (resp. the estimated location) of very user
ui from (κi − 1) geo-information (resp. estimated locations)
of others, which is illustrated in Fig. 13(b). Lastly, when
the LS sends back the localization outcomes, each user can
only identify his own location, and cannot distinguish others’
locations. As shown in Fig. 13(c), each user ui distinguish
the geo-information of uj (i ∈ (1, . . . , 4), j '= i) with the
possibility 1/κj or 0. In summary, since κi ≥ ki, the location
privacy of each user ui is preserved at the pre-specified level
1/ki.

In addition, it is proved in Theorem 8 that the proposed data
perturbation mechanism satisfies (λ, ε)-differential privacy.
Thus P3-LOC can provide ε-differential privacy on users’
location privacy when less than λ users collude with each
other.

Lastly, each user only get his own location, and cannot get
any information about database in the LS (cf. Fig. 13(d)).
Specifically, as shown in Fig. 6, the user u1 sends pieces x̂12

and x̂21 containing noise to the LS. Then LS returns user
u1 tuples (x1, l̂1), (x2, l̂2), and (x3, l̂3) as shown in Fig. 7(a).
Assume LS performs the localization algorithm [22] that treats
the centroid of the locations of nearest fingerprints as the user
u1’s location (recall that P3-LOC is paradigm-driven and thus
is applicable to all underlying localization algorithms). In such
a case, u1 can get:






‖x1 − V1,1‖2 = dis1,1

...
‖x1 − V1,n‖2 = dis1,n

L1,1 + · · · + L1,n

n
= l̂1

‖x2 − V2,1‖2 = dis2,1

...
‖x2 − V2,n‖2 = dis2,n

L2,1 + · · · + L2,n

n
= l̂2

‖x3 − V3,1‖2 = dis3,1

...
‖x3 − V3,n‖2 = dis3,n

L3,1 + · · · + L3,n

n
= l̂3

(14)

where Vi,1, Vi,2, . . . , Vi,n (i = 1, 2, 3) are the fingerprints that
are nearest to ui, Li,τ (τ = 1, 2, . . . , n) is the location of
fingerprint Vi,τ , and disi,τ is the distance between fingerprint
Vi,τ and geo-information xi in signal space. Obviously, Vi,τ ,
Li,τ , and disi,τ are unknown variables as user u1 only
receives tuples (x1, l̂1), (x2, l̂2), and (x3, l̂3) from LS, and
the number of unknown variables is larger than the number
of sub-equations in Eq. (14). Thus, there are infinite solutions
to Eq. (14). Note that disclosing data privacy of LS means
getting the values of Vi,τ and Li,τ . Denote the corresponding
infinite solutions by Γ(k) = {so1, so2, . . . }, and the variable
Se(k) is the solution selected by malicious user u1. Both
Γ(k) and Se(k) are related to privacy parameter k, as sub-
equations in Eq. (14) are constrained by privacy parameter k
(cf. Section III-F). Furthermore, variable Se(k) is uniformly
distributed among the infinite solutions, as malicious u1 can
always make random guesses. Therefore, the probability to
disclose the LS’s data privacy can be denoted by µ̃(k) =

1
No(Γ(k)) , where No(Γ(k)) is the cardinality of Γ(k). Fur-
thermore, we can conclude that µ̃(k) is a negligible function
with respect to privacy parameter k: given k > 0 and any
a positive polynomial Poly(k), µ̃(k) 0 1

Poly(k) . That is,
the probability to disclose the LS’s data privacy is negligibly
small with respect to the privacy parameter k. In summary,
the data privacy of LS is also protected.

To sum up, Theorem 12 holds.

F. Proof of Theorem 13

Proof: Consider the worst case, where no privacy budget
is recycled from the datasets that is out of the window
of size λ. In this case, the sub mechanism Ml,2 exponen-
tially distributes the privacy budget, i.e., ε/4, ε/8, . . . , ε/2λ+1.
Therefore, the error in the window of size λ is 1

λ(4xi/ε +
8xi/ε+ · · ·+xi2λ+1/ε) = 4xi(2

λ−1)
ελ at most. Sub mechanism

Ml,1 outputs the dissimilarity with the Laplace noise of scale
λl,1. The expect estimation of the dissimilarity is 2λxi/εd,
due to the noise of Ml,1. So the error induced by Ml,1

is 2λxi/εd. In summary, the error in P3-LOC is at most
4xi(2

λ−1)
ελ + 2xiλ/εd.

Overall, Theorem 13 holds.

G. Proof of Theorem 14

Proof: Let us see the computation cost at first. In first
building block, segmenting data, each user ui segments κi
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TABLE II

COMPLEXITY ANALYSIS

pieces, and thus the computation complexity is T (NU ) = κi

(i.e., O(1)) for each user ui, and T (NU ) =
∑NU

γ=1 κγ (i.e.,
O(NU )) for the NU users. In perturbing data, NU privacy
budget εγ (γ ∈ (1, . . . , NU )) are distributed for NU users
incurring the computation complexity T (NU) = NU , and
each user processes his pieces with (λ, ε)-differential privacy
resulting in the computation complexity T (NU) =

∑NU

γ=1 κγ .
In third building block, cloaking data, each user ui has to com-
pute (κi−1) times to search for (κi−1) other users, incurring
the computation complexity T (NU ) =

∑NU

γ=1(κγ − 1) (i.e.,
O(NU )) for the NU users. In estimating location, the LS has
to locate all NU users, and thus the computation complexity is∑NU

γ=1 kγ . Since each user receives max(k) localization output
at most, the computation complexity in identifying location
is T (NU ) =

∑NU

γ=1 max(k) (i.e., O(NU )). In summary,
the computation complexity in P3-LOC is at most O(NU ).

Next, we turn to the communication cost. First, in third
building block, cloaking data, each user ui sends (κi − 1)
pieces to other users. Thus, the communication cost in
exchanging pieces is at most T (NU ) =

∑NU

γ=1(κγ − 1) (i.e.,
O(NU )). In fourth building block, estimating location, each
user ui sends κi pieces to the LS, and thus the communication
cost is at most T (NU ) =

∑NU

γ=1 κγ (i.e., O(NU )). In identify-
ing location, each user receives max(k) localization output
at most. So the communication cost is at most T (NU ) =∑NU

γ=1 max(k) (i.e., O(NU )). In summary, the communication
cost in P3-LOC is at most O(NU ).

We depict the total complexity in Table II.
Overall, Theorem 14 holds.
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