
COPACC: A Cooperative Proxy-Client Caching
System for On-Demand Media Streaming ?

Alan T.S. Ip1, Jiangchuan Liu2, and John C.S. Lui1

1 The Chinese University of Hong Kong, Shatin, N.T., Hong Kong,
{tsip,cslui}@cse.cuhk.edu.hk

2 Simon Fraser University, Vancouver, BC, Canada,
csljc@ieee.org

Abstract. Proxy caching is a key technique to reduce transmission cost
for on-demand multimedia streaming. However, its effectiveness is limited
by the insufficient storage space and weak cooperations among proxies
and their clients. In this paper, we propose COPACC, a novel cooper-
ative proxy-and-client caching system that combines the advantages of
both proxy caching and peer-to-peer (P2P) client communications. We
propose a comprehensive suite of protocols to facilitate the interactions
among different network entities in COPACC. We also develop an effi-
cient cache allocation algorithm to minimize the aggregated transmission
cost of the whole system. The simulation results demonstrate that CO-
PACC achieves remarkably lower transmission cost. Moreover, it is much
more robust than a pure P2P system in the presence of node failures.

1 Introduction
Today’s Internet has been increasingly used for carrying multimedia traffic, and
on-demand streaming for clients is amongst the most popular networked media
services. The limited server capacity, however, make efficient and scalable on-
demand media streaming a challenging task. To reduce server/network loads,
frequently used data is cached at proxies close to clients[1]. Streaming media,
particularly those with asynchronous demands, could benefit with a significant
performance improvement from proxy caching given their static nature in content
and highly localized access interests. Another approach is to generalize the proxy
functionalities into every client [2]. Such a P2P paradigm allows economical
clients to contribute their storages for streaming. Video data originally provided
by a server are spread among clients, thus amplifying the system capacity.

In this paper, we propose COPACC, a novel cooperative proxy-and-client
caching system. We leverage the client-side caching to amplify the aggregated
cache space and rely on dedicated proxies to effectively coordinate the commu-
nications. We develop an efficient cache allocation algorithm together with a
comprehensive protocols suite to distribute video segments among the proxies
and clients such that the aggregated transmission cost is minimized. As most
operations are executed by dedicated proxies, the system is resilient to client
failures. We also embed an efficient indexing and searching algorithm for video
contents cached across different proxies or clients. COPACC also makes effec-
tive use of multicast delivery, which further reduces the cost. The simulation
results demonstrate that COPACC achieves remarkably lower transmission cost
as compared to proxy-based caching with limited storage space. With the assis-
tance from dedicated proxies, it is much more robust than a pure P2P system.
Moreover, It scales well to larger networks, and the cost generally reduces when
more proxies and clients cooperate with each other.
? This work is supported in part by the RGC Earmarked Grant.



Fig. 1 depicts a generic architecture of COPACC. A cluster of proxies are
logically connected to form overlay. The proxies and their clients are closely
located with relatively low communication costs, while the proxies and the video
server are located far away and incur higher costs. The video data are cached
across proxies and clients of limited storage. As shown in Fig. 2, a video stream
is partitioned into prefix and prefix-of-suffix. The proxies are responsible to cache
the prefix of video, whereas the clients cache the prefix-of-suffix. Similar to [3],
this setting helps to reduce initial playback latency. When a client expects to
play a video, it initiates a playback request to its home proxy, which intercepts
the request and computes a streaming schedule. It then fetches the prefix, prefix-
of-suffix, as well as the remaining part of suffix, and relays them to the client.

Server

Client

Client

Client

Client

Client

Client
Proxy overlay

Proxy

Proxy

Client

Proxy

Proxy cache

Client cache

Fig. 1. The COPACC architecture.

� � � � � �
� � � � � � � � � � � 	 � � � �


 	 � � � �

0
Playback time

Fig. 2. Illustration of different portions of
a video stream. The prefix is to be cached
by proxies, while the prefix-of-suffix by
clients

There are two key issues to be addressed: How to partition each video and
allocate the prefixes and prefix-of-suffixes to different proxy and client? How to
manage, search, and retrieve the cached data in different proxies and clients?

2 Optimal Cache Allocation Problem (CAP)
The optimal cache allocation problem (CAP) can be formulated as

CAP :min Cost({pi
j}, {qi

j,k}),
s.t. pi

j , q
i
j,k ≥ 0, j ∈ [1 . . .H], k ∈ [1 . . .Kj ];

∑
N
i=1p

i
j ≤ sp

j ;
∑

N
i=1q

i
j,k ≤ sc

j,k;∑
H
j=1p

i
j +

∑
H
j=1

∑ Kj

k=1q
i
j,k ≤ V i,

where Cost({pi
j}, {qi

j,k}) is the total transmission cost given prefix allocation
{pi

j} and prefix-of-suffix allocation {qi
j,k}; the second and third constraints follow

the cache space limit of proxy j and that of client k of proxy j, respectively; the
forth constraint applies because we do not consider replication.
2.1 Single Proxy with Client Caching
A single proxy system is nice that the total transmission cost depends only on
how the video streams are partitioned. We, therefore, combine the cache of all the
clients to form an aggregated cache space, and derive the minimum transmission
cost by finding the optimal values of {P i} and {Qi} subject to cache space
constraints Sp and Sc. We define an auxiliary cost function Ci(P i, Qi), which is
the cost for delivering video i with prefix size P i and prefix-of-suffix size Qi. Note
that Cost({pi

j}, {qi
j,k}) is now equal to

∑
N
i=1C

i(P i, Qi). The problem can then
be solved by dynamic programming. It is applicable with arbitrary cost function
Ci(P i, Qi), which can be instantiated given a specific transmission scheme. As
an example, assume both a server-to-client and a client-to-client transmissions
are unicast-based and relayed by a proxy, Ci(P i, Qi) can be derived as λf i ·
[wc↔pP i +2wc↔pQi +(ws→p +wc↔p)(V i−P i−Qi)+win(P i +Qi)], where the
first four terms in the second part respectively represent the costs for retrieving
prefix, prefix-of-suffix, the remaining suffix, and the internal cost of the proxy.



2.2 Multiple Proxies with Client Caching
A multiple proxies system is much more complex as it involve interactions among
several proxies and clients, and the unit transmission costs for the proxy-to-proxy
and client-to-proxy links can be heterogeneous. In fact, we formally prove that
CAP is NP-hard in this general case (see [4]). We show this by transforming
the optimal resource allocation problem (RAP), which is known as NP-hard [5],
to CAP in polynomial time. We thus resort to a practically efficient heuristics,
which consists of two phases: first, it partitions the prefix and prefix-of-suffix for
each video; second, given the partitions, it allocates the segments of prefixes and
prefix-of-suffixes to the proxies and clients.
1) Partitioning of prefix and prefix-of-suffix: In this phase, we approximate
the system by a single proxy system with aggregated proxy cache space Sp and
aggregated client cache space Sc. An approximate solution of {P i} and {Qi}
can be directly obtained using the dynamic programming algorithm.
2) Allocation to proxy and client caches: In this phase, we further partition
the prefix and prefix-of-suffix, and allocate them to the proxies and clients. Since
the allocation for prefixes to proxy caches is independent from that for prefix-
of-suffixes to client caches, we separate the two allocation problems and solve
them individually. The optimal prefix allocation problem (PA) is formulated as

PA :min
∑

N
i=1

∑
H
j=1W

p(i, j, pi
j)

s.t.
∑

H
j=1p

i
j = P i, i ∈ [1 . . . N ];

∑
N
i=1p

i
j ≤ sp

j , j ∈ [1 . . . H].

As W p(i, j, pi
j) can be instantiated as

∑
H
j′=1p

i
j [w

p→p
j,j′ + wc↔p

j′ ]λj′f
i
j′ for unicast

delivery, the formulation of PA can be relaxed as a linear programming problem
by re-writing it to min

∑
N
i=1

∑
H
j=1W̄

p(i, j) · pi
j .

We should also consider the optimal suffix-of-prefix allocation problem (SA)
for client cache. Obviously, both the problem SA and the cost function itself
have similar structure as that of problem PA. Thus, we omit the derivation of
SA here. Notes that the linear programming relaxation also applies for SA. The
optimizations shown above can also be applied to multicast delivery (see [4]).

3 Cooperative Proxy-Client Caching Protocol
As shown in Fig. 1, COPACC operates as a two-level overlay, where the first level
consists of all the proxies, and the second level consists of each proxy and its
own clients. The interactions among different entities in this two-level overlay are
specified by a cooperative proxy-client caching protocol, which consists of three
subprotocols. 1) Cache allocation and organization protocol specifies the election
of proxy coordinator, which executes the optimal cache allocation algorithm and
disseminates the lookup information using simplest hashing. 2) Cache lookup and
retrieval protocol defines the discovery and retrieval of cache between proxies. 3)
Client access and integrity verification protocol performs verification operation,
which detects forged video data through a simple signature mechanism. The
details of these subprotocols are not presented here.

4 Performance Evaluation
A primary design objective of COPACC is to reduce the transmission cost. Fig.
3 plots the transmission cost as a function of the total cache space, where the
proxies and clients respectively contribute half of the total cache size. The cache
sizes are normalized by the total size of the video repository, and the transmis-
sion costs are normalized by the corresponding cost of a system with no cache.



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 c
os

t

Total cache space

Unicast w/o proxy cooperation
Multicast w/o proxy cooperation

Unicast w/ proxy cooperation
Multicast w/ proxy cooperation

Fig. 3. Transmission cost as a function of
the total proxy-client cache space.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 c
os

t

Client failure probability

r = 0%
r = 25%
r = 50%

r = 100%

Fig. 4. Transmission cost versus client
failure probability.

Not surprisingly, increasing the total space reduces transmission cost. With uni-
cast, the cost decreases linearly, while with suffix multicast, it decreases much
faster. When the total cache space is 0.2, the cost with suffix multicast has been
reduced to 0.2; in other words, a 20% cache space leads to a 80% cost reduction,
which implies that batching the requests from local clients can avoid a significant
amount of remote transmissions. It is also clear that the cost with cooperative
proxies is much lower, particularly when multicast is also enabled in local paths.

The robustness in the presence of client failures is also a critical concern
in COPACC. In Fig. 4, we show the transmission cost as a function of different
client failure probabilities. We vary, r, the fraction of the total proxy cache space
in the total cache space from 0% to 100%. When r = 0%, COPACC degenerates
to a pure P2P system, and, when r = 100%, it degenerates to a pure proxy-based
system. We can see that, when there is no client failure, the costs for different r
are quite close if there are certain cache existed in proxies. More importantly, the
cost of the pure proxy-based system remains unchanged when increasing client
failures, and that for 0% < r < 100% is also very stable. For illustration, even if
r is 25%, the transmission cost only slightly increases with an increase of failure
probability; when the failure probability is 1, the cost remains a low as 0.22. To
the contrary, the cost of the pure P2P system quickly increases and reaches 1
(the cost of a zero-cache system), when all clients fail. Such results demonstrate
that the use of dedicated proxies with suffix batching remarkably improves the
robustness and resilience of COPACC in the presence of client failures.

References

1. Liu, J., Xu, J.: Proxy Caching for Media Streaming over the Internet. IEEE Com-
munications (2004)

2. Cui, Y., Li, B., Nahrstedt, K.: oStream: Asynchronous Streaming Multicast in
Application-Layer Overlay Networks. IEEE JSAC 22 (2004)

3. Wang, B., Sen, S., Adler, M., Towsley, D.: Optimal Proxy Cache Allocation for
Efficient Streaming Media Distribution. In: Proc. IEEE INFOCOM’02, NY (2002)

4. Ip, A.T.S., Liu, J., Lui, J.C.S.: COPACC: A Cooperative Proxy-Client Caching
System for On-Demand Media Streaming. Technical Report (2004, CUHK,
http://www.cs.sfu.ca/∼jcliu/Papers/TR-COPACC-Final/TR-COPACC.pdf)

5. Katoh, N., Ibaraki, T., Mine, H.: Notes on the Problem of the Allocation of Re-
sources to Activities in Discrete Quantities. Journal of Operational Research Society
31 (1980) 595–598


