
SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 1

AppATP: An Energy Conserving Adaptive
Mobile-Cloud Transmission Protocol

Fangming Liu, Member, IEEE, Peng Shu, John C.S. Lui, Fellow, IEEE, ACM

Abstract—Many mobile applications require frequent wireless transmissions between the content provider and mobile devices,
consuming much energy in mobile devices. Motivated by the popularity of prefetch-friendly or delay-tolerant apps (e.g., social
networking, app updates, cloud storage), we design and implement an application-layer transmission protocol, AppATP, which leverages
cloud computing to manage data transmissions for mobile apps, transferring data to and from mobile devices in an energy-efficient
manner. Measurements show that significantly amount of energy is consumed by mobile devices during poor connectivity. Based on
this observation, AppATP adaptively seizes periods of good bandwidth condition to prefetch frequently used data with minimum energy
consumption, while deferring delay-tolerant data during poor network connectivity. Using the stochastic control framework, AppATP only
relies on the current network information and data queue sizes to make an online decision on transmission scheduling, and performs
well under unpredictable wireless network conditions. We implement AppATP on Samsung Note 2 smartphones and Amazon EC2.
Results from both trace-driven simulations and extensive real-world experiments show that AppATP can be applied to a variety of
application scenarios while achieving 30%-50% energy savings for mobile devices.

Index Terms—Mobile cloud computing, energy efficiency, transmission management, stochastic optimization.

F

1 Introduction
With an increasing popularity of mobile devices in recent
years, users are gradually shifting their preferences from
traditional cell phones and laptops to smartphones and
tablets. As indicated by Cisco [1], traffic from mobile
devices is anticipated to exceed that of wired devices
by 2014 and to account for 61% of the entire IP traffic
by 2016. The prosperity of mobile markets is largely
driven by rich-media applications—over two thirds of
the global mobile traffic will be rich-media content in-
cluding video, image and audio by 2017 [1]. The statistics
from Flurry [2] further confirm that the time users spend
on mobile applications has surpassed that of web brows-
ing on both desktop and mobile devices since 2011, while
users spend 80% of their time on rich-media apps such
as social networking, gaming, news feed and videos.

To meet the demand for ubiquitous access to rich-
media content, many developers have started to leverage
cloud computing to overcome resource constraints on
mobile devices. Mobile cloud computing, is emerging
as a new computing paradigm which has fostered a
wide range of exciting rich-media applications (e.g.,
Instagram, Viddy, Siri). However, these mobile-cloud
applications require heavy data transmissions, which
consume a significant portion of the mobile device bat-
tery through the use of its network interface [3]. The

• F. Liu and P. Shu are with the Services Computing Technology and System
Lab, Cluster and Grid Computing Lab in the School of Computer Science
and Technology, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China. E-mail: fmliu@hust.edu.cn.

• John C.S. Lui is with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong. E-mail:
cslui@cse.cuhk.edu.hk.

Manuscript received July XX, 2014; revised January XX, 2015.

transmission burden is further exacerbated by cloud-
based data backup and mobile-cloud storage services [4]
such as Dropbox, which stores and synchronizes mobile
data in Amazon S3 storage system. In fact, according to
Cisco [1], mobile-cloud traffic is projected to constitute
84% of the entire mobile traffic in 2017, growing by 14
folds from 2012, which increases at a faster pace than
battery capacity. It is a great challenge as well as an
opportunity to manage the energy-efficiency of such a
huge amount of data transmissions between the cloud
and mobile devices.

In this paper, we propose AppATP, an Application-
layer Adaptive Transmission Protocol targeting at
energy-efficient data transfers between mobile devices
and the cloud platform. The effectiveness of AppATP
is hinged upon two observations: First, the energy con-
sumption in transmission is largely affected by the intrin-
sic stochastic nature of wireless networks. This is espe-
cially true due to the instability of wireless connections
and the fluctuation of communication bandwidth. Mea-
surements show that more energy is consumed during
bad connectivity, while less energy is consumed with
good connectivity in mobile devices [5]. Second, many
mobile apps are delay-tolerant, such as music/video
download and data backup, while many other tasks are
prefetch-friendly, for example, content retrieval in social
networking services such as Twitter and Weibo1.

Analogical to modern cloud-based paradigm such as
Dropbox and Netflix, which utilize cloud computing
to provide storage and video services, AppATP also
leverages the computation and storage capabilities of

1. Note that AppATP mainly focuses on, and explicitly intends to be
used by, those mobile apps that are prefetch-friendly or delay-tolerant,
rather than real-time or delay-sensitive apps.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 2

cloud computing, yet with a different objective to reduce
energy consumption for mobile devices. To some extent,
AppATP utilizes cloud resources to provide transmission
management and energy saving services. It buffers data
of multiple apps at the cloud side before transmitting
them to mobile devices, in order to judiciously manage
and schedule data transmissions for multiple mobile
apps. This is suitable for a wide range of delay-tolerant
or prefech-friendly types of rich-media apps. The unique
advantage of AppATP is to intelligently choose the right
timing (periods of high bandwidth) for mobile devices
to prefetch frequently desired data in apps like social
networking services (e.g., Twitter, Weibo) and newsfeed,
while deferring delay-tolerant data until good network
condition arises in such applications as software/app-
updates and content downloading.

Using the stochastic optimization framework, we pro-
pose a low-complexity and low-overhead online al-
gorithm to decide whether a wireless connectivity is
energy-efficient for transmitting data, without having to
predict future bandwidth conditions. Note that we do
not set fixed bandwidth thresholds to determine whether
the current wireless connectivity is “good” or “bad” for
energy-efficient transmissions, but adaptively make the
transmission decision to strike a balance in the energy-
delay tradeoff for multiple apps. Our protocol achieves
reduced energy consumption with bounded delays.

Different from previous theoretical works (e.g., [5]),
we have implemented and deployed AppATP on Ama-
zon EC2 and Samsung smartphones running Android
Jelly Bean OS. We conduct real experiments for so-
cial networking service (SNS) apps and file download-
ing, which utilize AppATP for energy-efficient prefetch-
ing and downloading. Results show that AppATP can
achieve an energy consumption reduction of 30%-50%
for mobile devices in various scenarios.

The remainder of this paper is organized as follows. In
Sec. 2, we motivate the AppATP transmission protocol
and discuss our design objectives and choices. In Sec.
III, we describe system model and formulate our en-
ergy minimization problem. Sec. IV presents our energy-
efficient transmission scheduling algorithm, along with
its performance analysis. In Sec. V, we describe the im-
plementation of AppATP with practical improvements,
followed by extensive performance evaluation in Sec. VI.
We discuss related work and conclude the paper in Sec.
VII and Sec. VIII, respectively.

2 Motivation and Design
The energy consumption of mobile-cloud data transmis-
sion critically depends on wireless network conditions,
which not only vary as users move, but also fluctu-
ate depending on weather, building shields, congestion,
etc. Such stochastic characteristics of wireless network
condition cause unpredictable energy consumption in
mobile-cloud communications: Measurement studies [6],
[7] show that the energy consumption for transmitting a

Cache

Cloud Mobile Device

AppATP

Content

Provider 1

Content

Provider 2

Content

Provider 3

Management

APP3

APP2

APP1App 1 Data

App 2 Data

App 3 Data

Energy-Efficient

Transmission

Fig. 1: An architectural overview of the AppATP framework.

fixed amount of data is inversely proportional to the avail-
able bandwidth. The reason is that the faster a user can
download, the less transmission time is needed, and thus
less energy is consumed [8]. Note that this calculation
does not include the screen-on time if the user is actively
waiting for the download process to complete — the
screen drains power even faster while a user is waiting.
This observation implies that transmitting data in good
connectivity could save energy considerably compared
to trasmitting data during bad connectivity.

Inspired by the considerations mentioned above,
energy-efficient mobile-cloud communications can be
achieved by seizing the “right” timing for data trans-
fers. We therefore envision a transmission protocol for
mobile apps that can automatically perceive network
conditions and intelligently schedule data transmissions
for different apps based on such conditions. Due to the
energy saving and potentially downloading data, such a
protocol can lead to prolonged battery life and enhanced
user experience in mobile devices.

Admittedly, intentionally choosing the time to trans-
mit data may incur delays and affect user experience
in real-time or delay-sensitive apps. Hence, our design
of AppATP mainly focuses on, and explicitly intends
to be used by, those mobile apps that are prefetch-
friendly or delay-tolerant, in which data transfers can
be scheduled flexibly while not degrading user expe-
rience2. For example, in SNS apps like Facebook and
Twitter, which account for 26% of the total app usage
time [2], a user may not immediately check her account
when her friends share something, and there is often
a time interval between the current and next checking
points. Thus, there is an opportunity to prefetch the
desired SNS content during good network connectivity.
User-generated photos and pictures such as those from
Instagram and Viddy constitute a large portion of mo-
bile traffic. Deferring the upload of such content for a
short period may not hurt user experience. Furthermore,
the synchronization of newly generated mobile data in
Dropbox or the downloading of app software updates
can also be deferred until good bandwidth is available,

2. Since prefetching has well-known problems of (1) causing wastage
of bandwidth if the prefetched data is not consumed by the user, and
(2) users may consume outdated data, we will discuss these issues in
the cache management of mobile device in Sec. 5.2.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 3

since the synced data may not be immediately requested
by other Dropbox clients, and most people are not that
sensitive to the update time of their apps. In all the cases
mentioned above, AppATP can help flexibly schedule
data transfers to conserve energy.

Note that AppATP only targets on prefetching-
friendly or dalay-tolerant data in the managed apps,
while the real-time part won’t be affected. For example,
in SNS apps, if a user wants to share a picture with
her friends, it will be uploaded to SNS server immedi-
ately regardless the bandwidth condition. If her friend
refreshes the SNS app before AppATP prefetches the
picture, it will be downloaded immediately. The real-
time transmissions behave the same with the ordinary
SNS apps without hurting user experience. On the other
hand, her friends may not immediately check (down-
load) it. There could be a time lag before her friends
open the SNS app and read (download) it. In this case,
we regard the picture as a prefetching-friendly data,
which can be potentially prefetched in good connectivity
during the time lag. Even if the prefetching fails, it just
degenerates to the normal circumstance: downloading
the picture immediately when her friends open and
refresh the SNS app.

As illustrated in Fig. 1, we propose AppATP,
an application-layer protocol to intelligently manage
mobile-cloud data transfers. It employs the cloud as a
relay between mobile devices and content providers for
data transmission. Having obtained the authorization
to access data in prefetch-friendly and delay-tolerant
apps on mobile devices, AppATP will run lightweight
duplicates of these apps on the cloud side, request data
from original content providers periodically and store
them in the cloud to wait for transmission. For clarity,
in the following, we use the downlink transmission as an
illustration, where a mobile device downloads from the
cloud, since energy consumption of 3G or WiFi interfaces
is much more for downlink than for uplink in most
popular apps [7]. However, it is easy to generalize the
protocol design to the case involving both downlinks
and uplinks, which will be discussed in Sec. 5. In par-
ticular, AppATP has the following unique advantages:
Cloud-based Multi-App Coordination: As apps are
usually independent of each other and rely on different
content providers (e.g., Netflix, iCloud, Facebook) de-
ployed on different hosts (e.g., Amazon EC2, Microsoft
Azure, private servers), it is challenging to jointly gather
and manage data for multiple apps from various content
servers. Rather than implementing a stand-alone proto-
col in each app on the mobile end, AppATP gathers and
stores the data for different apps in the cloud and sched-
ules data transfers using an unified algorithm, as shown
in Fig. 2. Since a cloud platform has abundant computing
resources and is well connected to multiple carriers and
ISPs using high-speed links, the cloud-based AppATP
serves as a powerful agent between mobile devices and
content providers. Furthermore, as we believe that more
and more mobile apps will be cloud-based in a long

WAN

Mobile

Devices Timing Selection

AppATP in CloudISP

ISP

Cellular Antenna

Cellular Antenna

WiFi AP

 Link Selection

Content

Provider

Fig. 2: Using cloud to provide data management for mobile devices.

run, designing and implementing AppATP in the cloud
platform would make it more applicable and extensible
for abundant apps in the future [9].
Online Scheduling: Due to the stochastic characteristics
of wireless network conditions and the mobility of users,
it is difficult, if not impossible, to accurately predict the
available bandwidth in the future. Even if the network
conditions are given, it is still challenging to tell when
is the proper time for transmission. To cope with the
intrinsic stochastic nature of wireless networks, we apply
Lyapunov optimization framework [10] to design an online
transmission control protocol, which only relies on the
current bandwidth information and data queue backlogs
to make scheduling decisions, and does not need any
prediction.
Tuning the Energy-Delay Tradeoff: Scheduling may in-
cur delays, if transmission is deferred to a later time. The
choices in energy-delay tradeoff may vary with applica-
tion types and user contexts. Users may require shorter
delays when the energy is ample or the response time is
stringent, while preferring energy conservation when the
battery has low power. AppATP is able to quantitatively
tune the energy-delay tradeoff in the scheduling. By
adjusting a single parameter in our control algorithm,
AppATP can adaptively balance such a tradeoff accord-
ing to application requirements and user preferences.
Computation Offloading: To conserve transmission en-
ergy without incurring any energy overhead in terms
of computation and networking, AppATP offloads most
of its workload to the cloud, causing the minimum
overhead on resource-constrained mobile devices. First,
the computation-sensitive work is done in the cloud side,
i.e., the maintenance of multiple queue backlogs, data
scheduling, and online transmission decisions. Second,
as the cloud end works as an agent between mobile
end and its various content providers, AppATP only
needs to probe the connectivity between mobile end and
cloud end once every cycle phase, rather than probing
the connectivity to each content provider. This mitigates
the energy overhead of bandwidth estimation without
losing accuracy.

Note that an indispensable part in AppATP design is
to select the best wireless link among candidate links,

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 4

e.g., 2G/3G/4G, WiFi access points (APs). We assume
that the mobile device will always select a preferable
link from all the available ones, by using existing link
selection mechanisms [11]. As shown in Fig. 2, we focus
on designing a connectivity-aware protocol to adaptively
find the proper time for data transfers, while link selec-
tion is not our focus.

3 System Models
We consider a mobile user who is running N different
apps N , {0, 1, 2, . . . , N}, and thus N duplicates on the
cloud, as shown in Fig. 1. The data (content) for each
app arrives at the corresponding queue on the cloud
side, to be downloaded to the mobile device in proper
time slots t = 0, 1, 2, . . ., assuming a discrete time-slotted
model (which is easy to realize with the controller on the
cloud). Denote Q(t) , (Q1(t), . . . , QN (t)), where Qi(t)
represents the queue backlog of data to be transmitted
from the cloud to app i on the mobile device at the
beginning of time slot t. In each time slot t, we denote
the amount of new data that arrive for each app i (arrive
to its corresponding queue on the cloud) as a random
variable Ai(t), with A(t) , (A1(t), . . . , AN (t)) denoting
the vector of data arrival rates. We assume that each
random variable Ai(t) is i.i.d. over time slots t, with their
expectations given by E{A(t)} = λ , (λ1, . . . , λN). Fur-
thermore, since the workload in a mobile app is highly
dynamic and usually unpredictable (e.g., the friends in
SNS may share content at random time), we do not
assume any a priori knowledge of the statistics of Ai(t)
for any app i.

3.1 Bandwidth and Decision Models

As recent studies indicate that bandwidth is the critical
factor that affects energy consumption of wireless data
transmission, we use ω(t) to denote the connectivity
condition in time slot t, in terms of the achievable
downlink bandwidth of the currently used wireless AP.
The connectivity condition ω(t) varies randomly in two
aspects:

First, a typical smartphone can usually access multiple
links such as a persistent 3G interface and several WiFi
APs, but can only activate one of them at a time. The
actual connectivity depends on the quality of the selected
link. We have ω(t) ∈ {B3G(t), BWiFi(t)}, where B3G(t)
denotes the 3G bandwidth, and BWiFi(t) denotes the WiFi
bandwidth. Clearly, ω(t) equals to B3G(t) (or BWiFi(t))
if the device chooses the 3G (or WiFi) interface at time
t. The issue of choosing 3G or WiFi and choosing the
best WiFi APs from all available ones for energy saving
have been discussed in previous works [11]–[13]. In this
paper, we assume that a preferable AP has been selected
using a simple and widely used link selection algorithm
proposed in [11], in which the mobile device selects the
link with the best connection by running a series of
probe-based tests to the cloud.

Second, even after a particular link is selected, the
connectivity still keeps changing due to user mobility,
flash crowds in the chosen link, the limited coverage of
WiFi APs, or even under a bad weather, etc. Given a
selected link, our design of AppATP focuses on deciding
the proper timing (time slots of higher bandwidth) to
transfer data over this link. Given the current achievable
bandwidth ω(t) of the mobile device and queue backlogs
Q(t) maintained by the cloud, AppATP needs to make
a decision

α(t) ∈ Ω , {“Transmit Qi(t)”, “Idle”},

i.e., whether to download data from the cloud to the
mobile device in time slot t, and if yes, the data of which
app i to download. Hence α(t) = “Transmit Qi(t)” if
AppATP decides to transmit data queued in Qi(t) to app
i, and α(t) = “Idle” if all data transfers are deferred for
energy saving in time t.

For each app i, let bi(t) denote the amount of data
transmitted from the cloud to the mobile device in time
slot t. Note that bi(t) is a function of the current down-
link bandwidth ω(t) and transmission decision α(t):

bi(t) =

{
ω(t)τ , if α(t) = “Transmit Qi(t)”,
0, if α(t) = “Idle”, (1)

where τ represents the time span of one time slot. In our
transmission algorithm, we need to estimate the achiev-
able 3G or WiFi bandwidth ω(t) at the beginning of each
time slot t, which may incur high overhead if the length
τ of a time slot is too small. However, if τ is too large, it is
inappropriate to let ω(t) represent the network condition
over the entire time slot t since the bandwidth could
vary considerably. According to the observed bandwidth
statistics in our traces, we empirically choose a moderate
value of τ = 60 seconds. For model tractability, we
assume that the bandwidth remains unchanged during a
time slot, which is reasonable when τ is relatively small
[12], [14]. Over a long time period T , let M denote the
total amount of data transmitted by AppATP. Clearly, we
have M =

∑T
t=1

∑N
i=1 bi(t).

3.2 Energy Consumption Models
We denote the energy consumed by data transmissions
on a mobile device in time slot t as P (t), which depends
on the current downlink bandwidth ω(t) and transmis-
sion decision α(t), i.e., P (t) = P (ω(t), α(t)). Over a time
period T , the total energy consumption on the mobile
device is EAppATP ,

∑T
t=1 P (t). In the following, we

will describe the detailed model for P (t) adopted by
AppATP. AppATP employs practically measured energy
consumption models of 3G and WiFi interfaces on mod-
ern smartphones [6], [15], which are commonly used
in the latest solutions to mobile energy accounting and
management [14], [16]. Note that according to [6], [15],
both uploading transmission and downloading trans-
mission in mobile devices can share the same energy
model as below.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 5

Energy Model for 3G: The energy consumption of
data transmission over 3G networks mainly consists
of two parts: transmission energy and tail energy. The
transmission energy is proportional to the length of trans-
mission time and transmission power level [15]. After
transmitting a packet, instead of transiting from the high
to low power state immediately, the 3G interface spends
substantial time in the high power state to avoid the
delay and signalling overhead that would otherwise be
incurred by frequent power state transitions, channel
allocations and releases. Such a mechanism causes the
dissipation of the tail energy [16], which can not be ig-
nored in energy management. Since lingering in the high
power state consumes more energy, a fixed tail time Ttail
is empirically used to set the inactivity timer according
to the performance-energy tradeoff [15]. Let tintvl denote
the time interval between the current transmission and
the last transmission, then we have tintvl ∈ (0, Ttail).

In summary, the energy consumption for transmit-
ting data via 3G in time slot t can be expressed as
P (t) = P3Gτ +Ptailtintvl, where P3G and Ptail represent the
transmitting power coefficient and tail power coefficient,
respectively. More details of the transitions between
different 3G power states can be found in [15], which
will be incorporated into our calculations in Sec. 6.

Energy Model for WiFi: The energy consumption for
data transmission via WiFi networks also consists of two
parts. First, an initial cost is incurred by scanning and
associating with an AP [6]. As we focus on the energy
saving during data transmissions, we assume that a
preferable AP has already been selected based on the link
selection scheme mentioned in Sec. 3-A. The incurred
initial cost is excluded in our model. Once associated
with an AP, the WiFi interface on smartphones typically
follows the Power Save Mode (PSM) [15], under which
the energy needed to keep it on is small. Second, the
transmission energy of a WiFi connection is proportional
to the length of transmission time and the transmission
power level [6]. As a result, the energy consumed for
transmitting data via WiFi in time slot t can be expressed
as P (t) = PWiFiτ , where PWiFi is the transmitting power
coefficient of WiFi.

To summarize, integrating the above detailed energy
models for 3G and WiFi, the mobile device energy
consumption under the transmission decision α(t) made
by AppATP in time slot t is given by

P (t)=

 P3Gτ + Ptailtintvl, if α(t) 6= Idle, ω(t)=B3G(t),
PWiFiτ , if α(t) 6= Idle, ω(t)=BWiFi(t),
0, otherwise.

(2)

4 Energy-Efficient Transmission Control
In this section, we present our algorithm for transmission
energy conservation under bounded delays. According
to Little’s law in queueing theory, the delay translates
into the queue backlog in a stable system. Therefore,

AppATP aims to minimize the transmission energy over
the long run under bounded queue backlogs.

We define the time-averaged energy consumption of the
mobile device as

P , lim sup
T→∞

1

T

T−1∑
t=0

E{|P (t)|}. (3)

To minimize the energy consumption, a baseline strategy
is to transmit data only when the network connectivity
(downlink bandwidth) is good enough. Nonetheless,
if we aggressively defer data transmissions for power
conservation, queue backlogs Q(t) of all the apps will
increase unboundedly, leading to unacceptable delays
and poor user experience. Hence, an energy-delay tradeoff
must be considered when scheduling data transmissions.

To strike a balance in such a tradeoff, we require all
the queues to be stable in the time average sense, i.e.,

Q , lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{|Qi(t)|} <∞, (4)

where Q represents the time-averaged queue backlog and
the queueing dynamics can be characterized by

Qi(t+ 1) = max[Qi(t)− bi(t), 0] +Ai(t). (5)

If the condition in Equation (4) is satisfied, then all the
data that have arrived to the queues in the cloud will
be transmitted to the mobile device in bounded time.
Moreover, based on Little’s law, a larger Q implies longer
delays for the apps.

In each time slot t, AppATP makes an online trans-
mission decision α(t) ∈ Ω, with the objective of min-
imizing the time-averaged energy consumption under
finite queue sizes for all apps, leading to the following
stochastic optimization problem:

minimizeα(t)∈Ω P , lim sup
T→∞

1

T

T−1∑
t=0

E{|P (t)|} (6)

subject to Q <∞. (7)

4.1 An Online Stochastic Control Algorithm

Due to the varying conditions of wireless networks and
the mobility of users, it is difficult, if not impossible,
to accurately predict downlink bandwidth in the future.
Hence, in AppATP, we leverage the current downlink
bandwidth information to make transmission decisions.
The requirement above motivates us to optimize the
time-averaged energy consumption using Lyapunov op-
timization [17], [18], which has been successfully used
in energy optimization problems [12], [19]–[21] in other
applications. Leveraging this framework, we develop a
lightweight algorithm that only utilizes the current state
(i.e., network bandwidth ω(t), queue backlogs Q(t) and
data arrival rates A(t)) to solve our specific problem (6).

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 6

We first define a Lyapunov function, L(Q(t)), which
is a scalar metric of queue congestion [10] that reflects
the delays of app data to be transmitted, as follows:

L(Q(t)) ,
1

2

N∑
i=1

Q2
i (t). (8)

It is clear that L(Q(t)) ≥ 0, ∀t. A smaller value of L(Q(t))
implies that all queue backlogs are small in the average
sense, while a larger value of L(Q(t)) implies that at
least one queue (for one app) has large backlog. To keep
queue stability by persistently pushing the Lyapunov
function towards a less congested state, we introduce
the Lyapunov drift ∆(Q(t)):

∆(Q(t)) , E{L(Q(t+ 1))− L(Q(t))|Q(t)}, (9)

which is the expected change in the Lyapunov func-
tion over one time slot, given that the current state in
time slot t is Q(t). We now incorporate the expected
energy consumption over one time slot to both sides of
(9), which leads to a drift-plus-penalty term: ∆(Q(t)) +
V E{P (t)|Q(t)}. With Lyapunov optimization, the objec-
tive of optimal control decisions on energy minimization
and queue stability can be achieved by minimizing the
drift-plus-penalty term in every slot (pp. 39, [10]).

The control parameter V > 0 represents a design
knob of the energy-delay tradeoff, i.e., how much we shall
emphasize the energy-minimization (6) compared to the
transmission delay (7). It empowers AppATP to make
flexible design choices between transmission delay and
energy consumption according to the application type
and user context. For example, when the mobile device is
running out of power, the user may allow a longer delay
of data synchronization in Dropbox for energy conser-
vation. AppATP can handle this situation by setting a
larger value of V .

Rather than directly minimizing the drift-plus-penalty
term ∆(Q(t))+V E{P (t)|Q(t)} in each slot, the min-drift-
plus-penalty algorithm in Lyapunov optimization [10]
seeks to minimize an upper bound of it. We derived
an upper bound on the drift-plus-penalty term in our
specific problem and it is stated in the following lemma:
Lemma 1: For V > 0, given any possible wireless net-
work condition ω(t), data queue backlogs of all the apps
Q(t), and data arrival rates A(t), for all possible action
α(t), we have

∆(Q(t)) + V E{P (t)|Q(t)} ≤ B + V E{P (t)|Q(t)}

+

N∑
i=1

E{Qi(t)(Ai(t)− bi(t))|Q(t)}, (10)

where B = (A2
max + b2max)/2, and Amax ≥ Ai, ∀i ∈ N ,

represents the maximum amount of data that can arrive
for any app i per time slot and bmax ≥ bi, ∀i ∈ N ,
represents the maximum amount of data that can be
transmitted via the wireless network in a time slot.
Proof: Please refer to the Appendix for the proof.
Based on Lemma 1, we next attempt to minimize the

Algorithm 1: Energy-efficient transmission strategy
1: At the beginning of each time slot t, monitor the

queue backlog Qi(t) of each app i on the cloud side
and estimate the current bandwidth ω(t) on the
mobile device.

2: Minimize (11) to yield the control decision α(t),
where P (t) and bi(t), as functions of α(t) and ω(t),
are given by (2) and (1), respectively.

3: If α(t) = “Transmit Qi(t)”, download the data in
app i from the cloud to the mobile device.
If α(t) = “Idle”, stay idle for energy conservation.

4: At the end of time slot t, update the queue backlog
Qi(t+ 1) of each app i on the cloud side using (5).

upper bound of the drift-plus-penalty, namely the term
on the RHS of (10), in each time slot t. Interestingly, given
Q(t) and ω(t), the control decision α(t) can only affect
the energy consumption P (t) and the amount of data
bi(t) transmitted in a time slot t. Leveraging the con-
cept of opportunistically minimizing an expectation (pp.
13, [10]), we seek to minimize the following simplified
term, which eventually minimizes the RHS of (10):

V P (t)−
N∑
i=1

Qi(t)bi(t). (11)

Specifically, our algorithm is described in Algorithm 1,
which makes a decision α(t) drawn from the set Ω ,
{“Transmit Qi(t)”, “Idle”} in each time slot t. Note that
Algorithm 1 has a low complexity of O(N), since min-
imizing (11) only requires searching for the minimum
value in a one-dimensional array of length N .
Remarks: Algorithm 1 has the following phyiscal im-
plications: Considering a fixed V , if the control action
α(t) = “Idle”, we choose not to transmit any data in
time slot t, then we have P (t) = 0 and bi(t) = 0,
∀i ∈ N . Accordingly, (11) equals to zero. As we prefer the
control decision which minimizes (11), the transmission
will take place only if there exists an α(t) that drives
(11) to be less than zero. This can happen when either
the network bandwidth ω(t) is high, and thus more data
bi(t) can be transferred, or when a certain queue Qi(t)
is already congested in time slot t. In other words, as
illustrated in Fig. 3, AppATP tends to transmit data
under the following conditions: 1) when the network
connectivity is good enough for the mobile device to
download more data with less energy consumption; or
2) when the queues of certain apps are congested, so that
data transmission must be triggered to maintain queue
stability.

4.2 Performance Analysis
Due to the randomness of wireless network condition
and data arrival rates, Algorithm 1 could not give an ex-
act solution to problem (6). However, the time-averaged
energy consumption and queue backlog are guaranteed

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 7

B
a

n
d

w
id

th
 (

k
b

p
s)

Q
u

e
u

e
 B

a
ck

lo
g

 (
P

a
ck

e
ts

)

Time (Minutes)

Transmitting for

energy saving

Transmitting for

queue stability

Bandwidth
Queue Backlog

Fig. 3: The data transmission takes place when network bandwidth is
high or one of queue backlogs is large.

to be optimized down to definite bounds (following a
methodology in pp. 47, [10]).

Let P ∗ denote the minimum time-averaged energy
consumption P that can be achieved by any control
policy that satisfies queue stability. Let Λ be the set
of all arrival rates that the mobile device can stably
support [22], such that the total data arrivals for all the
apps in a time slot will not exceed Bmaxτ , which is
the maximum amount of data that can be transmitted
in a time slot under the maximum network bandwidth.
We can bound the performance of Algorithm 1 in our
specific problem as follows:
Proposition 1: (Performance Bounds) Assume that the
data arrival rate vector λ is strictly within the net-
work capacity region Λ defined above, then Algorithm 1
achieves the following performance bounds of the time-
averaged energy consumption and queue backlog:

P = lim sup
T→∞

1

T

T−1∑
t=0

E{|P (t)|} ≤ P ∗ +
B

V
, (12)

Q = lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{|Qi(t)|} ≤
B + V P ∗

ε
, (13)

where ε > 0 represents a measure of the distance
between the data arrival rate λ and the network capacity
region Λ.
Proof: Please refer to the Appendix for the proof.
Remarks: Note that (12) and (13) characterize the energy-
delay tradeoff within [O(1/V), O(V)]. Specifically, we
can use an arbitrarily large value of V to drive the
time-averaged energy consumption P arbitrarily close
to the optimal P ∗ at a cost, as (13) implies that the
time-averaged queue backlog Q grows linearly with V .
Such an energy-delay tradeoff allows AppATP to make
flexible design choices and find the value of V such
that further increasing V yields very small reduction in
P . We will discuss the selection of V through practical
experiments in Sec. 6.

5 Prototype Implementation
As illustrated in Fig. 4, AppATP is composed of a
mobile-end middleware and a cloud-end data manager.
On the cloud side, we have developd these components
in Java and deployed them on Amazon EC2. In the mo-
bile device, AppATP consists of a bandwidth estimator

App 2

AppATP Authorization

MonitorBandwidth

Estimation

Queue

Backlog

Mobile Device AppATP in Amazon EC2

Update

Periodically

Bandwidth

Decision

Maker

Transmission

Data to be transmitted

Cache

Content Provider

Data to be transmitted

OAuth 2.0

MySQL

Database

App 1

Register

Fig. 4: The AppATP framework developed on Amazon EC2.

and a cache. We have developed the components (in
Java) for mobile running Android Jelly Bean.

5.1 The Cloud-end Components of AppATP
The AppATP data manager at the cloud end has two
main functions: (1) gather data from different original
app servers, (2) make the transmission decision accord-
ing to app queue backlogs and the current bandwidth
estimation. The framework of AppATP manager is pre-
sented in the right part of Fig. 4, which consists of three
services: authorization, monitoring and transmission.
Authorization: To access data from different apps on the
cloud side, AppATP adopts the OAuth 2.0 [23] open pro-
tocol to allow secure authorization via standard method
from web, mobile and desktop applications. OAuth 2.0
grants AppATP limited access to application data in
the original content servers (e.g., the latest updates in
one’s Facebook and Twitter accounts) via HTTP requests.
If an app i (e.g., News Reader, File Downloader) has
potential energy benefits from prefetching or deferring
transmissions, the register component in the mobile-
end will register the app in the AppATP Authorization
Service within the cloud, which then guides the user
to the authorization webpage of the original content
provider. The user needs to input her ID and password
to confirm this authorization. After successful autho-
rization, AppATP will periodically query the content
providers and update the data queue backlog Qi(t) for
each registered app i, e.g., pull the latest shared content
from Sina Weibo servers to the cloud-side storage every
5 minutes. Data from different apps are labeled with
distinct keys (i.e., app ID, timestamp, byte length, time
to live, etc.) and stored in a MySQL database.
Monitoring and Transmission: The queue backlogs of
all the apps are maintained by AppATP Monitor Service.
When new data arise in an app, the Monitor Service
will update the corresponding queue size. The Moni-
tor Service also receives bandwidth estimation ω(t) via
HTTP messages from mobile devices periodically (at the
beginning of every time slot t). The detailed mechanisms
for estimating the bandwidth will be discussed in the
following Sec. 5.2. Based on the bandwidth estimation
ω(t) and the app queue backlogs Q(t), the Monitor
Service makes transmission decisions according to Al-
gorithm 1. If the transmission decision is not idle, it
will send a notification with the app queue ID i to be

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 8

transmitted. After receiving the transmission notification
from the Monitor Service, AppATP Transmission Service
will pull data from the head of the chosen queue in
the database, pack them into JSON (JavaScript Object
Notation) format, and load them to a TCP socket for the
mobile device to download.
Weighted Queue Management: For certain delay-
tolerant apps such as file/video downloading or app
updates, there will be requests for bulk data. Such bulk
data make their queue backlogs quite large at the very
beginning. Since Algorithm 1 will choose to transmit
data in long queues so to guarantee queue stability (4),
the bulk data will be continuously transmitted without
considering energy efficiency. Such bulk data also incur
longer delays for other apps, as Algorithm 1 transmits
data in the longest queue when bandwidth is sufficient.
To address this practical problem in the implementation,
AppATP assigns a weight for each queue. The trans-
mission priority of each app can also be tuned by this
weight. In particular, for bulk data downloading, we set
a dynamic weight to make the corresponding queue size
always equal to the median length of all the queues
in the system. Thus, the data can be downloaded at a
proper time, without affecting other apps.

5.2 The Mobile-end Components of AppATP

The AppATP middleware at the mobile end has two
main functions: (1) estimate the bandwidth between the
cloud and the mobile device, (2) cache the data transmit-
ted from the AppATP manager in cloud and distribute
the data cached to the corresponding app when it is
called. The framework of AppATP app in the mobile-
side is presented in the left part of Fig. 4, which consists
of two components: bandwidth estimator and cache.
Adaptive Bandwidth Probing: According to Algo-
rithm 1, we need to estimate the current bandwidth
ω(t) to make the transmission decision in every slot.
There are two methods to estimate wireless bandwidth:
probe-based [11] and signal-strength-based [12] approaches.
Estimates based on received signal strength indicator
(RSSI) are coarse since wireless network bandwidth only
partially depends on RSSI. Moreover, even though RSSI-
based approach incurs little overhead (since one can
use Android RSSI API to estimate bandwidth), the tail
energy overhead, as described in Sec. 3.2, is inevitable
when reporting results to the cloud via 3G. On the other
hand, probe-based approaches are more accurate, yet
relying on transmitting data probes, which incurs higher
energy overhead. Although we may use the packet in
the longest queue backlog as the probe to reduce the
energy of transmitting irrelevant data, the subsequent
tail energy still exists.

Compared to conventional Lyapunov based algorithm
[5] that needs frequent bandwidth probing every time
slot, which costs significant tail energy wastage, AppATP
employs a practical approach to reduce bandwidth es-
timation overhead. Inspired by the congestion control

protocol in TCP, we adopt an adjustable probing interval
for bandwidth estimation. Initially, the interval between
the current and last estimation is set to one time slot.
If the current estimated bandwidth is close to the last
estimate, the time interval will be increased by one slot.
However, if the bandwidth changes by more than 50%
as compared to the last probe, we shorten the interval
by one half. This adaptive algorithm is described in
Algorithm 2. Different from bandwidth estimation in
Ethernet networking (e.g., data centers) [24], bandwidth
of wireless networks largely depends on the location of
the user and a user’s mobility is usually confined within
a certain period, this heuristic can effectively avoid
unnecessary probes, while guaranteeing estimation ac-
curacy. The effectiveness and accuracy of Hence, this
adaptive bandwidth probing approach will be verified
in Sec. 6.

Algorithm 2: Adaptive Bandwidth Estimation
Require: The slot interval between the latest 2

bandwidth measurement Tintvl = 1. The last
(current) measured bandwidth BL = 0 (BC = 0).
The difference threshold between the latest two
measured bandwidth κ = 0.3. The slot count from
last bandwidth measurement i = 1.

1: for slot t = 0, 1, 2, . . . do
2: if i == Tintvl then
3: i = 0
4: BL = BC

5: BC =Probe-based bandwidth measurement
6: ω(t) = BC

7: if |BC −BL| < BL × κ then
8: Tintvl + +
9: else

10: Tintvl = Tintvl/2
11: end if
12: end if
13: i+ +; ω(t) = BC

14: end for

Smart Cache Management: On the mobile device, all the
packets transmitted via AppATP are stored in the same
cache file in the SD card. We use the app ID of each
packet to identify the app to which it belongs. When
users open a registered app and request data, the app
will use its unique ID to draw the corresponding packets
from the cache.

For delay-tolerant apps, the data deferred by AppATP
have a high probability to be consumed in the future. For
example, delay-tolerant data transmitted for software
update will be consumed sooner or later. However, for
prefetch-friendly apps, prefetching techniques typically
have the issues of cache size and hit rates. As mobile de-
vices are resource-constrained, our cache file is allowed
a maximum size of 200 MB. When the volume of data is
large, some prefetched data might not be consumed yet
before getting overwritten by incoming data. To avoid

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 9

such wastage, AppATP simply stops transmitting data
when the cache is full. Futhermore, we allow a bigger
cache size cap for those apps that are frequently used
and incur more traffic. On the other hand, it is possible
that the user does not use an app for a long time. We
thus introduce a timer for each registered app. If an app
has not been used for a fixed period, AppATP will stop
transmitting data for this app and remove corresponding
data in the cache until it is active again, at which point
the timer is reset.

When the data prefetched by AppATP is not used
by the user, the energy consumption in prefetching is
wasted. To reduce such energy cost in cache misses, we
can utilize cloud resources to employ machine learning
techniques to customize prefetching strategies based on
user behaviors, which can increase the cache hit rate.
This is an interesting open future work. In case that the
cached data is outdated, before returning data to apps,
AppATP sends the timestamp of the latest prefetched
packet to the content server to check whether there is
new update. If the latest data has not been cached yet,
AppATP will immediately download the data and return
it to the corresponding app.

To incorporate uplink transmission management in
AppATP, we store the data to be uploaded in the cache
as uplink queues. The mobile device estimates the uplink
bandwidth and reports it with the uplink queue backlogs
to the cloud periodically. The Monitor Service then main-
tains the information and makes uplink transmission
decisions.

6 Performance Evaluation
In the performance evaluation, we suppose that mobile
users may run apps and request data in random time
slot. We compare AppATP with the benchmark scheme
in which no data is intentionally prefetched or delayed:
the data are transmitted instantly to the mobile device.
We evaluate AppATP and its parameter choices through
both trace-driven simulations and experiments based on
our prototype implementation.

6.1 Trace-Driven Simulations
Trace Collection and Parameter Settings: To evaluate
how AppATP performs under realistic network condi-
tions, we collect wireless bandwidth traces under rep-
resentative scenarios. Specifically, during an 18-hour pe-
riod (8:00 - 24:00), we took a bus and traveled around
downtown, and then walked around in a campus, carry-
ing an Android smartphone equipped with WiFi and 3G
interfaces. The phone could only use one interface at a
time, and prioritizes WiFi if available. Every minute, we
measured the downlink bandwidth by downloading 1
MB of data from the cloud. The traces show that the
median 3G downlink bandwidth is 1, 852 kbps. WiFi
is available 18.8% of the time and the median WiFi
downlink bandwidth is 964 kbps, with a median session
length of 35.4 minutes.

To simulate apps with different volumes of data, we
determine data arrival rates according to the data pat-
terns and traffic volumes of emerging apps on mobile
phones [1]. We consider 10 running apps and assume
that their data arrivals all follow Poisson Processes with
a mean arrival rate E{Ai(t)} = λi = λ for all i, where
λ is chosen from {1.0, 2.0, 3.0, 4.0} packets/minute. The
size of one packet is 100 KB. Every 60 seconds, we use
the downlink bandwidth in our traces as the bandwidth
estimate ω(t) in time slot t, and run AppATP based on
ω(t) and queue backlogs Q(t). The energy overhead of
bandwidth estimation is also included in the simulation.
According to the power models developed in [6], [15],
we set the power coefficients P3G, Ptail, and PWiFi to 1.5 W,
0.7 W and 1.0 W, respectively.

We compare the total energy consumption EAppATP =∑T−1
t=0 P (t) with that of the benchmark scheme without

AppATP Ew/o. To calculate Ew/o, we use the average
network condition observed in the past as a reasonable
approximation:

Ew/o =
M

BWiFi

·PWiFi·AWiFi+(
M

B3G

·P3G+Ttail·Ptail)·(1−AWiFi),

where B3G and BWiFi represent the average bandwidth
of 3G and WiFi, respectively, M =

∑T−1
t=0

∑N
i=1 bi(t) rep-

resents the total amount of data transmitted by AppATP,
and AWiFi represents the average observed availability of
WiFi.
Simulation Results: In our simulations, the test duration
is 1, 000 time slots for each parameter setting. We set
up three groups of apps in the cloud, with arrival rates
λ = 2.0, 3.0, 4.0. We run each group of apps separately
with both a fixed V and an adaptive V , where V is 20
times the data arrival rate, and without AppATP. The
same amount (20 MB) of data is transmitted for each
group. We compare the energy consumptions of the three
schemes. As shown in Fig. 5, both AppATP with a fixed
V and an adaptive V can signficantly save energy as
compared to the naive random strategy. In particular,
given a fixed V , the energy consumption increases from
43 J to 60 J as the arrival rate λ grows from 2.0 to
4.0, indicating a decrease of the energy saving from
26% to 11%. However, an adaptive V can consistently
save energy by 26%. The tradeoff between the energy
saving and transmission delay can be balanced via the
parameter V . Fig. 5 implies that a better strategy is to
adaptively choose V based on the network condition and
average data arrival rates.

We also compare the average throughput achieved
with and without AppATP, as V varies. The average
throughput is calculated as the total transmitted data di-
vided by the total effective transmission time. As shown
in Fig. 6, AppATP achieves a higher throughput as it
utilizes higher bandwidth for transmission. Especially,
the throughput increases fast when V < 70 and grows
slowly if V > 70. The reason is that when we set a larger
V to emphasize on energy conservation, AppATP tends
to transmit only when bandwidth is ample. Nonetheless,

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 10

lambda=2 lambda=3 lambda=4
0

20

40

60

80

100

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Adaptive V

Fixed V

w/o AppATP

Fig. 5: Energy consumption vs. the data arrival
rate under different strategies.

0 100 200 300 400 500
1000

1500

2000

2500

3000

V

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

AppATP

w/o AppATP

Fig. 6: The impact of V on the average trans-
mission rate.

0 100 200 300 400 500
0

20

40

60

80

V

A
v
e
ra

g
e
 E

n
e
rg

y
 (

J
/M

in
u
te

)

Regular probing

Lazy probing

Adaptive probing

Fig. 7: The time-avg energy consumption P un-
der different bandwidth estimation strategies.

0 100 200 300 400 500
0

200

400

600

800

1000

V

A
v
e
ra

g
e
 B

a
c
k
lo

g
 (

P
a
c
k
e
t)

Regular probing

Lazy probing

Adaptive probing

Fig. 8: The time-avg queue backlogs U under
different bandwidth estimation strategies.

0 50 100 150
0

1000

2000

3000

4000

5000

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (Minute)
0 50 100 150

0

10

20

30

40

50

Q
u
e
u
e
 B

a
c
k
lo

g
 (

P
a
c
k
e
ts

)

Fig. 9: The bandwidth and total queue backlog
over time in a test run of a single app.

1 10 20 30 40
0

15

30

45

60

75

90

V

A
v
g
 P

a
c
k
e
t
D

e
la

y
 (

M
in

u
te

)

Fig. 10: The impact of V on the transmission
delay in real-world measurement.

even with an aggressive V , to guarantee queue stability,
AppATP needs to transmit at times under suboptimal
bandwidth, which incurs a slower growth when V > 70.

We next evaluate the impact of V on energy consump-
tion and delay. As bandwidth estimation incurs energy
overhead, we run AppATP under three bandwidth es-
timation schemes: regular probing [5] (probing band-
width every minute), lazy probing (probing bandwidth
every 20 minutes), and adaptive probing (as described in
Sec. 5), and compare their performance. First, regardless
of the bandwidth estimation scheme used, given the
arrival rate λ = 1.0, the time-averaged energy consump-
tion drops quickly at first and then slowly, as shown
in Fig. 7, while the time-averaged queue backlog grows
linearly as shown in Fig. 8. This finding confirms the
[O(1/V), O(V)] energy-delay tradeoff as captured in (12)
and (13). Particularly, there exists a sweet spot of V (e.g.,
V = 100 when λ = 1.0), beyond which increasing V
leads to marginal energy conservation yet consistently
growing queue sizes, which means higher delays by
Little’s Theorem.

We further compare the energy overhead and delay
performance of different bandwidth estimation schemes.
As we can see in Fig. 7, the energy consumptions of
lazy probing and adaptive probing are obviously lower
than that of regular probing, with a gap around 10 J.
The reason is that they incur different energy overhead:
the averaged times of bandwidth estimation in the three
algorithms are 50, 163.22, and 1000, respectively. The
fewer times of estimation, the less tail energy wastage
in mobile devices. On the other hand, Fig. 8 shows that
the averaged queue backlog of lazy probing is much
higher than regular probing and adaptive probing, since
estimating bandwidth in a fixed long period can not
reflect the real-time bandwidth, and prevents AppATP
from choosing the good timing for data transmissions.
Adaptive probing can reduce bandwidth probing energy
overhead as well as capture the real-time bandwidth

variation, simultaneously achieving the advantages of
both frequent and lazy probing.

6.2 Real-World Experiments

Experimental Setup: To test AppATP on prefetch-
friendly apps, we developed a mixed social networking
app, MixSNS, in about 5, 000 lines of Java code. We let
MixSNS employ AppATP to prefetch all the content3

(e.g., news updates from friends) from a user’s vari-
ous SNS accounts (e.g., Facebook, Twitter, Sina Weibo,
RenRen), as shown in Fig. 11. To test delay-tolerant
downloading, we developed an app called Timing in
about 2, 000 lines of Java code, in which a file can be
decomposed into packets (each being 100 KB) and be
downloaded via AppATP. In addition, we deploy traffic
generator apps that inject packets to the queues in the
cloud, with λ ∈ [0.4, 4.0] packets/minute. These test
apps enable us to evaluate AppATP in a wide range of
application scenarios.

AppATP

Fig. 11: Apply AppATP in MixSNS, a social networking service.
3. AppATP can be employed as a middle-layer OS support that

is transparent to upper-layer apps, without requiring modification of
mobile apps.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 11

20 40 60 80 100 120
60

62

64

66

68

70

72

74

Run Time (Minute)

B
a
tt
e
ry

 L
e
v
e
l
(%

)

AppATP (Static)

w/o AppATP (Static)

AppATP (Mobile)

w/o AppATP (Mobile)

Fig. 12: Total battery consumption for SNS
prefetching.

20 40 60 80 100 120
60

62

64

66

68

70

72

74

Run Time (Minute)

B
a

tt
e

ry
 L

e
v
e

l
(%

)

AppATP (Static)

w/o AppATP (Static)

AppATP (Mobile)

w/o AppATP (Mobile)

Fig. 13: Battery consumption of data transmis-
sions for SNS prefetching.

30 60 90 120 150
0

3

6

9

12

15

Data Size (MB)

B
a
tt
e
ry

 C
o
n
s
u
m

p
ti
o
n
 (

%
)

AppATP (Static)

w/o AppATP (Static)

Fig. 14: Battery consumption for file download-
ing under static scenario.

30 60 90 120 150
0

3

6

9

12

15

Data Size (MB)

B
a
tt
e
ry

 C
o
n
s
u
m

p
ti
o
n
 (

%
)

AppATP (Mobile)

w/o AppATP (Mobile)

Fig. 15: Battery consumption for file download-
ing under mobility scenario.

30 60 90 120 150
0

30

60

90

120

150

180

Data Size (MB)

D
o
w

n
lo

a
d
 T

im
e
 (

M
in

u
te

)

AppATP (Static)

w/o AppATP (Static)

Fig. 16: Completion time for file downloading
under static scenario.

30 60 90 120 150
0

30

60

90

120

150

180

Data Size (MB)

D
o
w

n
lo

a
d
 T

im
e
 (

M
in

u
te

)

AppATP (Mobile)

w/o AppATP (Mobile)

Fig. 17: Completion time for file downloading
under mobility scenario.

Real-world experiments are performed on
Samsung Note 2 smartphones running Android,
and cover two general user scenarios: the static or
mobile scenario. In the static scenario, we connect the
smartphone to a congested WiFi in our lab. Since the
WiFi AP is shared by 20 − 30 students, the available
bandwidth fluctuates frequently. In the mobility
scenario, we walk around in a university campus,
carrying the smartphones. As the campus is partially
covered by public WiFi, there are frequent switches
between 3G and WiFi interfaces, leading to changing
network conditions as the user moves. To evaluate the
energy usage, we close all irrelevant apps and services
in the smartphone and record the changes in battery
level as transmissions happen with or without AppATP.

Note that the cloud-side resource demand of AppATP
is small. The complexity of the transmission algorithm
is only O(N), and each app requires an average storage
of 10 MB only. With an M1 Small Instance (with 160 GB
instance storage) in Amazon EC2, AppATP can easily
support more than 1, 500 users, each running 10 apps,
and support 450, 000 users with a High Storage Instance
(24 2-TB hard disk drives) [25]. The monetary cost for
each user is only $ 0.09 per year [26].

Experimental Results: First, to show how Algorithm 1
works, we run a single traffic generator app in the
mobility scenario, with a mean arrival rate λ = 2.0.
In Fig. 9, we plot the queue backlog and downlink
bandwidth over time. The transmissions will take place
(indicated by the dives in the queue backlog curve) only
if the bandwidth is relatively high (e.g., t = 15, 114, 135)
or if the queue is congested (e .g., t = 27, 55, 71, 90).
This confirms our remarks on Algorithm 1 in Fig. 3. To
evaluate the delay incurred by AppATP, we repeat the
test run above for 2 hours, and record the arrival and
transmission time of each packet to calculate the average
packet delay. As shown in Fig. 10, there is a linear

relationship between V and the delay, which confirms
the simulation result in Fig. 8 as well as Proposition 1.
By tuning V , AppATP can suit the needs of different
applications.

We use MixSNS mentioned above to evaluate AppATP
in prefetch-friendly apps. Since the data arrival rate in
SNS apps mainly depends on the number of friends a
user has, we create a user account with 200 friends, and
let the user run MixSNS for 2 hours on two identical
smartphones at the same time starting at the same bat-
tery level, one phone running AppATP, the other without
AppATP. To reflect realistic scenarios, every 20 minutes
the app reads the available content for 5 seconds with
the screen turned on (note that a user usually keeps the
display on while waiting for the data to be retrieved).

In the static scenario, as shown in Fig. 12, the battery
level of the phone without AppATP decreases at a much
higher rate than with AppATP, consuming 11% battery
in 2 hours compared to 6% when using AppATP. In
the mobility scenario, AppATP also significantly outper-
forms the stand alone SNS app as shown in Fig. 12, with
30% energy saving (reducing battery consumption from
12% to 8% in 2 hours). The battery consumption is faster
under mobility since the transmission power of cellular
interface is higher than WiFi.

Note that the battery saving above not only comes
from efficient transmissions, but also because content
prefetching eliminates the unnecessary screen-on time
while the user actively waits for data retrieval to com-
plete. To evaluate the transmission energy alone without
considering display energy, we re-do the above experi-
ments with screen turned off. As shown in Fig. 13, even
if the screen energy cost for waiting is removed, the
energy consumption for transmitting data via AppATP
is still much less than not using AppATP: 45.4% (33.33%)
saving for the static (mobility) scenario respectively.

For delay-tolerant application scenarios, we use the

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 12

downloader app Timing to download different sizes of
file via AppATP. For each file size, we repeat the exper-
iment for 10 times. As shown in Fig. 14, in static sce-
nario, when the same amount of content is transferred,
Timing consumes 25%-46% less energy by using AppATP
than the android default downloader that continuously
downloads the file right after the request. Note that the
energy saving becomes significant in the mobility sce-
nario as shown in Fig. 15. Since the bandwidth fluctuates
in the presence of 3G and WiFi switchings, AppATP
seizes more good transmission opportunities to save
energy.

Compared to immediate downloading, AppATP
trades delays for energy conservation. To evaluate delay
performance, we plot the download completion time
of the above experiments in Fig. 16 and Fig. 17. The
completion time of AppATP has a higher mean but
has a smaller variance, while the completion time vari-
ance of immediate downloading is larger in both static
and mobility scenarios, especially for large files. If one
downloads data in bad connectivity with the default
downloader (e.g., the maximum completion time when
downloading 30 MB, 120 MB and 150 MB), additional en-
ergy is consumed and the completion time is longer than
deferring transmissions with AppATP. In these cases,
AppATP saves energy consumption without hurting the
delay performance.

7 Related Work
To exploit the potential of scheduling transmissions
in prefetch-friendly or delay-tolerant apps, IMP [14]
presents a cost-benefit analysis to decide when to
prefetch data in mobile devices. IMP prefers to transmit
when the benefit of prefetching meets the budgets for
battery and cellular data usage. In contrast, AppATP
focuses on choosing the timing of good wireless con-
nectivity to minimize transmission energy consumption.
SALSA [12] proposes to choose an energy-efficient link
among available ones using Lyapunov optimization. In-
stead of solely focusing on link selection, we acknowl-
edge the time-varying nature of wireless connection,
and AppATP focuses on choosing the right timing to
transmit mobile data. Moreover, while SALSA [12] sep-
arately optimizes transmission energy in each delay-
tolerant app running on stand-alone mobile devices,
AppATP leverages cloud resources to manage data trans-
missions for multiple prefetch-friendly or delay-tolerant
apps collectively, causing the minimum overhead on
resource-constrained mobile devices. BreadCrumbs [27],
Bartendr [28] and SmartTransfer [29] prefetch or delay
mobile data according to wireless network connectivity,
but their scheduling strategies rely on the prediction of
future network condition to make scheduling decisions.
However, unlike wired networks, wireless bandwidth is
highly dynamic and changes drastically in short time
scales, thus accurate prediction in fast-changing wireless
network conditions is impractical. Rather than requiring

future prediction, we propose an online algorithm based
on detailed energy profiling.

There are two classes of works on how to efficiently
combine mobile devices and cloud computing. The first
class focuses on offloading resource-intensive tasks from
mobile devices to the cloud for energy saving and
process speedup. Rather than offloading the app on a
fine-grained method/thread level [30], [31], AppATP
offloads the transmission management of an app on a
component level. The second class of works use the
cloud to extend the computing capabilities of mobile
devices (Apple’s Siri, Google Voice Search, EaaS [32]), or
storage (Dropbox, iCloud) and networking (Reflex [33]).
In AppATP, the cloud is an extended “cache” for mobile
devices, where data are downloaded only during good
connectivity.

To improve the energy-efficiency of data transmission
for mobile devices, some works consider how to select
wireless link from multiple available ones. For example,
Virgil [11] estimates AP quality by running probe-based
tests and selects the AP with the best connection quality.
Seeker [13] uses information available in mesh backhaul
for link estimation and selection so as to reduce estima-
tion overhead as compared to probe-based approaches.
Context-for-Wireless [34] utilizes history information to
estimate network conditions. AppATP can benefit from
these complementary studies, as the better link a mobile
device has selected, the more opportunities of good
connectivity AppATP can seize to transmit data.

8 Conclusions
We present AppATP, an application-layer transmission
protocol to achieve energy-efficient data transmissions
in mobile devices. By offloading the overhead of man-
agement to the cloud, little burden is placed on the
mobile device when saving energy via transmission
control. AppATP uses Lyapunov optimization to adap-
tively make transmission decisions according to current
network conditions and queue backlogs. We carry out
extensive trace-driven simulations and a real-world im-
plementation on Amazon EC2, and show that AppATP
can have huge energy saving on mobile devices.

ACKNOWLEDGMENT

The research was supported in part by a grant from
National Basic Research Program (973 program) under
grant No.2014CB347800.

REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2012-2017. [Online]. Available: http://www.
cisco.com/

[2] Flurry Five-Year Report, http://blog.flurry.com/?Tag=App+Usage.
[3] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can

offloading computation save energy?” IEEE Computer, 43(4), 51–
56, 2010.

[4] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To Offload or Not
to Offload? The Bandwidth and Energy Costs of Mobile Cloud
Computing,” in Proc. of IEEE Infocom, 2013.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 13

[5] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime:
energy-efficient transmission between cloud and mobile devices,”
in Proc. of IEEE Infocom Mini-conference, 2013.

[6] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study
and implications for network applications,” in Proc. of IMC, 2009.

[7] J. Huang, F. Qian, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics
of 4G LTE networks,” in Proc. of ACM MobiSys, 2012.

[8] Use Wi-Fi Instead of 3G to Save Android Battery Life. [Online].
Available: http://goo.gl/HLND7

[9] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
Resource-Poor Mobile Devices with Powerful Clouds: Architec-
tures, Challenges and Applications,” IEEE Wireless Comm. Mag.,
20(3), 2013.

[10] M. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Morgan & Claypool Pub-
lishers, 2010.

[11] A. Nicholson, Y. Chawathe, M. Chen, B. Noble, and D. Wetherall,
“Improved access point selection,” in Proc. of ACM MobiSys, 2006.

[12] M. Ra, J. Paek, A. Sharma, R. Govindan, M. Krieger, and M. Neely,
“Energy-delay tradeoffs in smartphone applications,” in ACM
MobiSys, 2010.

[13] D. Gupta, P. Mohapatra, and C. Chuah, “Seeker: A bandwidth-
based association control framework for wireless mesh net-
works,” Wireless Networks, 2011.

[14] B. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed Mobile Prefetching,” in Proc. of ACM MobiSys, 2012.

[15] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and
L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in
Proc. of eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, 2010.

[16] A. Pathak, Y. Hu, and M. Zhang, “Where is the energy spent
inside my app?: fine grained energy accounting on smartphones
with eprof,” in Proc. of ACM EuroSys, 2012.

[17] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: a two time scale approach for delay
tolerant workloads,” in Proc. of IEEE Infocom, Mar. 2012.

[18] Z. Zhou, F. Liu, , Y. Xu, R. Zou, H. Xu, J. Lui, and H. Jin, “Carbon-
aware Load Balancing for Geo-distributed Cloud Services,” in
Proc. of IEEE MASCOTS, Auguest 2013.

[19] Z. Zhou, F. Liu, H. Jin, B. Li, and H. Jiang, “On Arbitrating the
Power-Performance Tradeoff in SaaS Clouds,” in Proc. of IEEE
INFOCOM, 2013.

[20] W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu, “Multigreen: Cost-
minimizing multi-source datacenter power supply with online
control,” in Proceedings of the Fourth International Conference on
Future Energy Systems, ser. e-Energy ’13, 2013.

[21] W. Deng, F. Liu, H. Jin, and C. Wu, “Smartdpss: Cost-minimizing
multi-source power supply for datacenters with arbitrary de-
mand,” in Distributed Computing Systems (ICDCS), 2013 IEEE 33rd
International Conference on, 2013.

[22] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE JSAC,
2005.

[23] D. Hardt, “The OAuth 2.0 authorization framework,” 2012.
[24] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin, “A cooperative

game based allocation for sharing data center networks,” in IEEE
INFOCOM, 2013.

[25] F. Xu, F. Liu, H. Jin, and A. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proceedings of the IEEE, vol. 102,
no. 1, pp. 11–31, Jan 2014.

[26] Amazon EC2 Instance Types. [Online]. Available: http://aws.
amazon.com/cn/ec2/instance-types/

[27] A. Nicholson and B. Noble, “Breadcrumbs: forecasting mobile
connectivity,” in Proc. of ACM MobiCom, 2008.

[28] A. Schulman, N. Vishnu, R. Ramachandran, S. Neil, D. Pralhad,
G. Calvin, J. Kamal, and N. Venkata, “Bartendr: a practical
approach to energy-aware cellular data scheduling,” in Proc. of
MobiCom, 2010.

[29] Y. Wang, X. Liu, and A. Nicoara, “SmartTransfer: Transferring
Your Mobile Multimedia Contents at the ”Right” Time,” in Proc. of
NOSSDAV, 2012.

[30] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. of ACM MobiSys, 2010.

[31] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. of
EuroSys, 2011.

[32] M. Altamimi, R. Palit, K. Naik, and A. Nayak, “Energy-as-a-
Service (EaaS): On the efficacy of multimedia cloud computing
to save smartphone energy,” in Proc. of IEEE Cloud, 2012.

[33] Z. Liu, Y. Feng, and B. Li, “Socialize spontaneously with mobile
applications,” in Proc. of IEEE Infocom, 2012.

[34] A. Rahmati and L. Zhong, “Context-based network estimation
for energy-efficient ubiquitous wireless connectivity,” IEEE Trans-
actions on Mobile Computing, 2011.

Fangming Liu is an associate professor in the
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, Wuhan, China; and he is awarded as the
CHUTIAN Scholar of Hubei Province, China.
He is the Youth Scientist of National 973 Basic
Research Program Project on Software-defined
Networking (SDN)-based Cloud Datacenter Net-
works, which is one of the largest SDN projects
in China. Since 2012, he has also been in-
vited as a StarTrack Visiting Young Faculty in

Microsoft Research Asia (MSRA), Beijing. He received his B.Engr.
degree in 2005 from Department of Computer Science and Technology,
Tsinghua University, Beijing; and his Ph.D. degree in Computer Sci-
ence and Engineering from the Hong Kong University of Science and
Technology in 2011. From 2009 to 2010, he was a visiting scholar at
the Department of Electrical and Computer Engineering, University of
Toronto, Canada. He was the recipient of two Best Paper Awards from
IEEE GLOBECOM 2011 and IEEE CloudCom 2012, respectively. His
research interests include cloud computing and datacenter networking,
mobile cloud, green computing and communications, software-defined
networking and virtualization technology, large-scale Internet content
distribution and video streaming systems. He is a member of IEEE
and ACM, as well as a member of the China Computer Federation
(CCF) Internet Technical Committee. He has been a Guest Editor for
IEEE Network Magazine, an Associate Editor for Frontiers of Computer
Science, and served as TPC for IEEE INFOCOM 2013-2015, ICNP
2014, ICDCS 2015, and ACM Multimedia 2014.

Peng Shu received his BS and MS degree in
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, China. He is currently working at Synopsys,
Wuhan, China. His research interests focus on
cloud computing and wireless mobile applica-
tions.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 14

John C. S. Lui is currently a professor in the
Department of Computer Science and Engineer-
ing at The Chinese University of Hong Kong.
He received his Ph.D. in Computer Science from
UCLA. His current research interests are in com-
munication networks, network/system security
(e.g., cloud security, mobile security, etc.), net-
work economics, network sciences (e.g., online
social networks, information spreading, etc.),
cloud computing, large scale distributed systems
and performance evaluation theory. John serves

in the editorial board of IEEE/ACM Transactions on Networking, IEEE
Transactions on Computers, IEEE Transactions on Parallel and Dis-
tributed Systems, Journal of Performance Evaluation and International
Journal of Network Security. John was the chairman of the CSE Depart-
ment from 2005 to 2011. He received various departmental teaching
awards and the CUHK Vice-Chancellors Exemplary Teaching Award.
He is also a corecipient of the IFIP WG 7.3 Performance 2005 and
IEEE/IFIP NOMS 2006 Best Student Paper Awards. He is an elected
member of the IFIP WG 7.3, Fellow of ACM, Fellow of IEEE and
Croucher Senior Research Fellow.

