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Abstract—Counting subgraphs is a fundamental analysis task
for online social networks (OSNs). Given the sheer size and re-
stricted access of online social network data, efficient computation
of subgraph counts is highly challenging. Although a number of
algorithms have been proposed to estimate the relative counts
of subgraphs in OSNs with restricted access, there are only few
works which try to solve a more general problem, i.e., counting
subgraph frequencies. In this paper, we propose an efficient
random walk-based framework to estimate the subgraph counts.
Our framework generates samples by leveraging consecutive
steps of the random walk as well as by observing neighbors
of visited nodes. Using the importance sampling technique, we
derive unbiased estimators of the subgraph counts. To make
better use of the degree information of visited nodes, we also
design an improved estimator, which increases the efficiency of
the estimate at no additional cost. We conduct extensive experi-
mental evaluation on real-world OSNs to confirm our theoretical
claims. The experiment results show that our estimators are
unbiased, accurate, efficient and better than the state-of-the-art
algorithm. For the Weibo graph with more than 58 million nodes,
our method produces estimate of triangle count with an error
less than 5% using only 20 thousands sampled nodes. Detailed
comparison with the state-of-the-art method demonstrates that
our algorithm is 4 to 5 times more accurate.

Keywords—Graphlet counting; Random walk; Online social
networks.

I. INTRODUCTION

Analyzing properties of online social networks (OSNs)
has attracted extensive attention because of their increasing
popularity, significant importance and diverse applications [1].
In this work, we focus on counting the number of subgraphs in
OSNs. Subgraphs whose counts are desired are also referred as
“graphlets”, “motifs” or “pattern subgraphs” [2]. Counting
the number of graphlets in OSNs is a fundamental analysis
task. For example, computing the triadic tendencies (e.g.,
clustering coefficient) has a long history in the social network
analysis and modeling [3]–[7]. Recently, Ugander et al. [8]
analyzed the 4-node graphlet counts for social networks and
studied what properties are merely indicated by graph theory
and what are actual social features of the real-world graphs.
There are also numerous applications of graphlet counts in
social science, e.g., large-scale graph comparison [9], anomaly
and event detection [4], [5], nodes classification [8].

However, it is a challenging task to compute graphlet counts
for OSNs. Firstly, the complete networks are usually too
large, which renders the exact computation impractical. In
fact, counting graphlets even on a moderately sized OSN has
prohibitive computation cost, e.g., the computation of 4-node

graphlets cannot finish within a week for a Twitter graph
with 21.3M nodes in our datasets using the state-of-the-art
exact counting algorithm in [9]. Secondly, for most OSNs
like Facebook and Twitter, the underlying network topology
is unknown beforehand [1], [10], and researchers can only
have limited access via APIs provided by the OSNs’ operators.
Such restricted access makes the retrieval of entire topology
prohibitively expensive due to extremely high query cost. To
address the challenges, graph sampling via crawling has been
widely applied for OSN measurement [10]–[14]. In particular,
random walk-based methods are popular due to its simple
implementation and capability to remove bias of samples.

Our goal is to design an efficient random walk-based sam-
pling algorithm to estimate the graphlet counts in the OSNs.
Different from some nodal properties, e.g., degree distribution,
which has been extensively studied with random walk-based
methods [10], [14], [15], single node samples generated by the
random walk are not sufficient for the estimation of graphlet
counts since single node carries no information about local
structure. To estimate graphlet counts, we need to examine
the local structure of networks during the random walk.
Summary of Contributions. In this work, we design an
efficient random walk-based algorithm to estimate 3, 4, 5-node
graphlet counts. It is important to point out that our algorithm
can be easily extended to graphlets with larger size. We
summarize the contributions as follows.
• Novel Algorithm. Our algorithm provides provably unbi-

ased estimate. The main idea is to consider the consecutive
steps of the random walk and examine the neighbors of
visited nodes. To further improve the efficiency, we also
propose an improved estimator which makes better use of
degree information of visited nodes. To the best of our
knowledge, our algorithm is the first to estimate all 3, 4, 5-
node graphlet counts of OSNs via the random walk.

• Analytical Bound. We provide an analytical bound on the
sample size to guarantee that the estimate is within (1± ✏)
relative to the true counts with probability of at least 1� �.
The bound depends on the parameter ✏ and the confidence
level � as well as some parameters of the graphs. The
analytical bound guarantees the theoretical convergence of
our estimator and sheds light on what parameters of the
graphs affect the performance of our algorithm.

• Extensive Experiments. We validate our algorithm on
six OSNs. The experiments show that our estimators are
unbiased and accurate. Furthermore, our estimators converge
to the ground truth rapidly. Compared with the state-of-the-



art random walk-based method [16] which is only capable
of computing the relative counts of graphlets, our algorithm
not only solves the more general problem, i.e., graphlet
counting, but also significantly outperforms the state-of-the-
art method in estimating relative counts of graphlets.

• Excellent Empirical Accuracy. The experiment results
demonstrate that our algorithm is practical, e.g., with only
20K visited nodes, the average relative error of estimated
triangle counts is within 5% for all the tested graphs.

II. PRELIMINARIES

A. Notations and Definitions

Our input network is modeled as an undirected, unweighted
and connected graph G = (V,E), where V is the set of nodes
and E is the set of edges. We assume G has neither self-loops
nor multi-edges. For a node v 2 V , N (v) represents the set
of neighbors of v and dv = |N (v)| is the degree of v.
Subgraph. A k-node subgraph Gk = (Vk, Ek) of G satisfies
Vk ✓ V , Ek ✓ E and |Vk| = k. An “induced subgraph”
ensures that all edges connecting nodes in Vk are also present
in Ek, i.e., Ek = {(u, v)|u, v 2 Vk ^ (u, v) 2 E}.
We distinguish between subgraph and induced subgraph. In
general, if we do not say “induced” subgraph, we mean a
“normal” subgraph which just has a subset of edges of the
original graph. Consider examples in Fig. 1. The edge set
{(v1, v6), (v5, v6), (v1, v4), (v4, v5)} forms a (non-induced) 4-
node subgraph while the node set {v1, v4, v5, v6} induces a
4-node induced subgraph.

v1 v2

v3v4v5

v6

original
graph

v1

v4v5

v6

(non-induced)
4-node subgraph

v1

v4v5

v6

4-node induced
subgraph

Fig. 1: An example of subgraph and induced subgraph.

Isomorphic. Two graph G = (V,E) and G0 = (V 0, E0) are
isomorphic if there exists a bijection ' : V ! V 0 with (u, v) 2
E , ('(u),'(v)) 2 E0 for all u, v 2 V [17].
Graphlet. Graphlets are defined as non-isomorphic, con-
nected, induced subgraphs in large graphs. Let Gk denote
a family of k-node graphlets, i.e., Gk = {gk

1 , · · · , gk
m}. To

illustrate, in Section III, Table I depicts G3 and G4 while
Table II depicts G5. The second rows of these two tables show
all possible 3, 4, 5-node graphlets. We can see that |G3| = 2,
|G4| = 6, and |G5| = 21.
Problem Definition. Given a family of k-node graphlets Gk =
{gk

1 , · · · , gk
m}, let Ck

i denote the number of induced subgraphs
that are isomorphic to the graphlet gk

i 2 Gk in the input graph
G. Our goal is to compute {Ck

1 , · · · , Ck
m} efficiently.

We refer to {Ck
1 , · · · , Ck

m} as the graphlet counts. The com-
putation of graphlet counts is usually restricted to graphlets
of no more than 5 nodes [2], [9], [11], [18]–[20] due to the
extremely high computation cost. In this work, our aim is to
efficiently compute Ck

i , for k = 3, 4, 5.

B. Random Walk on Graphs

Access Model. In this work, we assume the topology of the
input graph G is not readily available and we can only obtain it
with restricted access, i.e., the graph data can only be accessed
by calling APIs provided by operators of OSNs. While APIs
have various design specifications across different OSNs, most
of them support queries by taking node IDs as input. Some
basic information collected when querying a node u is the set
of friends N (u), and other attributes of u.
Random Walk. Random walk-based methods fit in with the
restricted access naturally. Simple random walk (SRW) on a
graph is defined as follows. We start from an initial node v0 in
the graph and extract its information, and then randomly select
one of v0’s neighbors (with equal probability), say v1, and then
we transit to and explore v1. We repeat this process until some
stopping criteria, e.g., stop after making a pre-defined number
of transitions. In fact, SRW on G can be modeled as a finite,
time reversible Markov chain with state space V and transition
matrix P where

P(u, v) =

(
1
du

if (u, v) 2 E,
0 otherwise.

Let ⇡(v) be the steady state probability of node v. It is easy
to show that ⇡(v) = dv/(2|E|), v 2 V [21]. Note that these
steady state probabilities (a.k.a. stationary distribution) are
important to remove the random walk sampling bias.
Theoretical Guarantee. In the following, we review the
Strong Law of Large Numbers (SLLN) for the Markov chain,
which serves as the basis for graph sampling via random walk
over a graph G, or more generally, the Markov Chain Monte
Carlo (MCMC) samplers.

Suppose the Markov chain with the state space M has the
stationary distribution ⇡⇡⇡, and the function f : M ! R is an
integrable function with respect to ⇡⇡⇡. Then the expectation of
f w.r.t. ⇡⇡⇡ which is given by µ , E⇡⇡⇡[f ] ,

P
X2M ⇡(X)f(X)

exists. Let {Xt}nt=1 represent the sequence of visited states
of the Markov chain. We define the sample average µ̂n ,
1
n

Pn
t=1 f(Xt) as the estimator for the expectation µ.

Theorem 1. Suppose {Xn} is a finite, irreducible Markov
chain with stationary distribution ⇡⇡⇡. As n!1, we have

µ̂n ! µ almost surely (a.s.)

for any initial distribution and any function with E⇡⇡⇡[|f |] <1.

The above theorem guarantees the convergence of the sam-
ple mean to the expectation. The estimator µ̂n is an unbiased
estimator of µ according to the SLLN. Later on, we use the
SLLN to prove the unbiasedness of our proposed estimator.

III. ALGORITHMIC FRAMEWORK

Our algorithm generates the subgraph samples through con-
secutive steps of the random walk. Furthermore, we leverage
the neighbors of the nodes collected along the random walk.
We eliminate the sampling bias via importance sampling [22].



A. Basic Idea
We first describe the high level idea. For clarity, we intro-

duce the concepts of touched subgraph and visible subgraph.
A k-node subgraph Gk = (Vk, Ek) is defined as a touched
subgraph if neighbor sets of all nodes in Vk are available, i.e.,
we obtain the N (v) for all v 2 Vk by quering node v through
APIs. The subgraph Gk = (Vk, Ek) is defined as a visible
subgraph if there is one and only one node v 2 Vk whose
N (v) is not available. Such subgraph is “visible” because we
can infer all edges between nodes in Vk so as to determine the
graphlet type of the visible subgraph. To illustrate, consider
the graph in Fig. 2. Assume we already obtain the neighbors
of nodes 4 and 7, then the subgraph induced by {4, 7} is
a touched subgraph while the subgraph induced by {4, 7, 8}
is a visible subgraph (a triangle). The subgraph induced by
{5, 4, 8} is not visible because we cannot determine whether
5 and 8 are connected with only N (4) and N (7).

Our idea is to generate (k�1)-node touched subgraphs first.
Then using these (k � 1)-node touched subgraphs together
with the neighborhood nodes, we can obtain many k-node
visible subgraph samples. Since our goal is graphlet counts,
only connected subgraphs are considered here. We generate
touched subgraphs through consecutive steps of the random
walk. Formally, we consider each k � 1 consecutive steps of
the random walk which visits k�1 distinct nodes as a (k�1)-
node subgraph. These (k � 1)-node subgraphs are touched
subgraphs according to the access model in Subsection II-B.
If the random walk fails to visit k�1 distinct nodes with k�1
steps, we just continue the random walk.

Suppose we have obtained a (k�1)-node touched subgraph
Gk�1 = (Vk�1, Ek�1). Define the neighborhood of Vk�1

as N (Vk�1) =
�
[v2Vk�1N (v)

 
\Vk�1. The key observation

is that the k-node subgraphs induced by Vk�1 [ {v}, 8v 2
N (Vk�1) are visible to us. We use these k-node visible
subgraphs as the obtained k-node subgraph samples. Note
that we do not need to explore any node in N (Vk) for extra
neighborhood information to determine the graphlet types of
these k-node visible subgraph samples. It is sufficient to get
(k � 1)-node touched subgraphs first so to get the k-node
subgraph samples. Specifically, we get 2, 3, 4-node touched
subgraph first for 3, 4, 5-node graphlet counts estimation. Refer
to Fig. 2 for the illustration of the basic idea.

Each k-node induced subgraph is visible to the walker
with unequal probability. We need to compute the “visible
probability” of the subgraphs, and then use the importance
sampling technique [22] to remove the bias. We explain the
detailed derivation of unbiased estimator in next subsections.

B. Mathematical Description
Now, we translate the basic idea to formal mathematical

description and define the MCMC sampler. Our proposed
algorithm considers the l = k � 1 consecutive steps of the
random walk as a touched subgraph. Accordingly, we define
a Markov chain that remembers l steps of the random walk
as the expanded Markov chain. The state space M(l) of the
expanded Markov chain is defined as the set of all possible
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Fig. 2: Illustration of the basic idea. (a) When k = 3,
assume we visit the touched subgraph 4 7 induced by
{4, 7}, then we can observe 2 visible triangles ( ) and 2
visible wedges ( ). (b) When k = 4, suppose we walk for
three steps and visit nodes {4, 7, 1} sequentially, then the
wedge 4 7 1 is a 3-node touched subgraph; we can
observe 1 line ( ), 1 cycle ( ), 1 chordal-cycle ( ), and
1 tailed-triangle ( ). (c) When k = 5, we need to walk
for four steps to get the touched subgraphs. Assume we
visit nodes {4, 7, 1, 2} sequentially, then there are 1 ,
1 , 1 , and 1 visible to the walker; here the 4-node
line 4 7 1 2 is the 4-node touched subgraph.

consecutive l steps of the random walk, where l represents
how many consecutive steps we take into consideration. The
state X 2 M(l) can be written as X = (v1, · · · , vl) where
(vi, vi+1) 2 E, 1  i  l � 1. Each time the random walk
proceeds to next node, the expanded Markov chain transits
to the next state. For example, suppose the expanded Markov
chain is at state Xt = (v1, · · · , vl), for the random walker,
it is at node vl. If the walker randomly chooses a neighbor
vl+1 of vl and moves to it, then the expanded Markov chain
transits to the state Xt+1 = (v2, · · · , vl+1). For any two states
Xi = (vi1 , · · · , vil) and Xj = (vj1 , · · · , vjl) in M(l), the
transition matrix PM of the expanded Markov chain is

PM (Xi, Xj) =

(
1

dvil
if (vi2 , · · · , vil) = (vj1 , · · · , vjl�1),

0 otherwise.

Note that we define the expanded Markov chain only for
the convenience of deriving the unbiased estimator, since it
describes the same process as the random walk. It is easy to
verify that the expanded Markov chain is irreducible and there
exists a unique stationary distribution [23]. Let ⇡⇡⇡M denote the
stationary distribution of the expanded Markov chain. For the
state X = (v1, · · · , vl) 2M(l), we have

⇡M (X) =

8
<

:

dv1/2|E| l = 1,

1/2|E| l = 2,
1

2|E|
1

dv2
· · · 1

dvl�1
l � 3.

We now define the function fk
i : M(l) ! R. Let V (X) ,

{v1, · · · , vl} denote the set of nodes in X = (v1, · · · , vl),



where l equals to k � 1 in our algorithm. If |V (X)| < l,
then fk

i (X) = 0. Otherwise, fk
i (X) equals to the number of

subgraphs induced by V (X)[ {v} (8v 2 N (V (X))) that are
isomorphic to gk

i . Let S , {Gk(Vk)|Vk = V (X) [ {v}, v 2
N (V (X))}. Here Gk(Vk) denotes the subgraph induced by
Vk. Formally, the function fk

i (X) can be written as:

fk
i (X)=

⇢
0 if |V (X)|<l,

|{Gk|Gk 2 S ^Gk isomorphic to gk
i }| if |V (X)|= l.

Example. Refer to Fig. 2. When k = 3, the function
f3
1 ((4, 7)) = 2, f3

2 ((4, 7)) = 2 since we observe 2 wedges (g3
1 )

and 2 triangles (g3
2 ) containing subgraph induced by {4, 7}.

The function fk
i (X) indicates how many k-node visible

subgraphs we can observe through the (k � 1)-node touched
subgraph. In next subsection, we derive an unbiased estimator
of the graphlet counts using the stationary distribution of the
expanded Markov chain and the real-valued function fk

i .

C. Derivation of the Unbiased Estimator
To derive the unbiased estimator of Ck

i , we need to remove
the bias of the k-node visible subgraphs. In particular, our goal
is to design an appropriate re-weight function wk

i (X) such that

1

n

nX

t=1

wk
i (Xt)f

k
i (Xt)! Ck

i a.s.

We first compute the number of states that find the subgraph
Gk. If state X 2M(k�1) is a (k � 1)-node subgraph of Gk,
we say that Gk is found by X . One important note is that
a subgraph Gk may be found by several states. Recall that
V (X) denotes the set of nodes in the state X . Define the set
of states which can find subgraph Gk = (Vk, Ek) as

B(Gk) ,
n
X|X 2M(k�1), |V (X)| = k � 1, V (X) ⇢ Vk

o
.

Note that the size of B(Gk) only depends on the graphlet
type of Gk. Hence, we define �k

i = |B(Gk)| for any subgraph
Gk isomorphic to the graphlet gk

i . Since each subgraph Gk

isomorphic to gk
i is found by �k

i states, we have
X

X2M(k�1)

fk
i (X) = �k

i C
k
i . (1)

Finally, the re-weight function is

wk
i (X) , 1

�k
i

· 1

⇡M (X)
, �k

i 6= 0. (2)

The reciprocal of the re-weight function wk
i (X) is the

nominal “visible probability”. The re-weight function consists
of two parts. The first part 1/�k

i is due to that each k-node
subgraph isomorphic to gk

i is found �k
i times. The second part

is due to the non-uniform sampling of states in M(k�1). The
condition �k

i 6= 0 is satisfied for most graphlets, e.g., when
k = 3, 4, 5, the only graphlet with �k

i = 0 is g5
3 ( ). In fact,

our algorithm can be applied to any k-node graphlets with
�k
i 6= 0. For graphlets with �k

i = 0 (i.e., k = 5, i = 3), we
will discuss the detailed estimation method in next subsection.
Combining the importance sampling [22] and SLLN, we have
the following theorem.

TABLE I: Coefficient ↵k
i and �k

i for 3, 4-node graphlets.
Graphlets g31 g32 g41 g42 g43 g44 g45 g46

Shape

↵k
i (k = 3, 4) 2 6 2 0 8 4 12 24

�k
i (k = 3, 4) 4 6 4 6 8 10 16 24

Theorem 2. The average of the function wk
i (X)fk

i (X) is

Ĉk
i , 1

n

nX

t=1

wk
i (Xt)f

k
i (Xt), (3)

which is an asymptotic unbiased estimator of Ck
i for the

graphlet gk
i with �k

i 6= 0.

We have the detailed proof in the technical report [24].
Algorithm 1 demonstrates the sampling procedure.

Algorithm 1 Unbiased Estimate of k-node Graphlet Counts
Input: sample budget n, graphlet size k, input graph G
Output: unbiased estimate of Ck

i for graphlet gk
i with �k

i 6= 0
1: Ĉk

i  0, 81  i  |Gk|
2: X = (v1, · · · , vk�1) initial k � 1 steps
3: random walk step t 0
4: while t < n do
5: for i 2 {1, · · · , |Gk|} do
6: if �k

i 6= 0 then
7: Ĉk

i  Ĉk
i + wk

i (X)fk
i (X)/n

8: vt+k  uniformly choose a neighbor of vt+k�1

9: X  (vt+2, · · · , vt+k)
10: t t+ 1
11: return

h
Ĉk

1 , · · · , Ĉk
|Gk|

i

Computation of �k
i . The remaining task is to compute �k

i ,
which is part of the re-weight function in Eq. (2). Define
A(Gk�1) as the set of states whose node set is the same as
the connected subgraph Gk�1 = (Vk�1, Ek�1), i.e.,

A(Gk�1) ,
n
X|X 2M(k�1), V (X) = Vk�1

o
.

The size of A(Gk�1) only depends on the graphlet type
of Gk�1. We define ↵k�1

j = |A(Gk�1)| for any Gk�1

isomorphic to gk�1
j . Let tj denote the count of gk�1

j in Gk.
Here Gk is isomorphic to gk

i . It is easy to verify that

�k
i =

|Gk�1|X

j=1

tj · ↵k�1
j . (4)

Example. For a triangle G3 induced by the set {u, v, w}, we
have B(G3) = {(u, v), (v, u), (v, w), (w, v), (u,w), (w, u)}.
Hence �3

2 = |B(G3)| = 6. The set A(G3) = {(u, v, w),
(w, v, u), (v, u, w), (w, u, v), (u,w, v), (v, w, u)}. So we have
↵3
2 = |A(G3)| = 6. There are 4 triangles in the 4-node clique

(g4
6 , ). Based on Eq. (4), we have �4

6 = 4⇥ 6 = 24.
Intuitively, |A(Gk�1)| equals to the number of ways to walk

through Vk during the random walk. Theoretically, it is twice
of the number of Hamilton paths in Gk�1 (each Hamilton path



TABLE II: Coefficient ↵5
i and �5

i for 5-node graphlets.
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Shape

↵5
i 2 0 0 2 4 0 10 4 4 8 8 12 14 12 12 20 28 36 48 72 120

�5
i 4 4 0 10 8 8 10 12 20 16 20 24 20 36 36 34 36 56 56 84 120

is counted for both directions). Counting Hamilton path is an
NP-complete problem. We need to enumerate all Hamilton
paths in the graphlets to compute ↵k�1

j . Fortunately, the com-
putation of ↵k�1

j is not a big concern since the computation
of graphlet counts is usually restricted to k  5 in various
applications [4], [9], [25]. The detailed computation of ↵k

i and
�k
i can be found in the technical report [24]. Table I and II

list the values of ↵k
i and �k

i for all the 3, 4, 5-node graphlets.
Practical Issues. Under the restricted access, the exact number
of nodes and edges is usually unknown. Very often, one can
obtain the approximated number of users in OSNs [26] (e.g.,
from financial reports or the Internet). However, the number
of edges is not available in most cases. Since our primary goal
is the graphlet counts, it is essential to know the number of
edges. To address this problem, we use the following fact

E⇡⇡⇡


1

dv

�
=
X

v2V

dv
2|E|

1

dv
=

|V |
2|E| (5)

where ⇡⇡⇡ is the stationary distribution of the simple random
walk. Assume the sequence of visited node is v1, · · · , vn+k�2

and the corresponding sampled states are X1, · · · , Xn. Here
Xi , (vi, · · · , vi+k�2). According to Eq. (5), the number of
edges can be estimated with |V |(n+k�2)/(2

Pn+k�2
t=1 1/dvt).

Define ⇡̃M (X) = 2|E| · ⇡M (X) and w̃k
i (X) = 1/(�k

i ·
⇡̃M (X)). The graphlet counts can be estimated with

Ĉk
i , |V |

✓
n+ k � 2

n

◆ Pn
t=1 w̃

k
i (Xt)fk

i (Xt)Pn+k�2
t=1 1/dvt

!
. (6)

The unbiasedness of Eq. (6) can be proved by combining
Theorem 2 and Eq. (5). Note that both w̃k

i (X) and fk
i (X) can

be computed with the local neighborhood information and no
knowledge of 2|E| is required.

Another practical issue is that OSNs are not necessary
connected. The random walk can only crawl over nodes in the
same connected components. However, it is not a big concern
for OSNs since most nodes (> 90%) of OSNs are in the largest
connected components (LCCs) [1]. The LCCs are enough to
represent the properties of the whole graphs. Besides, we can
use the state-of-the-art algorithm [11] with high accuracy to
estimate number of nodes in the LCCs.

D. Estimator for 5-node Graphlets
All 3, 4, 5-node graphlet counts can be estimated with

Eq. (3) except the 5-node star graphlets (g5
3 , ) due to

�5
3 = 0 (�5

3 = 0 is because all 4-node graphlets in
are and we cannot walk through via simple random
walk). However, we can use the relationship between induced
subgraphs and non-induced subgraphs to solve this problem.

Let Nk
i denote the sum of induced and non-induced subgraphs

that are isomorphic to graphlet gk
i . N5

3 denotes the counts
of subgraphs isomorphic to g5

3 ( ). There is a simple linear
relationship between Ck

i and Nk
i . We have the following:

N5
3 =

X

v2V

 
dv
4

!
=

21X

i=1

�5
i · C5

i = C5
3 + C5

6 + C5
9 + C5

10

+2C5
14 + C5

15 + C5
16 + 2C5

18 + C5
19 + 3C5

20 + 5C5
21,

(7)

where �5
i denotes the number of g5

3 contained in the graphlet
g5
i . Given the sequence of nodes v1, · · · , vn+3 visited by the

random walk, the unbiased estimator of N5
3 is

N̂5
3 , 1

n+ 3

n+3X

t=1

2|E|
✓
dvt
4

◆
/dvt .

Graphlet counts except C5
3 can be estimated with Eq. (3), i.e.,

Ĉ5
i =

1

n

nX

t=1

2|E|
dvt+1dvt+2

�5
i

f5
i ((vt, vt+1, vt+2, vt+3)) , i 6= 3.

We leverage the formula (7) to estimate C5
3 , i.e.,

Ĉ5
3 = N̂5

3 �
X

i2{1,··· ,21}\{3}

�5
i Ĉ

5
i .

Applying the linearity of the expectation, one can easily prove
that E⇡⇡⇡[Ĉ5

3 ] = E⇡⇡⇡[N̂5
3 ]�

P
i2{1,··· ,21}\{3} �

5
iE[Ĉ5

i ], which is
N5

3 �
P

i2{1,··· ,21}\{3} �
5
iC

5
i = C5

3 .

IV. ANALYTICAL BOUND

We also provide an analytical bound on the needed sample
size to guarantee our estimators are within (1 ± ✏) accuracy
with a high probability at least (1��). The bound is expressed
in terms of the accuracy parameter ✏ and the confidence level �,
as well as some parameters of the graph. Since our analytical
bound depends on the mixing time of the random walk, we
first introduce the mixing time, which quantifies how fast the
random walk approaches the stationary distribution.

Definition 1 (Mixing time). [27, Definition 1] The mixing
time (parameterized by ⇠) of a Markov chain is defined as

⌧(⇠) , max
i

min{t : |⇡⇡⇡ � ⇡⇡⇡(i)
0 Pt|1 < ⇠},

where ⇡⇡⇡ is the stationary distribution, ⇡⇡⇡(i)
0 is the initial

distribution concentrated at node vi, Pt is the transition
matrix after t steps, and | · |1 is the total variation distance.

We start by analyzing the estimator in Eq. (3) where |E| is
known. Define Mk

i = maxX2M(l) wk
i (X)fk

i (X). Let T be the
mixing time that ensures the total variation distance between
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v w

G3
Xa = (u, v, w),⇡M (Xa) =

1
2|E|

1
dv

Xb = (u,w, v),⇡M (Xb) =
1

2|E|
1
dw

Xc = (v, u, w),⇡M (Xc) =
1

2|E|
1
du

P (G3)/|A(G3)| = 1
6|E| (1/du + 1/dv + 1/dw)

Fig. 3: Example of the observation. Xa, Xb, Xc 2 A(G3).
If the degree du, dv, dw are unequal to each other, then the
steady state probabilities ⇡M (Xa),⇡M (Xb),⇡M (Xc) are
different from each other.

the distribution after T steps and the stationary distribution
of the random walk is within 1/8, i.e., T = ⌧(1/8). The
initial distribution of the random walk is denoted by ''' and
k'''k⇡⇡⇡ ,Pv2V '2(v)/⇡(v).

Lemma 1. There is a constant value ⇣, such that if n � B1 ,
⇣Mk

i

Ck
i

log(k'''k⇡⇡⇡/�)
✏2 T , we have

Pr
h
|Ĉk

i � Ck
i |  ✏Ck

i

i
� 1� �.

Moreover, the estimator in Eq. (6) assumes the number of
edges is unknown, which is a common case for OSN analysis.
To guarantee Ĉk

i is within (1±✏)Ck
i with probability of at least

1 � �, it requires that n � B2 , ⇣Mk
i

Ck
i

log(2k'''k⇡⇡⇡/�)
✏2 (9T ). The

detailed proof of B1 and B2 is in our technical report [24].
Remarks. In addition to ✏ and �, the sample size bound B1

and B2 also depend on the parameters of the graphs. One
parameter is the mixing time of the random walk. The smaller
the mixing time, the smaller the required sample size. For
social network with small world properties, the mixing time
is ⇥(log2 n) [11], [27], [28]. Another parameter is Mk

i /C
k
i ,

which describes the ratio between the local maximum graphlet
counts and the average graphlet counts. For example, let � ,
max(u,v)2E |N (u) \ N (v)| denote the maximum number of
triangles sharing the same edge. Then we have M3

2 /C
3
2 =

(2 ·maxX2M(2) f3
2 (X))/(Ck

i /|E|) = 2�/(C3
2/|E|).

V. IMPROVED ESTIMATOR

We now design an improved estimator. The core idea is
to view each state X 2 M(k�1) containing k � 1 distinct
nodes as a (k � 1)-node subgraph Gk�1 and compute the
sampling probability of the subgraph Gk�1 instead of using
the stationary distribution of the state X . The new estimator
benefits from the better use of the degree information of visited
nodes. The idea is inspired by the following observation.

Observation 1. For Xa, Xb 2 A(Gk�1), it is possible to have
⇡M (Xa) 6= ⇡M (Xb).

Fig. 3 gives an example of the observation. Recall that
A(Gk�1) is the set of states in M(k�1) whose node set is
the same as subgraph Gk�1. Once the state X is visited, we
can enumerate all the states in A(Gk�1), here Gk�1 contains
the same node set as X . However, the stationary distribution
of these states differ even though they correspond to the same
subgraph Gk�1. This motivates us to design a new re-weight
function that considers states in A(Gk�1) as a whole.

Our approach is to ignore the order of nodes in the states
and view each state as a subgraph. We derive the improved
unbiased estimator by defining the real-valued function on
the subgraph and computing the sampling probability of the
subgraph. The function defined for the subgraph Gk�1 simply
takes the sum over fk

i (X), 8X 2 A(Gk�1), i.e.,

F k
i (Gk�1) ,

X

Xa2A(Gk�1)

fk
i (Xa)

= |A(Gk�1)|fk
i (X), 8X 2 A(Gk�1).

Following the definition of stationary distribution of the
Markov chain, we define the nominal sampling probability of
the subgraph Gk�1 as

P (Gk�1) , lim
n!1

1

n

nX

t=1

Pr[Xt = Gk�1] =
X

Xa2A(Gk�1)

⇡M (Xa).

Here {Xt}nt=1 is a sequence of the states. Suppose {Xt}nt=1

corresponds to the sequence of subgraphs {Gt
k�1}nt=1 (the

node set of Xt induces the subgraph Gt
k�1). We need to

show the following:

1

n

nX

t=1

1

�k
i

F k
i (G

t
k�1)

P (Gt
k�1)

! Ck
i a.s. (8)

We define a new re-weight function for the state X based
on above discussion. Similar to the definition of A(Gk�1) in
Section III-C, let A(X) denote the set of states in M(k�1)

that have the same node set as X . We define a new re-weight
function as follows

W k
i (X) , 1

�k
i

|A(X)|P
Xa2A(X) ⇡M (Xa)

.

The re-weight function W k
i ignores the order of nodes in

X . Let Gk�1 denote the subgraph induced by the nodes
in the state X . Compared with wk

i (X), W k
i (X) dividesP

Xa2A(X) ⇡M (Xa)/|A(X)| = P (Gk�1)/|A(Gk�1)| instead
of ⇡M (X) to remove the bias.The following theorem is a
formal description of Eq. (8).

Theorem 3. The average of the function W k
i (X)fk

i (X)

Ĉk
i , 1

n

nX

t=1

W k
i (Xt)f

k
i (Xt) (9)

is an asymptotic unbiased estimator of Ck
i for the graphlet gk

i

with �k
i 6= 0.

Refer to the technical report [24] for the proof. We call Eq. (3)
as the basic estimator and Eq. (9) as the improved estimator.
Similar to Eq. (6), replacing ewk

i (Xt) with W k
i (Xt)/(2|E|) in

Eq. (9), we can get the improved estimator for unknown |E|.

VI. EXPERIMENTAL EVALUATION

A. Experimental setup
We test the performance of our proposed algorithm on

various social networks. Table III lists the datasets used in our
experiments. For all the datasets, we remove the directions,
self-loops and multi-edges. We report the number of nodes



TABLE III: Summary of the datasets.

Name Nodes Edges Description

Epinion [30] 76K 406K Trust network from the online
social network Epinion.

Slashdot [30] 77K 469K Friend/foe links between the users
of Slashdot social network.

Pokec [31] 1.6M 22.3M Friendship network from the
Slovak social network Pokec.

Flickr [31] 2.2M 22.7M Social network of Flickr users and
their friendship connections.

Twitter [32] 21.3M 265M Graph about who follows whom
on Twitter.

Weibo [32] 58.7M 261M A micro-blogging service with
millions of users in China.

and edges in the largest connected components (LCCs) of the
graphs in the table. In fact, all the graphs are connected except
Flickr, whose LCC contains 94% of the nodes. Exact counts
of 3, 4-node graphlets are computed with the state-of-the-art
algorithm proposed in [9]. For 5-node graphlets, we obtain
the ground truth with the method in [20]. Note that we ran
the experiments on a Linux machine with 3.7GHz Intel Xeon
processor. All the algorithms are implemented in C++. The
source code is available [29].

B. Performance analysis

Error Metrics. To evaluate the performance of our proposed
algorithm, we consider the following metrics. These error met-
rics provide a comprehensive picture of the error distribution.
• Error of average estimate: we consider the relative error

|E[Ĉk
i ]�Ck

i |
Ck

i
as a measure of the unbiasedness of the estima-

tors. Here E[Ĉk
i ] is the mean estimate value across 1000

independent runs.
• Confidence bound: we construct a [5%, 95%]-confidence

interval for the estimate z, which is defined as the interval
[LB,UB] such that Pr[z  LB] = 0.05 and Pr[z �
UB] = 0.95. To estimate the confidence interval, we run
the simulations for 1000 times, and use the 5th and 95th

percentile as the estimated LB and UB respectively.
• Mean of relative error (MRE): we compute the average of
|Ĉk

i � Ck
i |/Ck

i over 1000 independent runs. This measures
how close our estimate is to the ground truth.

• Normalized root mean square error (NRMSE):
for an estimator Ĉk

i , the NRMSE is define as

NRMSE(Ĉk
i ) =

q
E[(Ĉk

i � Ck
i )

2]

Ck
i

=

q
Var[Ĉk

i ] + (E[Ĉk
i ]� Ck

i )
2

Ck
i

.

NRMSE is a combination of the variance and bias. When the
estimator is unbiased, the NRMSE equals to

q
Var[Ĉk

i ]/C
k
i .

Accuracy. We demonstrate the accuracy of our proposed
estimators in Table IV. Only the accuracy of estimators
for graphlets g3

2 , g4
3 , g4

5 , g4
6 , g5

19, g5
20, g5

21 is reported since their
counts are the smallest among 3, 4, 5-node graphlets respec-
tively and they were observed to have the lowest accuracy. We
apply the improved estimator for 4, 5-node graphlets (for 3-
node graphlets, the basic estimator and the improved estimator
are the same). Due to the space limitation, we only show

TABLE IV: Accuracy of the proposed estimator when the
sample size equals to 20K, i.e., we perform the random
walk for 20K steps. For 4, 5-node graphlets, we report the
results for the improved estimator.

3-node triangle (g32 )

C3
2 E[Ĉ3

2 ]
|E[Ĉ3

2 ]�C3
2 |

C3
2

LB UB MRE NRMSE

Epinion 1.6M 1.6M 0.0007 1.57M 1.68M 0.015 0.019
Slashdot 552K 551K 0.0020 519K 585K 0.029 0.036
Pokec 32.6M 32.6M 0.0001 31.4M 33.7M 0.017 0.021
Flickr 837.6M 838.4M 0.0009 766.3M 915.5M 0.043 0.054
Twitter 17.3B 17.3B 0.0013 16.3B 18.4B 0.029 0.036
Weibo 213.0M 212.9M 0.0003 192.6M 235.1M 0.048 0.061

4-node cycle (g43 )

C4
3 E[Ĉ4

3 ]
|E[Ĉ4

3 ]�C4
3 |

C4
3

LB UB MRE NRMSE

Epinion 71.5M 71.5M 0.0005 67.8M 75.3M 0.026 0.033
Slashdot 27.2M 27.1M 0.0012 25.5M 28.9M 0.030 0.037
Pokec 358.3M 357.2M 0.0031 331.0M 387.9M 0.039 0.049
Flickr 219.0B 218.4B 0.0029 198.7B 240.0B 0.046 0.057

4-node chordal-cycle (g45 )

C4
5 E[Ĉ4

5 ]
|E[Ĉ4

5 ]�C4
5 |

C4
5

LB UB MRE NRMSE

Epinion 77.7M 77.6M 0.0015 72.0M 83.7M 0.037 0.046
Slashdot 16.8M 16.9M 0.0014 14.6M 19.2M 0.065 0.082
Pokec 466.8M 465.7M 0.0024 398.8M 597.6M 0.101 0.150
Flickr 372.9B 371.3B 0.0043 328.1B 417.5B 0.060 0.074

4-node clique (g46 )

C4
6 E[Ĉ4

6 ]
|E[Ĉ4

6 ]�C4
6 |

C4
6

LB UB MRE NRMSE

Epinion 5.8M 5.8M 0.0023 5.2M 6.5M 0.055 0.070
Slashdot 2.0M 2.0M 0.0015 1.6M 2.5M 0.112 0.140
Pokec 42.9M 42.8M 0.0030 37.9M 48.2M 0.058 0.073
Flickr 40.2B 39.9B 0.0062 33.8B 46.5B 0.078 0.097

5-node center-square (g519)

C5
19 E[Ĉ5

19]
|E[Ĉ5

19]�C5
19|

C5
19

LB UB MRE NRMSE

Epinion 205.6M 205.1M 0.0026 163.6M 251.6M 0.100 0.127
Slashdot 31.1M 31.1M 0.0007 21.3M 42.7M 0.163 0.208

5-node semi-clique (g520)

C5
20 E[Ĉ5

20]
|E[Ĉ5

20]�C5
20|

C5
20

LB UB MRE NRMSE

Epinion 158.2M 158.5M 0.0018 116.5M 213.3M 0.146 0.186
Slashdot 54.8M 54.0M 0.0143 34.9M 77.0M 0.187 0.239

5-node clique (g521)

C5
21 E[Ĉ5

21]
|E[Ĉ5

21]�C5
21|

C5
21

LB UB MRE NRMSE

Epinion 17.4M 17.4M 0.0038 10.1M 26.5M 0.229 0.290
Slashdot 10.7M 10.4M 0.0264 4.8M 17.2M 0.281 0.356

the results when the exact number of edges is known. The
extremely high computation cost of the exact enumeration
algorithms makes it difficult to obtain the 4, 5-node graphlets
counts for all graphs. Hence we only show the results of
4, 5-node graphlets for the graphs whose ground truth can be
obtained. The sample size equals to 20K. The findings are
summarized as follows.

• Our estimator is unbiased. The 4th column of the table
shows the error of average estimate over 1000 independent
runs, which measures the unbiasedness of the estimators.
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Fig. 4: Compare the accuracy of the estimators. We
compare between four estimators, i.e., the basic estimator
when |E| is known (Basic), the improved estimator with
known |E|, the basic estimator with unknown |E| (Basic-
U), the improved estimator with unknown |E| (IMPR-U).
The sample size is 20K.

The error is below 0.7% for all the reported graphlets except
the 5-node graphlets of Slashdot. The results verify our
claims in Theorem 2 and 3.

• Our estimator is accurate. First, we can see that the LB
and UB are close to the ground truth. Second, the MRE
presented in the table is less than 5% for triangles and 4-
node cycle, 3% ⇠ 11% for g4

5 and g4
6 , and 10% ⇠ 30%

for the 5-node graphlets. These results are enough for many
applications, e.g., the computation of graph kernel [25].

• Our estimator has small variance. Our estimator is un-
biased, hence the NRMSE simply represents the relative
variance of our estimator. For the 3, 4-node graphlets in
the table, the NRMSE is around 1.8% ⇠ 15%. For 5-node
graphlets, the NRMSE is below 0.4. Note that the NRMSE
for unbiased estimator is an alternative of the confidence
bound since the [5%, 95%] confidence bound can be written
as Ĉk

i ± 1.96
q

Var[Ĉk
i ] theoretically.

• Our estimator is practical. We only use 20K random walk
steps to estimate the graphlet counts. For most OSNs, one
can easily crawl 20K users’ profile within one day with
just one machine [10]. Besides, given the sample size, the
accuracy of the estimate does not depend on the size of the
graphs, e.g., Slashdot and Twitter have the same MRE and
NRMSE for the triangle estimate given 20K sampled nodes.
However, the nodes of Twitter is 277 times of Slashdot.

Benefit of the improved estimator. We show the gain of the
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Fig. 5: Convergence analysis of the estimators. Basic: the
basic estimator when |E| is known, IMPR: the improved
estimator with known |E|, Basic-U: the basic estimator
with unknown |E|, IMPR-U: the improved estimator with
unknown |E|. We show the relative confidence bound of
the estimates, i.e., LB/Actual and UB/Actual. Here Actual
represents the actual counts.

improved estimator (Eq. 9) in Fig. 4. For fair comparison, we
use the same set of 20K samples and then apply the basic and
the improved estimator separately. We choose the mean of
relative error (MRE) as the accuracy measure. We also show
the estimates when the number of edges is unknown. Note that
the basic and the improved estimator are the same for 3-node
graphlets. For 4-node graphlet, the improved estimator only
changes the estimates when the subgraph contains triangle,
i.e., g4

4 , g4
5 , g4

6 . From the Fig. 4, we can observe that

• The improved estimator reduces the error for all the graphs
and all the graphlet types presented in the figure. For 4-
node graphlets, the improved estimator reduces MRE by
0.001 ⇠ 0.029 while for 5-node graphlets, it reduces MRE
by 0.027 ⇠ 0.037.

Convergence. To show the convergence properties, we choose
graphs Weibo, Flickr, and Slashdot for 3, 4, 5-node graphlets
respectively since they have the largest number of nodes for
each sized graphlets whose ground truth can be obtained. We
only present the results of two graphlet types for each sized
graphlets. Fig. 5 presents the relative confidence bound, i.e.,
LB/(True count) and UB/(True count) with increasing sample



size. We vary the sample size in increment of 1K. For each
choice of sample size, we run 1000 independent simulations.
From the figure, we can see that the estimates converge to the
ground truth rapidly. The LB and UB are balanced over the
ground truth value.
Effect of estimated edges. Fig 4 and 5 also demonstrate
the results when |E| is replaced with the estimated edge
cardinality. However, we can see that the estimated edge
cardinality does not degenerate the performance too much.
Except Flickr, the effect is negligible. And the MRE of
estimates in Flickr increases less than 0.05 with estimated edge
cardinality. Besides, from Fig 5, we can see that the results
with estimated edge cardinality approach these with true |E|
quickly, which implies the effect of estimated edge cardinality
becomes smaller when the sample size increases.

C. Comparison with previous work

We compare our improved estimators with the state-of-the-
art methods PSRW [16] that are designed for graphs with
restricted access. PSRW is only capable of estimating relative
graphlet counts. The relative graphlet count of gk

i is defined
as cki , Ck

i /
P|Gk|

j=1 C
k
j , which can be computed immediately

with the graphlet counts. To estimate the relative counts of
k-node subgraphs, PSRW performs random walk on a super
graph. Each node in the super graph is a (k�1)-node induced
connected subgraph of the original graph. PSRW considers
two steps of the random walk on the super graph as a k-
node subgraph sample. The neighbors of nodes in the super
graph can be generated on the fly. Note that PSRW cannot
be easily extended to estimate graphlet counts. To estimate
the relative counts of subgraphs with our method, we define
the ratio estimator ĉki , Ĉk

i /
P|Gk|

j=1 Ĉ
k
j . In fact, the 2|E| in

the numerator and denominator cancels out in ĉki . Hence the
estimator ĉki can be computed without knowing |E|.
Accuracy. The accuracy of our proposed method and PSRW
is compared in Fig. 6. For both methods, the sample size
equals to 20K. For ease of presentation, we measure the
accuracy on four graphs Epinion, Slashdot, Pokec and Flickr
for all 3, 4-node graphlets. We use the error metric mean
of relative error (MRE). Our proposed method outperforms
PSRW significantly. For example, the MRE of our method
on estimating the relative count of 4-node clique (g4

6 ) is
4 ⇠ 5 times smaller than that of PSRW. Our estimator shows
excellent empirical accuracy for relative counts estimation,
e.g., for the graph Flickr, the MRE of the relative counts
estimation is below 8% for all 3, 4-node graphlets.
Convergence. Fig. 7 compares the convergence performance
of the estimators. Both of our proposed method and PSRW
converge to the actual relative counts as the sample size
increases. However, our proposed estimator has much more
tight bound centered around the ground truth. As shown in
Fig. 7, the gap between LB and UB of our estimator is no
more than half of that produced by PSRW. It implies that our
proposed method also shows extraordinary performance on the
estimation of relative counts.
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Fig. 6: Compare the accuracy of our proposed estimator
IMPR and prior state-of-the-art method PSRW. The sam-
ple size for both methods is 20K.
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Fig. 7: Compare the convergence performance of the
estimators. We show the relative confidence bound of the
estimates, i.e., LB/Actual and UB/Actual. Here Actual
represents the actual relative counts of subgraphs.

VII. RELATED WORK

Exact counting. The state-of-the-art memory-based method
for 3, 4-node graphlet counting is proposed by Ahmed at
el. [9]. This method’s core idea is to count only a few graphlet
types for each edge, then derive the exact counts for other
graphlet types by combining these counts with combinatorial
equations. Hočevar and Demšar proposed a combinatorial
graphlet counting method [20] which leverages orbits and a
system of linear equations. The algorithm in [20] is the state-
of-the-art 5-node graphlet exact counting method. There are
also multiple close works in the area of subgraph enumeration,
e.g., [33]–[36].
Sampling methods. Generally speaking, the access assump-
tion of the graphs can be divided into three categories: (i) full
access, i.e., graphs could fit in the main memory and random



access to graph data is allowed, (ii) restricted access, i.e.,
full graph topology is not available, but APIs are provided
to retrieve information, (iii) streaming access, i.e., edges of
graphs appear in streaming. Various sampling methods have
been designed for different settings. Usually methods designed
for a specific setting have the best performance in that setting.
The sampling methods with full access assumption include
the wedge sampling [3], the 3-path sampling [2], Moss [18],
GRAFT [37], etc. For streaming graphs, works on graphlet
counts estimation include the methods using independent edge
sampling [5], [38]–[41] and reservoir sampling [6], [7].

Most relevant to our work are the methods that are designed
for graphs with restricted access, e.g., [11], [16], [19]. These
sampling algorithms focus on estimating the relative graphlet
counts. In [19], the authors used the Metropolis-Hasting
random walk to estimate the relative counts of 3, 4, 5-node
subgraphs. In [11], the authors designed a random-walk based
method to estimate the clustering coefficient (the relative count
of triangles among all 3-node subgraphs). Wang et al. [16]
proposed three random walk-based algorithms to estimate the
relative counts of any k-node subgraphs. Pairwise subgraph
random walk (PSRW) has the best performance among them
and is the state-of-the-art method to estimate the relative
counts. Note that the methods in [11], [16], [19] cannot be
easily extended to estimate the graphlet counts.

VIII. CONCLUSION

We propose an efficient random walk-based method to
estimate the number of 3, 4, 5-node subgraphs in OSNs. Our
algorithm can also be easily extended to graphlets of larger
size. Both theoretical analysis and experimental evaluation
validate the unbiasedness and convergence of our proposed
estimators. Our estimators show excellent empirical accuracy
for graphlet counts estimation. Comparison with prior state-
of-the-art method also shows the superb performance of our
estimators in estimating relative graphlet counts.
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local and global triangles in fully-dynamic streams with fixed memory
size,” 2016.

[8] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies:
Mapping the empirical and extremal geography of large graph collec-
tions,” in WWW, 2013.

[9] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in ICDM, 2015.

[10] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
facebook: A case study of unbiased sampling of osns,” in INFOCOM,
2010.

[11] L. Katzir and S. J. Hardiman, “Estimating clustering coefficients and
size of social networks via random walk,” TWEB, 2015.

[12] L. Katzir, E. Liberty, and O. Somekh, “Estimating sizes of social
networks via biased sampling,” in WWW, 2011.

[13] Z. Zhou, N. Zhang, and G. Das, “Leveraging history for faster sampling
of online social networks,” PVLDB, 2015.

[14] R.-H. Li, J. Yu, L. Qin, R. Mao, and T. Jin, “On random walk based
graph sampling,” in ICDE, 2015.

[15] C.-H. Lee, X. Xu, and D. Y. Eun, “Beyond random walk and metropolis-
hastings samplers: why you should not backtrack for unbiased graph
sampling,” in SIGMETRICS, 2012.

[16] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan,
“Efficiently estimating motif statistics of large networks,” TKDE, 2014.

[17] R. Diestel, Graph Theory, 4th Edition, ser. Graduate texts in mathemat-
ics. Springer, 2012.

[18] P. Wang, J. Tao, J. Zhao, and X. Guan, “Moss: A scalable tool
for efficiently sampling and counting 4- and 5-node graphlets,”
arXiv:1509.08089, 2015.

[19] M. Bhuiyan, M. Rahman, and M. Al Hasan, “GUISE: Uniform sampling
of graphlets for large graph analysis,” in ICDM, 2012.
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