A Fast and Accurate lterative Solution of a Multi-class
Threshold-based Queueing System with Hysteresis

Leana Golubchik’
Department of Computer Science & UMIACS
University of Maryland at Ccllege Park, USA

leana@cs.umd.edu

ABSTRACT

In this paper, we consider a K-server mult:-class threshold-
based queueing system with hysteresis in which the number
of servers, employed for servicing customers of each class i,
is governed by a forwerd threshold vector F; = [F;(1), Fi(2),
..., Fi(K; — 1)] and a reverse threshold vector R = [Ri(1),
Ri(2), ..., Ri(K; — 1)]. There are many applications and
systems where a multi-class threshold-based queueing sys-
tem can be of great use. One motivation for using threshold-
based techniques is that such systems incur significant server
setup, usage, and removal costs. And, as in most practical
situations, an important concern is not only the system per-
formance but rather its cost/performance ratic. The mo-
tivation for use of hysteresis is to control the cost during
momentary fluctuations in workload. Moreover, servers in
such systems are often needed by multiple classes of work-
loads, and hence, it is desirable to find good approaches to
sharing these servers among the different workloads, prefer-
ably without statically partitioning the server pool among
the classes; threshold-based techniques constitute one cate-
gory of such approaches. Consequently, an important and
distinguishing characteristic of our work is that we consider
a multz-class system, which is needed in modeling of many
applications and systems. Cur main goal in this work is
to develop an efficient method for solving such models and
computing the corresponding performance measures of in-
terest, which can subsequently be used in evaluating designs
of threshold-based systems.

1. INTRODUCTION

In this paper, we consider a multi-class K-server threshold-
based gueueing system with hysteresis in which the number
of servers, employed for servicing customers of class ¢, ¢ =

*This work was supported in part by the NSF CAREER
grant CCOR-98-96232.

"This work was supported in part by the Mainline and RGC
research grants. ’

Permission to make digital or hard copies of all or part of this work far
personal of classroom use is granted without fee pravided that

copies are not made or distributed for profit or commercial advant

-age end that capies bear this notice and the full citation on tha first page.
To copy otherwise, to republish, to post an servers or to

vedistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS 2000 6/00 Santa Clara, California, USA

© 2000 ACM 1-5B8113-184-1/00/0006...$5.00

John C.S. Lui'

Department of Computer Science & Engineering

196

The Chinese University of Hong Kong
cslui@cse.cuhk.edu.hk

1,... N, is governed by a forwaerd threshold vector F; =
[Fi(1), Fi(2), ..., Fi(K: —1)] (where Fi(1) < F3(2) < --- <
Fi(K;—1)) and a reverse threshold vector R; =|R.(1}, Ri(2),
ooy Bi(K; — 1)) (where R;(1) < Ri(2) < - -+ < Ri(K; — 1)).
This multi-server multi-class qucueing system has a total
of K servers where the allocation of servers to classes is
performed as follows. Each class is allocated a minimum
of one server. Thus, a customer of class ¢ arriving to an
empty system is served by a single server. A new arrival of
a class i customer to a system with F;(j) class i customers
already there (and j servers already allocated to that class)
forces an attempt.to allocate one additional server to class
i, where j = 1... K; — 1, and Kj; is the maximum number of
servers that can be allocated for service of class ¢ customers.
A departure of a class ¢ customer from a system (with 5 +1
servers allocated to that class prior to this departure} which
leaves behind R; (5) customers of class 1 forces a de-allocation
of a server, where j = 1...Ki — 1 — that is, it forces the
return of a server, that was earlier allocated to class i, to the
pool of “free” servers which are available for allocation to all
classes. Hence, the IV classes share a pool of K servers, with
a dynamic allocation of servers to classes governed by a set of
thresholds with hysteresis behavior. If Z::Y__l K; < K, then
the classes do not “interfere” with each other. Of course, the
more interesting case is where YV K; > K, as motivated
below.

One motivation for using a threshold-based approach is that
many systems incur significant server setup, usage, and re-
moval costs. And, as in most practical situations, an im-
portant concern of a system designer is not only the system
performance but rather its cost/performance ratio. Further-
more, servers {(resources) in a system are often needed by
multiple classes of workleads (applications), and hence, it
is desirable to find good approaches to sharing these sexrvers
among the different workloads, preferably without statically
partitioning the server pool among the classes. More specif-
ically, under light class i loads, it is not desirable to op-
erate unnecessarily many servers for that class, due to the
incurred setup and usage costs as well as due to the perfor-
mance consequences of that class under-utilizing the servers
while other classes are (possibly) experiencing high loads.
On the other hand, it is alsc not desirable for a system
to exhibit very long delays, which can result from lack of
servers under heavy loads. One approach to improving the
cost/performance ratio of a system is to dynamaically react to
changes in workload through the use of thresholds. For in-

stance, one can maintain the expected job response time in a
system at an acceptable level, and at the same time maintain
an acceptable cost for operating that system, by dynamically
adding or removing servers, depending on the system load.
Similarly, one can use the thresheld-based server allocation
approach to reduce the sensitivity of performance character-
istics of a class of customers to the workload of other classes
without having to statically partition resources between the
classes. {We illustrate this further in Section 4.)

There are many applications where threshold-based resonrce
management policies can be employed, and thus performance
evaluation of such systems through analysis of multi-class
threshold-based queueing systems can be of great use. For
instance, the Novell file server maintains a memory pool such
that a fraction of it is used for communication buffers and a
fraction is used for file buffers, where threshold-based poli-
cies are implemented in order to make decisions about when
to increase the number of network buffers and when to de-
creases it; the threshold values are based on perceived packet
losses due to increases in network traffic activity. Similarly,
OS design has been moving towards maintaining a common
buffer space pool that can be dynamically managed between
the various 1/0 processes. Furthermore, in transport proto-
cols of communication networks [12], several transport-layer
connections are multiplexed onto a single network layer con-
nection. Whenever the traffic exceeds a certain threshold
in the network-layer connection, anocther network-layer con-
nection can be created to service the incoming traffic from
the transport layer. Using such a control mechanism, severe
degradations in throughput and delay can be avoided; at the
same time operation costs can be kept at an acceptable level.
Another example application is a system providing informa-
tion query service via the Internet. Asthe number of queries
increases, the number of servers, needed to maintain certain
{acceptable) system response time characteristics, is also in-
creased. Since the cost of setting up server connections can
be significant!, the use of a threshold-based approach can
result in a cost-controlled creation and deletion of these con-
nection, according to the changes in the workload. Thus, the
mode] presented in this paper and its efficient solution will
be beneficial for many systems and applications.

As in the case of electronic circuits that are prone to oscil-
lation effects, a “simple” threshold-based system may not
suffice. In a computer system, one reason for avoiding oscil-
lations are the above mentioned server setup and removal
costs, i.e., oscillations coupled with non-negligible server
setup and removal costs can result in a poor cost/performance
ratio of a system. More specifically, it is desirable to add
servers only when a system is moving towards a heavily
loaded operation region, and it is desirable to remove servers
only when a system is moving towards a lightly loaded op-
eration region — it is not desirable to alter the number of
servers during “momentary” changes in workload, i.e., dur-
ing oscillations. Such oscillation regions can be avoided by
adding a hysteresis to the system — hence the motivation for
looking for efficient analysis techniques of threshold-based
queuneing systems with hysieresis behavior.

'For instance, it may be necessary to broadcast information
about the ncwly added server to the already active servers
in the system.

197

As already mentioned, a threshold-based queueing system
with hysteresis is defined by the forward and the reverse
threshold vectors (see Section 2 for details). The actunal val-
ues, or rather what are “good” values for these vectors is
a function of many factors, such as the characteristics of
the server setup, usage, and removal costs, characteristics
of the arrival process and the service rates, as well as the
possible “interaction” between the different classes of work-
loads. Our main goal in this work is to develop an efficient
method for solution of multi-class multi-server threshold-
based gqueueing models with hysteresis and computation of
corresponding performance measures of interest. The ques-
tion of optimal values for the threshold vectors is, in general,
a difficult problem and is cutside the scope of this paper. We
must point out, however, that efficient model solution tech-
niques can be of great use in evaluating various parameter
settings (such as the threshold values) and hence are needed
for performance evaluation of systems that manage resources
in a threshold-based manner. Such analytical models are es-
pecially useful at design time, when the speed of evaluation
is key. Thus, we believe that our solution method, due to its
efficiency, facilitates accessible experimentation techniques
for investigating the “goodness” of various threshold-based
designs and parameter settings (refer to Section 4 for nu-
merical examples).

Given the above motivation for the use of threshold-based
systems with hysteresis, in this paper we present an efficient
technique for solving the corresponding analytical models
and computing various performance measures of interest.
We begin with a very briefl survey of some of the existing
literature on the threshold-based queuneing problem. A two-
server system is considered in {13], [14], and [20]. An approx-
imate solution for solving a degenerate form of this problem
(where all thresholds are set to zero) is presented in [6, 8);
an approximate solution for a system that employs (non-
zero) thresholds is presented in [21] (but without hystere-
sis). In {7], the authors solve a multi-server threshold-based
queneing system with hysteresis, using the Green’s function
method [5, 9, 10]. In [16] we give a solution of several forms
of the multi-server threshold-based gueueing system with
hysteresis using stochastic complementation [17]. Lastly,
techniques for computation of bounds for performance mea-
sures of multi-server threshold-based queucing systems with
hysteresis and non-instantaneous server activation are given
in [3].

In this work, we consider and solve a multi-class multi-server
threshold-based queueing system with hysteresis. The con-
tributions of this work are as follows. To the best of our
knowledge, none of the works described above give an effi-
cient analytical solution technique for analyzing multi-class
threshold-based systems with hysteresis behavior. Since in
many applications, such as the ones described above, mul-
tiple types of workloads “compete” for a pool of resources,
we consider it an important and distinguishing characteris-
tic of our work. Specifically, we present an iterative solution
technique which solves the multi-class model by “breaking”
it up into N single class models, “coupled” through a set
of model parameters which capture the interaction between
classes. As shown in Section 4, in most test cases, this it-
erative approach produces accurate results and allows for
efficient computation of performance measures of interest.

Furthermore, we study the performance characteristics of
threshold-based systems and show that proper choices of
design parameters, such as threshold values, can produce
significant improvements in system performance. Using this
study, we illustrate the utility of our approach in evaluating
designs of threshold-based systems, where “good” parame-
ter settings constitute not only an important bul a difficult
problem. We believe that the efficiency and accuracy of our
approach facilitates large-scale experimentation with param-
eter settings and subsequent performance evaluation studies
of threshold-based designs of systems.

Finally, we note that a variety of iterative approaches have
been used in the literature for construction of approxima-
tion techniques (e.g., refer to [2]). For instance, an iterative
technique for a somewhat different contrel schemes for dy-
namic resource sharing between multiple classes is employed
in {18, 19].

The remainder of this paper is organized as follows. In Sec-
tion 2 we give a description of our model (with further details
given in [4]). Section 3 describes our iterative approach to
solving the multi-class model (with details of the derivation
of an individual class model solution, utilized by the itera-
tive approach, given in {4]). The goadness of this approach,
i.e., its accuracy and utility in system design and evalua-
tion, is discussed in Section 4 through the use of numerical
results. Finally, our conclusions are given in Section 5.

2. SYSTEM MODEL

In this section, we describe our multi-class threshold-based
queueing model with hysteresis behavior which has an in-
finite state space and can be defined as follows. There
is-a total of K servers in the system, where K is unre-
stricted. The service time requirements of a class 7 cus-
tomer are exponentially distributed with parameter p:. The
customer arrival process is Poisson with rate A and prob-
ability o; that an arriving customer is of class z, where
va:l a; = land 1 £ ¢ < N. That is, we consider a
multi-class system with N classes, where N is unrestricted.
Addition and retnoval of servers for serving customers of
class i is governed by the forward and the reversc thresh-
old vectors F; = [Fi{l), F5(2), -, F3(Ki —1)] and R; =
[R.‘(l),R.‘(z),“ .)Ri(Kl' - 1)] where F‘;(]) < F.(j + 1) for
1</ Ki-2, Ri(j) <R+ 1) for 1 <7< K;—2, and
Ri() < Flj) for 12§ < K ~ L.

Given a pool of K servers where each server is able to serve
a customer of any class, each class i starts.out with one
server and may attempt to obtain at most K; servers. These
servers are allocated for service of class 7 customers and
returned to the pool of available servers based on the number
of class 1 customers currently in the system (as stated more
formally below). In general, z:vzl K may be greater than,
equal to, or less than K'; although the more interesting casc
is where Z;N:l K; > K.

Given a K server N class threshold-based queueing system
with hysteresis, we model it as a Markovian process M with
the following state space S:

S

{(n1,51,n2,82,... ,ny,sn) | n: 20,

si€{1,2,...,K:},) s <K,i=1,..,N}

198

where n; is the number of class i customers in the system
and s; is the number of servers currently allocated to class
1. Upon an arrival of a class ¢ customer, if Fi(j) € n; <
Fi(5) + a! where a! > 0 and j = s;, then the system at-
tempts to allocate an additional server for service of class i
customers, which is possible only if Zf‘rzl 8; < K. Note that
in a system where vazl K; > K, it may not always be pos-
sible to allocate another server to class ¢ upon arrival, since
at that time all K servers may have already been allocated.
In this case, the arriving class i customer joins the queue of
class ¢ requests as long as Fi(j) < n: < Fi(j) + al (where
af > 0 and j 3i). When n; = Fi(j) —l—a'g, the arriving
class i customer is rejected by the system (i.e., dropped) of
there is no server available for allocation to class i (i.e., if
> s; = K). For correctness, we assume the following con-
straint on all of:

Fi(G}+al < Fi(j+1)+at?

fori=1,2,...,Nand 7 = 1,2,... ,K; — 1. We also as-
sume that af{ * = 00, hence, we have no restrictions on
queue length when the maximum number of servers that
maybe needed by class i have been allocated (i.e., when
8; = K;). The limitation on queue length when s; < K; is
motivated by system design considerations. That is, if the
system reaches a point where its design dictates that an-
other server be allocated for class ¢z workload, but a server
is not available (i.e., all K of the system’s servers are al-
ready allocated), then it is reasonable to assume that the
system is (at least) temporarily overloaded, partly due to
sharing of resources with other classes. And, rejection or
blocking of customers is a reasonable approach to dealing
with overload conditions. Of course, a “real” system will
alsc not have an infinite queue length, when the maximum
number of servers (K;) for class ¢ has been allocated. In this
case, we may either (1) use a finite queue length model (i.e.,
af{* is finite) and study the system’s performance under a
given qucuc size limitation, or (2) allow an infinite queue
length (i.e., afﬁ = oo} and use the model to study queue
length requirements of the corresponding system. Qur solu-
tion methodology (refer to Section 3) allows for either type
of a model, but for simplicity of exposition, in the remain-
der of the paper we will focus our discussion on the infinite

queue version (i.e., where a] is finite, for j=1,... ,K; -1,
and af" = o0)?.
Formally, the transition structure of A1 is as follows. The

transitions corresponding to arrivals are:

Aa;
(n1,51,... , i, Sy .00 NN, SN) —e—D
(n1,s1,...,m +1,5,... ,nN,3N) if v (1)
Aae;
(n1,31,...,ni,s,;,...,nN,sN) _——
(na,s1,...,ni+ 1,8 +1,... ,ny,sn) if Ca (2)

*Note that, the server allocation/deallocation scheme de-
scribed here does not preclude potential idling of servers,
due 1o (a) requiring that each class is allocated at least one
server and (b) allocation of servers to classes on arrivals only.
Many other control schemes are possible and are subject of
future work.

where (] is

Cr=|(EG<K)A(mi<F(s))|V]sa=Ki|V

((51 < KA (Z 55 = K) A (Fi(si) < ne < Fi(si) +a:i))

=1
and Cy is
N
Co = |s: < Ki|A ZS.’ < KA F{(Si) < n; < Fi(si) +a:i
F=1

The transitions corresponding to departures are:

Sipii
(n1,81,... 14, 84,... , AN, 8y) ——
(n1,81,... ,ni— 1,84 ... ,nN,8n) f C3 (3)
Sijks
(n1,81,...,m4,86,... ,nN,SN)
(m,sl,...,ng—l,si—l,...,nN,sN) if Oy (4)

where € is

(3 = ((ni > A (s = l)) v

((ni > A (i —1>Ri{si—1))A (si>1))
and C4 is
Ci= ((n,' >0 A(ni—1=FRi(si — 1)) A(s: > 1))

A more detailed explanation of the derivation of conditions
C1 through Cy is given in [4].

ITERATIVE METHOD FOR SOLUTION
OF A MULTI-CLASS MODEL

In this section we describe our s{erative approach to solving
the model presented in Section 2. As described in Section
2, the corresponding Markov process, M, is infinite (in mul-
tiple dimensions), and hence our choices for solution are to
either (a) simulate M, or (b) look for special structure, or
(¢) look for efficient approximation techniques. Since M ap-
pears to lack sufficient structure for an efficient exact solu-
tion, below we describe an approximate solution technique,
using iteration. The use of an approximation is motivated
by the desire to construct an efficient solution approach (and
simulation can be significantly slower than analytical solu-
tions).

3.

3.1 Basic Approach

The basic approach that we pursue here is as follows. The
original model M is approzimately “broken up” into N sin-
gle class Markovian models, M1, M2z,... , Mp, which are
“coupled” through a set of blocking probabilities (see Sec-
tion 3.2 for a more detailed description of the A1;’s). More
specifically, the interaction between classes occurs when class
t requires allocation of another server (due to the crossing
of a forward threshold), and no servers are available in the
system (i.e., all K servers have alrcady been allocated) due

199

to the workload of other classes. Hence, in general, there
is a non-zero probability that class i, which has already
activated s; servers, is not able to add a server upon the
forward threshold crossing. Let us refer to this as a “block-
ing” probability P; ., which (approximately) captures this
interaction between classes®. We now describe our iterative
approach.

Let Mg") be the Markovian process corresponding to the
individual class 7 model at iteration n with a correspond-

ing steady state probability vector 7?5"). The parameters of

each M§”’ are computed as a function of blocking proba-
bilities, PE") = {P,-(_’;), 'P,v(:;), ... ,P‘.(";()-i_l}, which are in turn
computed as a function of the steady state probability vec-
~(n—-1)
tor, T

1

give the details of the construction of M and the compu-

, obtained during the previous iteration. (We

tation of 'frf") below*.) Then, an overview of our iterative
approach is {a more detailed and formal description is given
in Section 3.3):

1. construct Mﬁ“’, Mgo), .. ,M&?); set n. = 0 (this is it-
eration 0);

2. solve Mgn),Mgn), .o ,MS\?),
sponding steady state probabilities to obtain 7?5") , ﬁ'é"),

s,

i-e., compute the corre-

;setn=mn-+1;

3. use these steady state probabilities to compute Pﬁ"),
M Pgl);

4. use these blocking probabilities to update the indi-
vidual class models, i.e., construct ME"), M

ME\’,I), where for each ¢ = 1,... N, parameters of
M!™ are computed as functions of P{™ (but not PJ(-")
where j # 1);

5. continue the iterative process (i.e., go back to step 2)
until the values of all P;’s converge.

3.2 Individual Class Model

Since our iterative approach involves solution of individ-
nal class models (M;’s) we now briefly describe the class
i model, which can be defined as follows. There are K;
servers {K; is unrestricted), each with an exponential ser-
vice rate y;. Customer arrivals are governed by a Pois-
son process with rate A; = a;A. Addition and removal of
servers is governed by the forward and the reverse thresh-
old vectors, namely F; = [Fi(1), Fi(2),..., Fi(K; — 1)] and
R, = [Ri(1), Ri(2), .. , Ri(K = D)}

Given a K;-server single class threshold-based queueing sys-
tem with hysteresis, we model it as a Markov process M,
with the following state space S;:

S,:{(k,J) I k201j€{1’21'-' ’K"}}

where k is the number of customers in the class i queueing
system and j is the number of allocated servers. Figure 1

30Of course, this is an approximation, and hence, the fol-
lowing description of the A4;’s used in the iterative solution
technique is also an apprezimaiion.
*Note that there are multiple approaches to constructing
MEO)’S, te., multiple ways to start the iteration; we give
details of one such approach below.

Figure 1: State transition diagram for a class i system with K; = 2.

illustrates the state transition diagram for such a system
where K; = 2. Formally, the transition structure of M; can
be specified as follows®, where all transitions are from state
(k, 7), with the state description given above:

Next State Rate | Condition |
(k+1,5) Ai ALj< K
(k< Fi(3))
(k+1,5) Ai j=Ki
(k+1,5) AP 1<i<K)A
(Fi(§) <k < Fi(j) +al)
(E+1,7+1))\.'(1—7),',,-) (1Sj<Kg)/\) (5)
(Fi(j)<k<F) +a)
(k—1,4) Jisi (B2 1n
(1<j< KA
(k—1>Ri(7 —1))
k=1,7-1) Jtki (k>1)A(1<j<K;)
Ak~1=Ri(j—-1))
(k—1,4) Hi G=DA(k=1

We now proceed to a more detailed description of our iter-
ative solution technique for the multi-class system. We do
this under the assumption that, given P;, we know how to
construct A; (using Equation (5) above) and compute 7,
(the steady state probability vector corresponding to Af;).
The procedure for computing 7, is given® in Section 3.5.

3.3 Iterative Computation
First, note that in general, there are two cases to consider
here:

Case 1: Zil K; € K; that is, we have a “trivial” case,
where the classes do not interfere with each other, and
we can solve each individual class model once (i.e., no
need for iteration) nsing the procedure given in Section

3.5 with P, ; =0, Vi,j.

Case 2: va=1 K; > K, where it is possible that an attempt
at server allocation for class 1 may fail because all K
servers in the system are currently allocated. As de-
scribed above, in this case a form of blocking occurs
and we solve the model using our iterative approach
outlined in Section 3.1 whose details are now presented
below.

5Note that, the transition rates described here are a function
of the blocking probabilities, P, which change from itera-
tion to iteration, as outlined above; however, for simplicity
of notation, we do not indicate the iteration step number in
the description of the transition structure of a class ¢ model.
8The motivation for first discussing the iterative technique
is to simplify the presentation of our approach.

200

Note also that, the main difficulty in the iterative technique
outlined in Section 3.1 is in determining an appropriate pro-
cedure for computing the blocking probabilities which cap-
ture the class interaction, i.e., the probabilities that, upon
a forward threshold crossing, it is not possible to allocate
another server to class i. Recall that, during the n'* it-
eration {n > 0), ’Pi(’?) is the blocking probability of class
i (1 € { € N) to which ! servers have already been allo-
cated (1 £ ! € K; — 1). Before we proceed, let us state the
following definitions.

DEFINITION 1. Let X and Y be two non-negative random
variables having velues in {1,2,..} and let Tx and wy be
their respective probability mass functions. Let Z be another
non-negative random variable where Z = X+), then wz =
Tx @ Ty where @ is the convolution operalor.

DEFINITION 2. Let X be a non-negative random varieble
having values in {1,2,...,} and let wx be its probability
mass funciion. Let

|

Then the probability mass function of X”, denoted by -,
is equal to g(mx, L1, La) where function g is defined such

that:
L L < k< Ly

”X’[k] = { : m=py Txlm

Let frf")[k,j] be the steady state probability of class ¢ hav-
ing k customers (k > 0) in the system and an allocation
of j servers (1 € j € K;), computed during the n** iter-

X
0

I <X <Ly

otherwise.

(6)

otherwise

ation. Let W::n) denote the steady state probability vector

of the number of servers allocated to class 1, where 7{™)[j]
denotes the steady state probability of § servers having been
allocated to class ¢, as computed during the n** iteration.
Thus, we have:

w"i) = 37k) (0
k

Finally, let QE") be the transition rate matrix corresponding

to the class ¢ model M§“’, during the »*” iteration, which

is computed using the transition structure of ME") given in

Equation (5) and 'P{('T;_l), where 1 €1 € K; — 1. Then, the

iterative procedure is as follow:

1. Initialization step: set n = 0 and set P(O) 0 for

1 € ! < K;. Given these initial values of blockmg prob-
abilities, for each class 7, we can construct Qf) using
the transition structure given in Equation (5) and then
compute 71'() using the procedure given in Section 3.5.
Once we compute the steady state probability vector
igﬂ) for each class ¢, we can then compute their respec-
.EO) ’s, using
Equation (7). The #”s are in turn needed in the
computation of the blocking probabilities, ’P(g (step
2 below).

tive server allocation probability vectors, 7

. Updating of blocking probabilities step: n =n + 1, and

0 if K> E
P o= <0 K —1> z:J L i K (8)
I'(+,1,n) otherwise

The first condition in Equation (8) indicates that the
system has a sufficient number of servers for all classes
(we include this for completeness). The second condi-
tion indicates that the system has sufficient resources
to allocate at least one more server to class 1 with-
out affecting the maximum possible server allocation
of other classes. In the last condition, the I" function is
used to compute the blocking probability, at iteration
n, for class ¢ which has [servers already allocated to
it.

I'{i,!,n) can be computed as follows. Let A, (%,{,n)
be the random variable, at iteration n, denoting server
allocation of class m, when class 1 has been allocated
! servers. Let Y,,(%, [, n) be the probability mass func-
tion of A, (i, {,n). Then we have:

T d,n) = g@xf 1, L) (9)

form={1,2,... ,i—1,i+1,..., N} where function g
is defined through Equation (6) and L., is as follows:

L. Km fK-I-(N-2)>K.
K—Il-(N-2) otherwise

(n—1) .

(10)

and 7, in Equation (9) is computed using Equa-
tion (7). The normalization in Equation (9) is used
to account for the fact that if we know that the sys-
tem already allocated [servers to class i, then the sys-
tem only has (K — i) servers remaining. Out of these
(K —I) remaining servers, the system needs to alio-
cate {N — 2) to customers that are neither in class 2
nor in class m (i.e., the system allocates at least one
server to each class). Therefore, if the sysiem poten-
tially has at least K., available servers, then A, (4,1, n)
can have values in {1,...,Kn.}; otherwise, the ran-
dom variable Am(i !,n) can only take on values in
{1,2,... K-1-(N-2}}.

Let B(i,1,n) be a non-negative random variable, at it-
eration n, denoting the server allocation of all classes
except class i, where class ¢ already has [servers al-
located to it. Let ¥(i,/,n) be the probability mass
function of B(i,1,n). Then we have:

=g (T2 Lm) ® Lol lom) - T

(i, i, n) i-1(4,1,n)

OTin1(i,1,n) ® - ® Tw(i,1,n)) ,N-l,K—-l) (11)

The normalization in Equation (11) is used to account
for the fact that if the system has already allocated
{ servers to class ¢, then the number of servers that
have been allocated to other classes can only range in

(N-1,N,... ,K—1}.

Lastly, I'{3, 1, n), the function used to compute blocking
probabilities, at iteration n, corresponding to class 2
with ! allocated servers is:

Plitn) = (264w K —0) («700) a2

where ¥(i,{,n; K —) = Prob[B(?,!,n) = K — 1] and
W(i, I, n) is computed using Equation (11).

3. Updating of individual class models siep: given the
blocking probahilities Pf_'l') of class ¢ in Equation (8},
we can compute the new rate matrix QE“) (based on
the transition structure given in Equation (5)) and
then compute the corresponding steady state proba-

bilities 7r (usmg the procedure given in Section 3.5)

as well as 11'() , the probability vector of server alloca-
tion of class i (usmg Equation (7)). (The 'rr(")'s will in
turn be needed in the updating of the blockmg proba-
bilities, ‘P("H)’s (step 2 above).)

4. Test of convergence step: if |'P,-(.’;)—P:.(,T,"1)i < ¢ for each
class ¢, 1 <4< N,and each [, 1 €< < K; — 1, then
stop. Otherwise, go to step 2 and continue iterating.

3.4 Computation of Performance Measures
In this section we briefly discuss computation of perfor-
mance measures. Given the steady state probabilities 7;,¢ =
1,..., N, computed using the iterative approach described
above, we can compute various performance measures of in-
terest. More specifically, for each class i we can compute
performance measures which can be expressed in the form
of a Markov reward function, R, where

Ri=) #ilk, j]Rlk, /)
L]

and R:(k,3) is the reward for state (k,7) of class i. Some
useful performance measures include: (a) expected number
of customers of class i, (b) expected response time for cus-
tomers of class i, (c) probability of dropping a customer of
class 1 upon its arrival, (d) throughput of class 7 customers,
and so on.

For instance, let E[N;] and E[T;] denote the expected num-
ber of customers and the expected response time, respec-
tively, of the class ¢ maodel, corresponding to the Markov pro-
cess M;. Then E[N;] can be expressed as 3°, . k#i[k, j]. (A
more detailed expression for [N;] is given in [4].) Of course,
using Little’s result [15], we have E[Ti] = {= E[N;], where A}
is the class 1 throughput. To compute A7 we need to account
for the customers that are dropped from the system (see Sec-
tion 2). Hence, A7 = Ai(1 — B0 Py #i[Fi(j) +of 1))

We believe that the more interesting performance measures
are those computed on a per class basis, since a useful part
of studying performance of multi-class threshold-based sys-
tems is to discover the effect that the various classes have on

201

one another. Hence above (and in Section 1) we have concen-
trate on per class perlormance measures. However, we can
also use these to compute overall system performance mea-
sures, for instance, as a weighted average of the individual
class performance measures. For example, we can compute
the expected system response time, E[T), as follows:

A

- Al«
LR+ 22 BT + - --
= EN+ B+ +

where A* = Efi] AL

)\I: E[Tn]

E[T] =

3.5 Analysis of the Individual Class Model

In this section we briefly summarize the solution technique
for the individual class model which was defined in Section
3.2. Specifically, we use the single class solution technique
we derived in [16] with some modifications needed to ac-
count for the structure of the multi-class model. Since these
modification are mostly straightforward, we only summarize
the solution technigue in this section, and give the details
in [4].

The general approach is as follows. As already stated, we
model the class i queueing system as a Markov process, M,
where: (1) the main goal is to compute the' steady state
probabilities of the Markov process and use these to compute
various performance metrics of interest and (2) the main
difficulty is that the Markov process is infinite (see Section
3.2) and thus “difficult” to solve using a “direct” approach?.

As is often done in these cases, we need to look for special
structure that might exist in the Markov process, specif-
ically, we take advantage of the stochastic complementa-
tion technique [17]. The basic approach to computing the
steady state probabilities of the Markov process and the
corresponding performance measures is as follows. We first
partition the state space of the original Markov process M;
into disjoint sets. Using the concept of stochastic comple-
mentation, for each set, we compute the conditional steady
state probability vector, given that the original Markev pro-
cess M; is in that sel. (A relatively simple construction
of the stochastic complement is possible due to the special
structure that exists in the individual class models; specifi-
cally we expleit the “single entry” struciure as in [16].) By
applying the state aggregation technique [1], we aggregate
each set into a single state and then compute the steady
state probabilities for the aggregated process, i.e., the prob-
abilities of the system being in any given set. Lastly, we ap-
ply the disaggregation technique [1] to compute the individ-
nal (unconditional) steady state probabilities of the original
Markov process AM;. These can in turn be used to compute
various performance measures of interest. (Refer to [4] for a
detailed derivation of the solution of AM;.)

4. NUMERICALEXAMPLES AND VALIDA-
TION OF APPROXIMATION

In this section, we present numerical examples which illus-
trate (1) the accuracy of our iterative solution technique

"We could consider finite versions of the model or trunca-
tion of the infinite version [11]; however, in either case the
Markov process would still be very large and the computa-
tional complexity of a “direct” solution for a reasonable size
system still high.

202

as compared with simulation as well as {2) the use of our
solution technique in studying performance of designs of
threshold-based systems with hysteresis behavior.

Accuracy of our approach.

We begin with the illustration of accuracy of our iterative
solution. Thus, in addition to solving each example model,
represented by the Markovian process A4, using our iterative
approach (as described in Section 3) we also simulate M,
for the purpose of validating this solution technique. In
all experiments presented here, our iterative approach uses
¢ = (.0000001 (refer to Section 3 for details). Note that,
in this section, we use the mean response time of each class
1, as the performance metric of interest. Lastly, parameter
settings® for all test cases presented in this section are listed
in Table 1.

Figures 2 and 3 depict the difference in results obtained
through simulation and through the iterative approach.

L class™ (iterative) —+— T T T
5 class 1 {simulation) ---%-— -
class 2 (iterative) ---Me---
class 2 (simulation) 8- [-~
4 |- class 3 (iterative) ---@-- ol ~

class 3 (simulation) ---8--- .

Average Response Time of Different Classes

3 [» B
2t |
tr 1
0 1 L 1 1 1 L

¥] 1 2 3 4 5 6

System Arrival Rate
Figure 2: Test Case #1A.
33 T L T

T
class 1 (iterative) ———
3k class 1 (simulation) ——-»-- e
class 2 (iterative) ---%---
class 2 (simulation) B
class 3 (iterative) ——#—
class 3 (simulation) --2:--

23T

Average Response Time of Different Classes

2 - -
15 E
1k _
05 r
0 1 1 1 -
0 5 10 15 20
System Arrival Rate

Figure 3: Test Case #1B.

As can be seen from these figures, the difference between
the two results is small (e.g., in the case of Figure 2, the
largest difference is = 5%). Given such small differences,
which are difficult to assess using graphs, we present the
remainder of the accuracy related experiments using tables.

For ease of specification, we use the following notation ai
{af,... ,af‘gl] to indicate the a! values for each class ¢ with

J allocated servers (see Section 2).

| Test Cases

Parameters Settings

Test Case #1A4

K=10,Ki=K;=Ks=4,a1 =0.6,a2 =03, a3 =01, g = p2 = 3 = 1.0
F, = [4,8, 12],R1 = [2,6, 10]., Py = [8, 12, 16],R2 = {5, 9,13],
Fy= [6,10, 14], B3 = [3, 7, ll], a = [2,2,2],02 = [2,2, 2],0.3 = [‘2,2,2].

Test Case #1585

K=100K =Ky=Ks=4,01 =30, 2 =20, 23 =12
F, =F2=F3=[4,8,12],R1 = Ry = R3 =[2,6,10]
a] =gz =az = {2,2,2],0{1 =0.5,00 =03, 03 =02

Test Case #2

K=10,K1 =4, Ks =4,K3 =4, 41 = p2 = pz = 1.0,

Py =F;=F3;=1[6,10,15], Bi = Rz = Ra=14,5,8],e2 =ay=az =[3,3,3].

Test Case #3 K=10,K1=3FK:=3,Kz =8, = p2 = puzg = 1.,
Fy=1[6,10], Ry = [4,7],a1 = [3,3], Fz = [6,10], Rz = [4,T],az = [3, 3],
Fs = [6,10, 14, 18, 22, 26, 30], Rz = {4, 7,10, 13, 16,19, 21], a5 = [3,3,3,3,3,3,3].
Test Case #4 K=12K1=3,K:=3,K1=3,Ka=5,a1 :—[3, 3,a2=1[3,3,a3 = [3, 3],

as =1[3,3,3,3, 1 = po = pz = 1.0, F1 = [6,10], B, = {4,7], F2 = [4,8],
Ry =[2,4], F3 = 8,12, Bs = [6,9], Fa = [5,9, 13, 17], Ra = [3,6,9, 12].

Test Case #5

I(=12,K1 =3,Kz =3,K3 =3,K4 =67p.1 = M2 = U3 = 1.0
F, = [6,10],R1 = [4, 7],6!] = [3,3], Fy= E4,8],R2 = [2,4],(12 = [3,3],
Fs: =8, 12],R3 = {6,9],&3 = [3, 3],
Fq=1[59,13,17,21], Ry = [3,6,9, 12,15}, 04 = (3,3,3,3,3].

Test’ Case #6

I‘\’=].0,K1 =K2=K3=4,}1-] =}Lz=;l,3=1.0,
F1 :Fg =F3= [6,10,15], R] =R2 =R3=[4,5,8],
a1 =ar =a3=[3,3,3], 1 = A2 = 2.0,

Test Case #7

K=8K1=K=K;=Ky=3m1 =pr=u3 =10 F; =F2=F3=[10,20},
Ri=R:=R3=1[515], 01 =az =az3 =a1 =[2,2],01 = o2 = a3 = g = 0.25.
Class 4 has three configurations: (A) ¥4 =1[5,10], Ry = [3, 7];

(B) Fyq =[7,14], Ry = [4,11}; {C) F4 = [10,20], B4 =[5, 13].

Test Case #8

K =10,k —6,Ks =4, K3 = 2,01 = 0.6, 02 = 0.3, a3 = 0.1,
ar =[2,2,2,2,2},a2 =[2,2,2],a3 = [2], 1 = pbz = pa = 1.0,

There are two configurations:

(A) Fy = [4,8,12, 16, 20], B1 = [2, 6,10, 14, 18],
Fa = [6, 10,14],R2 =[4,8,12], ¥3 = [8],R3 = {6];
(B) Fy = [4,8;12, 16,20}, R1 = [2,6, 10,14, 18],
Fy ={8,12,16), Rs = [6,10, 14], 5 = [8], R2 = [6].

Test Case #9

K =10, K1 = K2 = K3 =4,q1 =ag = a3 =[2,2,2],
21 = 1.0, pa = 10.0, pg = 100.0,
Fl =F2 =F3= [4,8,12],R1 =R2=R3=[2,6,10]

Table 1: Data Sets.

Tables 2-6 illustrate several other experiments of validating
the accuracy of our technique. (Due to the large size of the
tables we only give the iterative result and the percentage
error.} In all cases, the percentage error (%K) is defined as:

|simulation result — iterative result|

%E

simulation result x100% (13)

Although Table 2 is not the most interesting case from a
design point of view, it is used to illustrate that our iter-
ative approach “does the right thing”, i.e., it produces the
same results for all classes, for a system where all classes
behave identically. Furthermore, as can be seen from Tables
2-6 the accuracy of our technique is good, even under high
contention.

Note that, we have performed many more experiments than
we have been able to include in the paper. The results of
those experiments are similar to the ones included here and
can be found in a technical report [4]. Overall, the percent-
age error in most cases we tested was within 5%, with few
cases having an error of greater than 12%.

As is probably expected, in our experiments, the higher error

203

cases corresponded to fairly high contention cases. These
are also the cases that likely corresponded to “poor” designs
where a reduction in contention for resources between classes
is needed in order to obtain a system with good performance
characteristics. In most of our experiments (some of which
are presented below), the performance improvements that
could be obtained, for instance, through better threshold
settings, were significantly higher (percentage-wise) than the
loss in accuracy due to our approximation. Hence, this is
a good indication that our iterative technique is a useful
tool for fast and fairly accurate assessment of threshold-
based designs that can be used, for instance, for searching
for good threshold settings. Next, we illustrate some of the
performance tradeoffs and designs that can be studied using
our technique.

Response time behavior.

We begin by illustrating, in Figure 4, the somewhat “pe-
culiar” response time behavior of threshold-based resource
management techniques as well as their potential utility in
dynamic resource management of systems. In this figure we
depict a three class system where we fix the arrival rate of
classes 1 and 2 (at A1 = Az = 2.0) and vary the arrival rate

Ay Ay As ETTY] "E[T:] ET;] " %% error % error % error
(iterative} | (iterative) | (iterative} | {class 1) | (class 2} | (class 3)
0.40 } 0.40 | 0.40 1.630272 1.630272 1.630272 1.202181 | 0.735494 | 1.15357%
0.80 | 0.80 | 0.80 2.597491 2.597491 2.507491 3.058386 | 2.665640 | 3.148594
1.20 | 1.20 | 1.20 3.156580 3.156390 3.156590 2.877489 | 2.619260 | 2.598514
1.60 | 1.60 | 1.60 3.304191 3.304191 3.304191 2.000313 | 1.749316 | 1.993638
2.00 1 200 ; 2.00 3.321952 3.321952 3.321952 1.630424 | 1.625574 | 1.719706
2.40 | 2,40 | 2.40 3.379876 3.379876 3.379876 2.282249 | 1.094334 | 2.188239
2.B0 | 2.80 | 2.80 3.592408 3.592408 3.592408 3.782533 | 3.334805 | 3.770227
3.20 | 3.20 | 3.20 3.981857 3.981657 3.981657 1.820473 | 1.245720 | 1.811621
3.60 | 3.60 ; 3.60 5.010319 5.010319 5.010319 0.601689 | 1.108128 | 1.858318
Table 2: Test Cage #2.
Al Az As E[T]] E[T}] E[T:;] % error % error | U error
(iterative) | {iterative) | (iterative) | (class 1) | (class 2) | {(class 3)
0.30 | 0.30 | 0.30 1.421688 1.421688 1.421680 0.413537 | 0.181734 ; 0.318665
0.680 § 0.60 | 0.60 2.122039 2.122039 2.122038 2.657185 | 2.095714 | 2.378830
0.90 | 090 | 0.90 2.795585 2.795585 2.795464 3.284193 | 2.855018 | 2.994942
1.20 | 1.20 | 1.20 3.180244 3.180244 3.178452 2.371027 | 1.896997 | 1.832370
1.50 | 1.50 | 1.50 3.357821 3.357821 3.344765 1.286876 | 0.882332 | 1.135763
1.80 | 1.80 | 1.80 3.470854 3.470854 3.412461 0.711188 | 0.498285 | 0.647543
2.10 | 2.10 | 2.18 3.641083 3.641093 3.441965 0.564150 | 0.070303 | 0.557838
2.40 | 2.40 | 2.40 4.088188 4.068188 3.462714 0.491789 | 0.814125 |(0.468379
2.70 | 2.70 | 2.70 5.600409 5.600408 3.512400 0911634 | 2.755618 | 0.956535
2.70 | 2.70 | 3.20 5.611608 5.611608 3.646626 0.158437 | 3.637028 | 2.843098
290 | 2.70 | 4.00 5.647604 5.647604 3.935655 0.236337 | 3.279166 | 5.373869
270 | 2.70 | 4.80 5.693371 5.693371 4.113839 0.1266056 | 1.469008 | 1.825511
2.70 | 2.70 | 5.60 5.733468 5.733468 4.178537 0.048777 | 0.166028 ; (0.809B810
2.70 | 2.70 | 6.40 5.763688 5.763689 4.135817 0.767475 | 1.781951 | 1.555702
2.70 | 2.70 | 7.20 5.785786 5.785786 4.301380 2.732223 | 2.217973 | 1.388458
Table 3: Test Case #3.
5 ' ') ' ' ' "w Performance sensitivity.
45 | class I(iterative) ——+— . We continue in Figures 5 and 6 with the demonstration of
B 4 z}i: %E;:::‘“L‘iz:; "':"' the last poinil, where we illustrate that it is worth while to
i ALYE) - ees ; § v ‘ .
& By study the behavior of threshold-based systems, for instance
o X ¥ ! ’
B 35} o . to search for better threshold settings, as the changes in
B, » CTR— s reTEs K e .
2 = performance (due to beiter parameter seitings) are often
) 3r P i significant. Given a fast and fairly accurate analytical so-
5§ 25t ha . lution technique {such as ours), these studies can be made
> s A
< 3 efficient.
2r _
15 *, L L X L) n 11 T T T T T T T T
0 0.5 1 1.5 2 25 3 35 4 é 10 | class 1,2,3 (class 4 at config A) —+— ,!1‘..\,_, B
© cluss 4 at config A —--x=-= 7 -
Arrival Rate for Class 3 g 9 class 1,23 (class 4 at config B) -+-%--- b
B class 4 at config B —a 4
. E BT class 1,23 (class 4 at config C) ---m- a
Figure 4: Test Case #6. < 1} class 4 at config C --~&-- —— i
E (2 /"fv X 7
& - -
% 5k ,.--D _——*,/ ..
c LT
of class 3. We can make a couple of observation here: (1) the §' 4 % - 1
response time curve of class 3 shows the “peculiar” response s 3r 1
time behavior mentioned above, i.e., it first increases, then E 2f -
“flattens” out and then increases again, as a function of in- < 1 L e L TR
0 1 2 3 4 5 6 7 8 9

creasing arrival rate; (2) the response time curves of classes
1 and 2 are flat, i.e., the increased workload in the system
due to class 3 does not appear to affect the response time of
classes 1 and 2, even though there is contention for resources
between all classes.

The first observation is, of course, due to the fact that
in threshold-based systems the response time can improve
at higher loads due to the crossing of a forward threshold
(which does not occur at lower loads). The second cbser-
vation suggests that threshold-based techniques can reduce
the sensitivity of performance characteristics of a class of
customers to the workload of other classes without having
to partition resources statically.

System Arrival Rate

Figure 5: Test Case #7.

In Figure 5 all classes begin with the same characteristics.
We then vary the threshold settings of class 4 to experiment
with the effect this has on class 4 performance as well as on
the performance of the remaining classes. As can be seen
from this figure, we are able to improve class 4 performance
with “more aggressive” threshold settings, without it hav-
ing a significant effect (in most cases) on the performance of
the remaining classes. It is interesting to note that in places

204

Xy Ag A3 Ayq E[T] E[T;] E|T] E[T.] % error T error % error % error
{iterative) | (iterative) | (iterative) | (iterative) | (class 1) | {class 2) | (class 3) | (class 4)
090 | 090 | 1.80 | 460 | 2.707508 | 1.994472 | 4.520838 | 4.37408% | 2.061873 | 6.642513 | 0.469606 | 0.212680
090 | 1.80 | 1.80 | 4.50 2.853014 2.441160 1.543077 4.375314 4.506275 | 2.851423 | 0.630932 | 0.393236
1.80 | 1.80 ; 1.80 | 4.50 3.581616 2.504496 4.671432 4.384649 2.517501 | 3.911467 | 2.204438 | 0.122387
270 | 270 | 270 | 4.50 5.734653 4.849304 6.490237 4.530748 0.130256 | 1.235332 | 1.043941 | 2.141307
Table 4: Test Case #4.
Ay Ay Ax As E[TY] ETTy) E[T4] E[Ty] % error % error % error % error
(iterative) | (iterative) | (tterative) | (iterative) (class 1) (class 2) | (class 3) | (class 4)
0.90 | 0.00 | 1.80 | 5.40 2.843976 2.017333 4.543616 4.177035 4.322296 7.6564710 | 0.577994 | 5.927892
0.90 | 1.80 | 1.80 | 5.40 3.108633 2.510323 4.687938 4.186058 11.183943 | 3.839499 | 2.575381 | 2.158503
1.80 | 1.80 | 1.80 | 5.40 3.785969 2.640827 4.934167 4.211717 2.996919 2.682320 | 3.703350 | 0.066877
270 | 2.70 | 2.70 | 5.40 5.762419 4.868467 6.521253 4.377117 1.494872 0.799943 | 2.778088 | 0.505154
Table 5: Test Case #5,
35 T T T T T T T T Y H 5
. convergence rates, we have performed extensive experimen-
i3 ::g;;{;g:{:g: - .,.,-',‘f.] tations to gather empirical evidence that our technique does
O annpens — .—-"'. e : - .
"é R alb ok bt - B P i ;o converge, and that it converges fairly quickly. Our exper-
§ af Eelacmiel SN .| iments indicate that for most test cases the iterative ap-
b as | ,_/ o i proach converges within approximately 5 to 10 iterations.
§ ' Based on the *wall clock” time, in most test cases, it pro-
% ’] duces results more than two orders of magnitude faster than
g 1 simulation. We note that, in general, theoretical characteri-
= " . . - -
& Ir - zation of convergence of iterative techniques which use more
2 st o o 4 than a single parameter {to characterize the intercation be-
- — . - - .
, - . . . \ \ , tween the models), which is the case in our approach, is
0 1 2 3 4 5 6 1 3 9 difficult.

System Arcival Rate

Figure 6: Test Case #8.

where this does have an effect on the performance of the
other classes (e.g., at A = 6.3) the actual effect is somewhat
unexpected. That is, one might expect that the “more ag-
gressive” threshold settings of class 4 might detriment the
performance of other classes; however that is not the case
here.

In general, it is often difficult to predict the effects of changes
in threshold settings, partly due to unusual response time
behavior of threshold-based systems and partly due to the
interaction of such behavior with systems employing some
form of blocking behavior. In the case of Figure 5, this be-
havior may partly be due to the “more aggressive” threshold
settings aiding in processing of the class 4 workload faster
and hence resulting in greater resource-availability for the
other classes as well. Thus, experimentation with effects of
threshold settings on system performance is of importance,
and the ability to solve the corresponding models efficiently
facilitates such experimentation.

In Figure 6 we study the effects of changes in threshold
settings of class 2 where all three classes exhibit signifi-
cantly different characteristics. In this case, partly due to
the “more aggressive” settings of thresholds (in configura-
tion A as compared to configuration B}, the performance
of class 2 improves, but again without having a significant
effect on the other two classes.

Lastly, although we have not provided proofs of convergence
or of the performance of the iterative technique in terms of

205

In summary, the main focus of this section was the illus-
tration of utility of our approach in evaluating designs of
threshold-based systems, where “good” parameter settings,
such as threshold values, constitute a difficult problem. We
believe that the efficiency and accuracy of our solution tech-
nique facilitates large-scale experimentation with parame-
ter settings and subsequent evaluation of performance of
threshold-based designs of systems.

5. CONCLUSIONS

In this paper, we have considered a K-sexrver mufii-class
threshold-based gueueing system with hysteresis in which
the number of servers, employed for serving customers of
each class i, is governed by forward and reverse threshold
vectors. The main motivations for using a threshold-based
approach was that (a) many applications incur significant
server setup, usage, and removal costs and (b) that it is a
good approach to dynamically managing a pool of resources
between multiple workload classes. The motivation for the
use of hysteresis was to control the cost during momentary
fluctuations in workload. An important and distinguish-
ing characteristic of our work is that we developed an effi-
cient analytical solution technique for analyzing multi-class
threshold-based systems with hysteresis behavior, which is
needed in modeling of many applications. Specifically, we
proposed an iterative solution method, which our empirical
evidence indicates to be fast and fairly accurate. Most of
our test cases were within 5 percent of the simulation results
(used for validation purposes) with more than two orders of
magnitude improvement in computation time (as compared
to simulation). Furthermore, we studied the performance
characteristics of threshold-based systems and showed that
proper choices of design parameters, such as threshold val-
ues, can produce significant improvements in system per-

A1 An A3 ETTh] E(T3] ET;] T% error %% error % error
(iterative) | (iterative) | (iterative) | (class 1) | (class 2) (class 3)

3.6 3.8 3.6 4.623164 0.146230 0.010373 2.174580 | 4.145004 0.192437
3.6 8.0 8.0 1.623164 Q.192005 0.010867 0.344933 | 6.774970 $.110304
3.6 16.0 16.0 4.623164 0.239999 0.011862 2.330279 | 2.286976 0.550988
3.6 | 24.0 24.0 4.623164 0.282280 0.012948 3.795961 0.633505 1.696513
3.6 | 32.0 32.0 4.623163 0.343856G 0.014069 0.004456 | 0.161939 3.182985
36 | 360 36.0 4.623165 0.462318 0.014623 0.397470 | 0.331783 4.018064
3.6 | 36.0 60.0 4.623203 0.462322 0.017533 1.8125056 | 0.602542 6.828556
3.6 | 36.0 80.0 4.623463 0.462348 0.010412 1.140015 1.303908 7.180398
3.6 | 36.0 160.0 4.639706 0.463973 0.027313 1.656744 1.143158 8.942603
3.6 | 36.0 | 240.0 4.701579 0.470160 0.034302 §.421698 | 0.446514 7.297695
3.6 | 36.0 | 320.0 4.776830 0.477684 0.03B680 2.454283 | 2.720231 4.943296
3.6 | 36.0 | 360.0 4.813562 0.481358 0.048136 6.836106 | 4.665342 12.454153

Table 6: Test Case #9.

formance. Using this study, we illustrated the utility of
our approach in evaluating designs of threshold-based sys-
tems, where “good” parameter settings constitute not only
an important but a difficult problem. We believe that the
efficiency and accuracy of our approach facilitates large-
scale experimentation with parameter settings and subse-
quent performance evaluation studies of threshold-based de-
signs of systems.

Acknowledgements: The authors are grateful to the ano-
nymous referees for their helpful and insightful comments.

6. REFERENCES

(1] P. J. Courtois. Decamposability : queneing and
computer system applicaiizons. ACM monograph series,
Academic Press, New York, 197T.

[2] E. de Souza ¢ Silva, S. S. Lavenberg, and R. R.
Muntz. A perspective on iterative methods for the
approximate analysis of closed queueing networks. In
G. lazeola, P. J. Courtois, and A. Hordijk, editors,
Mathematical Computer Performance and Reliability,
pages 225-244. North Holland, 1984.

[3] L. Golubchik and J. C. Lui. Bounding of performance
measures for a threshold-based queueing syst em with
hysteresis. In Proceedings of 1997 ACM
SIGMETRICS Conf., Seattle, WA, June 1997.

[4] L. Golubchik and J. C. Lui. A fast and accurate
iterative solution of a multi-class threshold-based
queueing system with hysteresis. Technical Report
CS-TR-4115, University of Maryland, March 2000.

[6] S. Graves and J. Keilson. The compensation method
applied to a one-product production/inventory
problem. Journal of Math. Operational Research,
6:246-262, 1981.

[6] O. Ibe. An appreximate analysis of a multi-server
queueing system with a fixed order of access.
Technical Report RC9346, IBM Research, 1982.

[7] O. Ibe and J. Keilson. Multi-server threshold queues
with hysteresis. Performance Evaluation, 21:185-212,
1995.

[8] O. Ibe and K. Maruyama. An approximation method
for a class of queueing systems. Performance
Evaluation, 5:15-27, 1985.

[9] J. Keilson. Green’s Function Methods in Probability
Theory. Charles Griffin, London, 1965.

[10] J. Keilson. Markov Chain Models: Rarily and

Ezponentiality. Springer, New York, 1979.

[11] F. P. Kelly. Reversibility and Stochastic Networks.
John Wiley and Sons, 1979.

[12] P. King. Computer and Communication Systems

Performance Modeling. Prentice-Hall, New York, 1990,

{13] R. Larsen and A. Agrawala. Control of a
heterogeneous two-server exponential queusing
system. IEEE Trans. on Software Engineering,
9:552-526, 1983.

[14] W. Lin and P. Kumar. Optimal control of a queueing
system with two heterogeneous servers. JEEE Trons.
on Aulomatic Control, 29:696-703, 1984.

J. D. C. Little. A proof of the queneing formula
L = AW. Operations Research, 9:383-387, May 1961.

J. C. Lui and L. Golubchik. Stochastic complement
analysis of multi-server threshold queues with
hysteresis. Performance Evaluation, 35(1-2):19-48,
March 1999.

[17] C. Meyer. Stochastic complementation, uncoupling
markov chains and the theory of nearly reducible

systems. SIAM Rewview, 31(2):240-272, 1989.

-[18] D. Mitra and I. Ziedins. Virtual partitioning by
dynamic priorities: Fair and efficient resource-sharing
by several services. In B. Plattner, editor,
International Zurich Seminar on Digital
Communications, Lecture Notes in Computer Science,
Broadband Communications, pages 173-185. Springer,
1996,

D. Mitra and 1. Ziedins. Hierarchical virtual
partitioning: Algorithms for virtual private
networking. In JEEE GLOBECOM, pages 1784-1791,
1997.

[19]

I. Morrison. Two-server queue with one server idle
below a threshold. Queueing Systems, 7:325-336, 1990.

(20]

[21}] R. Nelson and D. Towsley. Approximating the mean
time in system in a multiple-server queue that uses
threshold scheduling. Operations Research,
35:419-427, 1987.

206

