
A Fast: and Accurate Iterative Solution of a Multi-class
Threshold-based Queueing System with Hysteresis

Leana Golubchik
Department of Computer Science & UMIACS
University of Maryland at College Park, USA

leana@cs.umd.edu

John C.S. Lui t
Department of Computer Science & Engineering

The Chinese University of Hong Kong
cslui@cse.cuhk.edu.hk

ABSTRACT
In this paper, we consider a K-server multi-class threshold-
based queueing system with hysteresis in which the number
of servers, employed for servicing customers of each class i,
is governed by a forward threshold vector F , = [F, (1), F, (2),
• . . , F i (K i - 1)] and a reverse threshold vector R = [Ri(1),
Ri(2), . . . , R i (K ; - 1)]. There are many applications and
systems where a multi-class threshold-based queueing sys-
tem can be of great use. One motivation for using threshold-
based techniques is that such systems incur significant server
setup, usage, and removal costs. And, as in most practical
situations, an important concern is not only the system per-
formance but rather its cost/performance ratio. The mo-
tivation for use of hysteresis is to control the cost during
momentary fluctuations in workload. Moreover, servers in
such systems are often needed by multiple classes of work-
loads, and hence, it is desirable to find good approaches to
sharing these serw~rs among the different workloads, prefer-
ably without statically partitioning the server pool among
the classes; threshold-based techniques constitute one cate-
gory of such approaches. Consequently, an important and
distinguishing characteristic of our work is that we consider
a multi-class system, which is needed in modeling of many
applications and systems. Our main goal in this work is
to develop an efficient method for solving such models and
computing the corresponding performance measures of in-
terest, which can subsequently be used in evaluating designs
of threshold-based systems.

1. INTRODUCTION
In this paper, we consider a multi-class K-server threshold-
based queueing system with hysteresis in which the number
of servers, employed for servicing customers of class i, i =

*This work was supported in part by the NSF C A R E E R
grant CCR-98-96232.

tThis work was supported in part by the Mainline and RGC
research grants.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies ar e not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS 2000 6•00 Santa Clara, California, USA
© 2000 ACM 1-58113-194-110010006-.$5,00

1 , . . . N, is governed by a forward threshold vector F i =
[F~(1), F;(2), . . . , F~(K~ - 1)] (where F~(1) < Fi(2) < - . . <
F ~ (K i - 1)) and a reverse threshold vector Ri =[Ri(1), Ra(2),
. . . , R ~ (K ~ - 1)] (where R~(1) < Ri(2) < - - - < R~(Ki - 1)).
This multi-server multi-class queueing system has a total
of K servers where the allocation of servers to classes is
performed as follows. Each class is allocated a minimum
of one server. Thus, a customer of class i arriving to an
empty system is served by a single server. A new arrival of
a class i customer to a system with Fi (j) class i customers
already there (and j servers already allocated to that class)
forces an attempt, to allocate one additional server to class
i, where j = 1 . . . Ki - 1, and Ki is the maximum number of
servers that can be allocated for service of class i customers.
A departure of a class i customer from a system (with j + 1
servers allocated to that class prior to this departure) which
leaves behind R~ (j) customers of class i forces a de-allocation
of a server, where j = 1 . . . K~ - 1 - - that is, it forces the
return of a server, that was earlier allocated to class i, to the
pool of "free" servers which are available for allocation to all
classes• Hence, the N classes share a pool of K servers, with
a dynamic allocation of servers to classes governed by a set of

• . . N thresholds with hysteresis behavmr. If ~ = 1 Ki < K , then
the classes do not "interfere" with each other. Of course, the
more interesting case is where ~ v = l K~ > K, as motivated
below.

One motivation for using a threshold-based approach is that
many systems incur significant server setup, usage, and re-
moval costs. And, as in most practical situations, an im-
portant concern of a system designer is not only the system
performance but rather its cost/performance ratio. Further-
more, servers (resources) in a system are often needed by
multiple classes of workloads (applications), and hence, it
is desirable to find good approaches to sharing these servers
among the different workloads, preferably without statically
partit ioning the server pool among the classes. More specif-
ically, under light class i loads, it is not desirable to op-
erate unnecessarily many servers for that class, due to the
incurred setup and usage costs as well as due to the perfor-
mance consequences of that class under-utilizing the servers
while other classes are (possibly) experiencing high loads.
On the other hand, it is also not desirable for a system
to exhibit very long delays, which can result from lack of
servers under heavy loads. One approach to improving the
cost/performance ratio of a system is to dynamically react to
changes in workload through the use of thresholds. For in-

196

stance, one can maintain the expected job response time in a
system at an acceptable level, and at the same time maintain
an acceptable cost for operating that system, by dynamically
adding or removing servers, depending on the system load.
Similarly, one can use the threshold-based server allocation
approach to reduce the sensitivity of performance character-
istics of a class of customers to the workload of other classes
without having to statically partition resources between the
classes. (We illustrate this further in Section 4.)

There are many applications where threshold-based resource
management policies can be employed, and thus performance
evaluation of such systems through analysis of multi-class
threshold-based queueing systems can be of great use. For
instance, the Novell file server maintains a memory pool such
that a fraction of it is used for communication buffers and a
fraction is used for file buffers, where threshold-based poli-
cies are implemented in order to make decisions about when
to increase the number of network buffers and when to de-
creases it; the threshold values are based on perceived packet
losses due to increases in network traffic activity. Similarly,
OS design has been moving towards maintaining a common
buffer space pool that can be dynamically managed between
the various I /O processes. Furthermore, in transport proto-
cols of communication networks [12], several transport-layer
connections are multiplexed onto a single network layer con-
nection. Whenever the traffic exceeds a certain threshold
in the network-layer connection, another network-layer con-
nection can be created to service the incoming traffic from
the transport layer. Using such a control mechanism, severe
degradations in throughput and delay can be avoided; at the
same time operation costs can be kept at an acceptable level.
Another example application is a system providing informa-
tion query service via the Internet. As the number of queries
increases, the number of servers, needed to maintain certain
(acceptable) system response time characteristics, is also in-
creased. Since the cost of setting up server connections can
be significant 1, the use of a threshold-based approach can
result in a cost-controlled creation and deletion of these con-
nection, according to the changes in the workload. Thus, the
model presented in this paper and its efficient solution will
be beneficial for many systems and applications.

As in the case of electronic circuits that are prone to oscil-
lation effects, a "simple" threshold-based system may not
suffice. In a computer system, one reason for avoiding oscil-
lations are the above mentioned server setup and removal
costs, i.e., oscillations coupled with non-negligible server
setup and removal costs can result in a poor cost/performance
ratio of a system. More specifically, it is desirable to add
servers only when a system is moving towards a heavily
loaded operation region, and it is desirable to remove servers
only when a system is moving towards a lightly loaded op-
eration region - - it is not desirable to alter the number of
servers during "momentary" changes in workload, i,e., dur-
ing oscillations. Such oscillation regions can be avoided by
adding a hysteresis to the system - - hence the motivation for
looking for efficient analysis techniques of threshold-based
queueing systems with hysteresis behavior.

1For instance, it may be necessary to broadcast information
about the newly added server to the already active servers
in the system.

As already mentioned, a threshold-based queueing system
with hysteresis is defined by the forward and the reverse
threshold vectors (see Section 2 for details). The actual val-
ues, or rather what are "good" values for these vectors is
a function of many factors, such as the characteristics of
the server setup, usage, and removal costs, characteristics
of the arrival process and the service rates, as well as the
possible "interaction" between the different classes of work-
loads. Our main goal in this work is to develop an efficient
method for solution of multi-class multi-server threshold-
based queueing models with hysteresis and computation of
corresponding performance measures of interest. The ques-
tion of optimal values for the threshold vectors is, in general,
a difficult problem and is outside the scope of this paper. We
must point out, however, that efficient model solution tech-
niques can be of great use in evaluating various parameter
settings (such as the threshold values) and hence are needed
for performance evaluation of systems that manage resources
in a threshold-based manner. Such analytical models are es-
pecially useful at design time, when the speed of evaluation
is key. Thus, we believe that our solution method, due to its
efficiency, facilitates accessible experimentation techniques
for investigating the "goodness" of various threshold-based
designs and parameter settings (refer to Section 4 for nu-
merical examples).

Given the above motivation for the use of threshold-based
systems with hysteresis, in this paper we present an efficient
technique for solving the corresponding analytical models
and computing various performance measures of interest.
We begin with a very brief survey of some of the existing
literature on the threshold-based queueing problem. A two-
server system is considered in [13], [14], and [20]. An approx-
imate solution for solving a degenerate form of this problem
(where all thresholds are set to zero) is presented in [6, 8];
an approximate solution for a system that employs (non-
zero) thresholds is presented in [21] (but without hystere-
sis). In [7], the authors solve a multi-server threshold-based
queueing system with hysteresis, using the Green's function
method [5, 9, 10]. In [16] We give a solution of several forms
of the multi-server threshold-based queueing system with
hysteresis using stochastic complementation [17]. Lastly,
techniques for computation of bounds for performance mea-
sures of multi-server threshold-based queueing systems with
hysteresis and non-instantaneous server activation are given
in [3].

In this work, we consider and solve a multi-class multi-server
threshold-based queueing system with hysteresis. The con-
tributions of this work are as follows. To the best of our
knowledge, none of the works described above give an effi-
cient analyticM solution technique for analyzing multi-class
threshold-based systems with hysteresis behavior. Since in
many applications, such as the ones described above, mul-
tiple types of workloads "compete" for a pool of resources,
we consider it an important and distinguishing characteris-
tic of our work. Specifically, we present an iterative solution
technique which solves the multi-class model by "breaking"
it up into N single class models, "coupled" through a set
of model parameters which capture the interaction between
classes. As shown in Section 4, in most test cases, this it-
erative approach produces accurate results and allows for
efficient computation of performance measures of interest.

197

Fur thermore , we s tudy the per formance characterist ics of
threshold-based systems and show tha t proper choices of
design parameters , such as threshold values, can produce
significant improvements in system performance. Using this
study, we i l lustrate the uti l i ty of our approach in evaluat ing
designs of threshold-based systems, where "good" parame-
ter sett ings const i tu te not only an impor t an t but a difficult
problem. We believe tha t the efficiency and accuracy of our
approach facili tates large-scale exper imenta t ion with param-
eter sett ings and subsequent per formance evaluat ion studies
of threshold-based designs of systems.

Finally, we note tha t a var ie ty of i te ra t ive approaches have
been used in the l i tera ture for cons t ruc t ion of approxima-
t ion techniques (e.g., refer to [2]). For instance, an i tera t ive
technique for a somewhat different control schemes for dy-
namic resource sharing between mul t ip le classes is employed
in [18, 19].

The remainder of this paper is organized as follows. In Sec-
t ion 2 we give a descript ion of our mode l (with fur ther details
given in [4]). Sect ion 3 describes our i te ra t ive approach to
solving the multi-class mode l (with details of the derivat ion
of an individual class model solution, uti l ized by the i tera-
t i r e approach, given in [4]). The goodness of this approach,
i.e., its a c c u r a c y and ut i l i ty in sys tem design and evalua-
tion, is discussed in Sect ion 4 th rough the use of numerical
results. Finally, our conclusions are given in Sect ion 5.

2. SYSTEM MODEL
In this section, we describe our multi-class threshold-based
queueing model with hysteresis behavior which has an in-
finite s ta te space and can be defined as follows. There
is~a to ta l of K servers in the system, where K is unre-
stricted. The service t ime requi rements of a class i cus-
tomer are exponent ia l ly d is t r ibu ted wi th pa rame te r #i. The
cus tomer arrival process is Poisson with rate A and prob-
abili ty a i tha t an arr iving cus tomer is of class i, where g
~ i = l a i = 1 and 1 < i < N. T h a t is, we consider a
multi-class system with N classes, where N is unrestr icted.
Addi t ion and removal of servers for serving customers Of
class i is governed by the forward and the reverse thresh-
old vectors F~ = [F i (1) , F i (2) , . . . , F ~ (I K , - 1)] and R i =
[R ~ (1) , R ~ (2) , - - - , R ~ (K i - 1)] where F~(j) < F i (j + 1) for
l _< j _< Ki - 2, R i (j) < R , (j + i) for 1 < j _< K , - 2, and
R~(j) < El (j) for 1 _< j _< Ki - 1.

Given a pool of K servers where each server is able to serve
a cus tomer of any class, each class i s t a r t s -ou t wi th one
server and may a t t e m p t to obta in at most Ki servers. These
servers are al located for service of class i customers and
re turned to the pool of available servers based on the number
of class i customers current ly in the system (as s ta ted more
formally below). In general, ~/N=i I4"i may be greater than,
equal to, or less t han K; a l though the more interest ing case
is where ~iN=l Ki > K.

Given a K server N class threshold-based queueing system
with hysteresis, we model it as a Markovian process .A4 with
the following s ta te space S:

S ---- { (n l , s l , n 2 , s 2 , . . . , n N , S N) I n, >_ 0,

si • { 1 , 2 , . . . , K , } , ~ s i _ < K , i = I , . . . , N }

where ni is the number of class i customers in the system
and s; is the number of servers current ly al located to class
i. Upon an arrival of a class i customer , if Fi (j) _< nl _<

J where J > 0 and j = sl, then the system at- Fi (j) + a i a~ _
t e m p t s to al locate an addi t ional server for service of class i
customers , which is possible only if ~iN=l sl < K. Note tha t

in a sys tem where ~iN=l Ki > K, it may not always be pos-
sible to al locate another server to class i upon arrival, since
at t ha t t ime all K servers may have already been allocated.
In this case, the arr iving class i cus tomer joins the queue of

3 (where class i requests as long as F~(j) <_ ni < F i (j) + a i
J > 0 and j = si). W h e n n ~ = Fi (j) +a~ , the arr iving al _

class i cus tomer is re jected by the system (i.e., d ropped) i f
there is no server available for al locat ion to class i (i.e., if

si = K) . For correctness, we assume the following con-
J. s t ra int on all a l .

_ j+l Fi (j) + a{ < F i (j + 1) + ~i

for i = 1, 2 , .g . , N and j = 1 , 2 , . . . , K i - 1. We also as-
sume tha t a i i = o0; hence, we have no restr ict ions on
queue length when the m a x i m u m number of servers t ha t
maybe needed by class i have been al located (i.e., when
sl = Ki) . The l imi ta t ion on queue length when sl < Ki is
mo t iva t ed by sys tem design considerations. T h a t is, if the
sys tem reaches a point where its design dictates t ha t an-
o ther server be al located for class i workload, bu t a server
is not available (i.e., all K of the sys tem's servers are al-
ready al located) , then it is reasonable to assume tha t the
sys tem is (at least) t emporar i ly overloaded, par t ly due to
shar ing of resources wi th o ther classes. And, reject ion or
blocking of cus tomers is a reasonable approach to dealing
wi th overload conditions. Of course, a "real" sys tem will
also not have an infinite queue length, when the m a x i m u m
number of servers (K{) for class i has been allocated. In this
case, we may ei ther (1) use a finite queue length mode l (i.e.,
a/K i is finite) and s tudy the sys tem's per formance under a
given queue size l imita t ion, or (2) allow an infinite queue
length (i.e., a/K i = oo) and use the mode l to s tudy queue
length requi rements of the corresponding system. Our solu-
t ion me thodo logy (refer to Section 3) allows for ei ther type
of a model , bu t for s implici ty of exposit ion, in the remain-
der of the paper we will focus our discussion on the infinite
queue version (i.e., where a{ is finite, for j . = 1 , . . . , K~ - 1,
and al K' ---- cx:~) 2.

Formally, the t rans i t ion s t ruc ture of .A/I is as follows. T h e
t rans i t ions corresponding to arrivals are:

~c~i
(h i , s l , . • • , h i , s , . . . , a N , s N) >

(n l , S l ,n i + l , s l , . . . , n N , S N) if C1 (1)

Ao~i
(n i , s l , . . . , n l , s l , . . . , n N , s g)

(n i , s i , . . . , n i + l , s i + l , . . . , n N , S N) if C2 (2)

2Note tha t , the server a l loca t ion/dea l loca t ion scheme de-
scribed here does not preclude potent ia l idling of servers,
due to (a) requir ing tha t each class is a l located at least one
server and (b) al locat ion of servers to classes on arrivals only.
Many o ther control schemes are possible and are subject of
fu ture work.

198

where C1 is

() (s, < Ki) ^ (~ sj = K) ^ (F,(s~) < n, < F,(si) + a?)
j = l

and C2 is

C2= ~<K ^ s~< ^ (s~)<

/ V ='
The transitions corresponding to departures are:

Si~i
(n l , S l , . . . , h i , s i r . . . ~nN,SN)

(n l , S l , . . . , n i - - l , s i , . . . , n N , S N) if C3 (3)
silzi

(n l , S l , . . . , hi, S i , . . . , aN, SN) >
(h i , S 1 , . . . ,hi -- 1,si -- 1 , . . . , n N , S N) if C4 (4)

where C3 is

C3 (nl > 0)A(si = 1)) V

((ni > O)A(ni--l> Ri(si--l))A (s~> l))

ni < Fi(sl) --bait

and C4 is

6 4 = ((n l > O) A (ni -- l = Ri(s i - -1)) A (si > 1))

A more detailed explanat ion of the derivation of condit ions
C1 through C4 is given in [4].

3. I T E R A T I V E M E T H O D F O R S O L U T I O N
O F A M U L T I - C L A S S M O D E L

In this section we describe our iterative approach to solving
the model presented in Section 2. As described in Section
2, the corresponding Markov process, .Ad, is infinite (in mul-
tiple dimensions), and hence our choices for solution are to
either (a) s imulate Ad, or (b) look for special s t ructure, or
(c) look for efficient approximat ion techniques. Since .M ap-
pears to lack sufficient s t ructure for an efficient exact solu-
t ion, below we describe an approximate solution technique,
using iteration. The use of an approximat ion is mot ivated
by the desire to construct an efficient solution approach (and
s imulat ion can be significantly slower t h a n analyt ical solu-
tions).

3.1 Basic A p p r o a c h
The basic approach tha t we pursue here is as follows. The
original model .hd is approximately "broken up" into N sin-
gle class Markovian models, .A/~i , .A/~2, . . . , jk..~g, which are
"coupled" through a set of blocking probabil i t ies (see Sec-
t ion 3.2 for a more detailed description of the .A,4i's). More
specifically, the interact ion between classes occurs when class
i requires allocation of another server (due to the crossing
of a forward threshold), and no servers are available in the
system (i.e., all K servers have already been allocated) due

to the workload of other classes. Hence, in general, there
is a non-zero probabi l i ty tha t class i, which has already
activated sl servers, is no t able to add a server upon the
forward threshold crossing. Let us refer to this as a "block-
ing" probabi l i ty 7ai,~i, which (approximately) captures this
in teract ion between classes 3. We now describe our i terat ive
approach.

Let .AdZ n) be the Markovian process corresponding to the
individual class i model at i tera t ion n with a correspond-
ing s teady state probabi l i ty vector $¢},0. The parameters of

each .Ad} n) are computed as a funct ion of blocking proba-

l~ (n) ~(n) ~(~) }, which are in t u rn bilities, p i n) = (--i,1 , 4,2 , . ." ,--i,Ki-1
computed as a funct ion of the steady state probabil i ty vec-

z_(n-D tor, " i , ob ta ined dur ing the previous i teration. (We

give the details of the const ruct ion of .hd~ =) and the compu-

ta t ion of ~'}=) below4.) Then , an overview of our i terat ive
approach is (a more detailed and formal description is given
in Section 3.3):

1. const ruct ^A(°) ^A(°) AA(°)' ,v,1 , - - ,2 , . . . , ' ' ' N , s e t n = 0 (this is it-
erat ion 0);

2. solve Ad~),.hd(2'~),... ,.ADZ), i.e., compute the corre-

sponding s teady state probabil i t ies to obta in ~ n) , #~,~)
• . . , # (g n) ; set n----n--b1;

3. use these steady state probabil i t ies to compute p i n) ,

. . . ,

4. use these blocking probabil i t ies to upda te the indi-
vidual class models, i.e., const ruct .AdZ '0, A4(2 '~), . . . ,
.A4~v ~), where for each i = 1 , . . . ,N , parameters of

.hd} ~) are computed as functions of P}~) (but not PJ'~)
where j 7t i);

5. cont inue the i terat ive process (i.e., go back to step 2)
unt i l the values of all P i ' s converge•

3.2 Indiv idual Class M o d e l
Since our i terat ive approach involves solution of individ-
ual class models (.Adi's) we now briefly describe the class
i model, which can be defined as follows. There are Ki
servers (Ki is unrestr ic ted) , each with an exponent ial ser-
vice rate /zi. Cus tomer arrivals are governed by a Pois-
son process with rate Ai = aiA. Addi t ion and removal of
servers is governed by the forward and the reverse thresh-
old vectors, namely FF~ = [Fi(1), Fi(2) , . . . , F~(K~ -])1 and
R, = [ni(1) , R~(2) , . . . , Ri(K - 1)1.

Given a Ki-server single class threshold-based queueing sys-
t em with hysteresis, we model it as a Markov process .hdl
with the following state space Si:

Si = {(k,j) l k_> O, j E {1,2,... ,Ki}}
where k is the n u m b e r of customers in the class i queueing
system and j is the number of allocated servers. Figure 1

3Of course, this is an approximat ion, and hence, the fol-
lowing description of the .Adi'S used in the i terative solution
technique is also an approximation.
4Note tha t there are mul t ip le approaches to const ruct ing
A4(0), i s, i.e., mul t ip le ways to s tar t the i terat ion; we give
details of one such approach below.

199

~. i ~ i ~ i Pi , l . ~ ~ i Pi,1

k~_ _4/2pi k._ .~2gi _2glk~'2~Zgi k.:2.~2[1 i _2gi~+l'_Y2gi k~_+2'~2g i

F i g u r e 1: S t a t e t r a n s i t i o n d i a g r a m for a c l a s s i s y s t e m w i t h Ki = 2.

illustrates the state transit ion diagram for such a system
where Ki ---- 2. Formally, the transit ion structure of .hdl can
be specified as follows 5 , where all t ransit ions are from state
(k, j) , with the state description given above:

Next State [Rate Condition

(k + l , /) At (I_<j<K~)A
(k < F , (j))

(k + l , j) Ai j = K i
(k + 1, j)

(k + l , j + l)

AiPl,j

A i (1 - P i j)

(1 _< j < g d ^
(F,(j) < k< F,(j) + a~)

(1 _< j < g d ^
(Fi(j)_< k < F,(j) + a~)

(k . 1 , j) j# , (k _ > l ~
(I < j _ < K i) A

(k - - 1 > R i (j - 1))
(k - 1 , j - 1) j # i (k > 1) A (1 < j _< Ki)

A(k -- 1 = R¢(j - 1))
(k - l , j) #, (j = l) A (k > l)

(5)

We now proceed to a more detai led 'descript ion of our iter-
ative solution technique for the multi-class system. We do
this under the assumption that , given Pi , we know how to
construct .A41 (using Equation (5) above) and compute ~i
(the s teady state probabil i ty vector corresponding to Adi).
The procedure for computing ~i , is given 6 in Section 3.5.

3.3 Iterative Computation
First , note tha t in general, there are two cases to consider
here:

Case 1: ~/N=i Ki ~ K; tha t is, we have a "trivial" case,
where the classes do not interfere with each other, and
we can solve each individual class model once (i.e., no
need for i teration) using the procedure given in Section
3.5 with P~,j = 0, Vi, j .

Case 2: ~V=l Ki > K , where it is possible tha t an a t tempt
at server allocation for class i may fail because all K
servers in the system are currently allocated. As de-
scribed above, in this case a form of blocking occurs
and we solve the model using our i terat ive approach
outlined in Section 3.1 whose details are now presented
below.

5Note that , the transit ion rates described here are a function
of the blocking probabilities, T'i,t, which change from itera-
tion to iteration, as outlined above; however, for simplicity
of notation, we do not indicate the i teration step number in
the description of the transit ion structure of a class i model.
6The motivation for first discussing the i terative technique
is to simpfify the presentation of our approach.

Note also that , the main difficulty in the i terative technique
outlined in Section 3.1 is in determining an appropria te pro-
cedure for computing the blocking probabili t ies which cap-
ture the class interaction, i.e., the probabilit ies that , upon
a forward threshold crossing, it is not possible to allocate
another server to class i. Recall that , during the n th it-
eration (n _> 0), 7~},~) is the blocking probabil i ty of class
i (1 < i < N) to which l servers have already been allo-
cated (1 < l < Ki - 1). Before we proceed, let us state the
following definitions.

DEFINITION 1. Let ,~ and y be two non-negative random
variables having values in {1, 2, ...) and let 7rx and lry be
their respective probability mass functions. Let Z be another
non-negative random variable where Z = 2¢ + y ; then ~ z --
7r x ® ~'y where ® is the convolution operator.

DEFINITION 2. Let X be a non-negative random variable
having values in { 1 ; 2 , . . . , } and let 7rx be its probability
mass function. Let

2 (' = { X if Ll < 2d < L2
0 otherwise.

Then the probabil i ty mass function of X' , denoted by ~'x, ,
is equal to g(Trx, L1,L2) where function g is defined such
that :

~x[~] if L1 < k < L2
7rx,[k] = EL~L, ~X[m] -- -- (6)

0 otherwise

Let ~}n)[k, j] be the s teady state probabil i ty of class i hav-
ing k customers (k > 0) in the system and an allocation
of j servers (1 _< j _< K~), computed during the n th iter-

ation. Let It} '~) denote the steady state probabil i ty vector
of the number of servers allocated to class i, where 7r} n) [j]
denotes the s teady state probabil i ty of j servers having been
allocated to class i, as computed during the n *h iteration.
Thus, we have:

"'i w,J] (7)
k

Finally, let Q~n) be the transit ion rate matr ix corresponding

to the class i model Ad} '~), during the n th iteration, which

is computed using the transit ion structure of Ad} '~) given in
Equation (5) and p[,~- l) , where 1 < l < Ki - 1. Then, the
i terative procedure is as follow:

200

2.

Initialization step: set n = 0 and set 7 ~(°) ~ 0 for i , l
1 < l < Ki. Given these initial values of blocking prob-
abilities, for each class i, we can construct Q}0) using
the transit ion structure given in Equation (5) and then
compute ~i=(°) using the procedure given in Section 3.5.
Once we compute the steady state probabil i ty vector
~.~0) for each class i, we can then compute their respec-

_(o),~ t i re server allocation probabil i ty vectors, " i ~, using
Equation (7). The ~r~°)'s are in turn needed in the

computat ion of the blocking probabilities, T'(U's (step i,l
2 below).

Updating of blocking probabilities step: n = n + 1, and

o i f K >- /c
P~,?) = 0 i f K - l > ~ j = l , S ¢ i J (8)

F (i , l , n) otherwise

The first condition in Equation (8) indicates tha t the
system has a sufficient number of servers for all classes
(we include this for completeness). The second condi-
tion indicates tha t the system has sufficient resources
to allocate at least one more server to class i with-
out affecting the maximum possible server allocation
of other classes. In the last condition, the F function is
used to compute the blocking probability, at i teration
n, for class i which has l servers already allocated to
it.

F(i,l,n) can be computed as follows. Let .Am(i,l,n)
be the random variable, at i teration n, denoting server
allocation of class m, when class i has been allocated
l servers. Let Tin(i, l, n) be the probabil i ty mass func-
tion of .An(i, l, n). Then we have:

Tm(i, l ,n) = g (T r ~ - l) , l , Lm) (9)

for m = {1 ,2 , . . . , i - 1 , i + 1 , . . . ,N} where function g
is defined through Equation (6) and Lm is as follows:

{ Km i f K - l - (N - 2) > K m (10)
L~ = K - l - (N - 2) otherwise

and ~(,~-1) in Equation (9) is computed using Equa-
tion (7). The normalization in Equation (9) is used
to account for the fact that if we know tha t the sys-
tem already allocated l servers to class i, then the sys-
tem only has (K - l) servers remaining. Out of these
(K - l) remaining servers, the system needs to allo-
cate (N - 2) to customers tha t are neither in class i
nor in class m (i.e., the system allocates at least one
server to each class). Therefore, if the system poten-
tially has at least Km available servers, then Am (i, l, n)
can have values in {1 , . . . ,Kin}; otherwise, the ran-
dom variable .A~(i,l,n) can only take on values in
{1, 2 , . . . , K - l - (N - 2)}.

Let B(i, l, n) be a non-negative random variable, at it-
eration n, denoting the server allocation of all classes
except class i, where class i already has l servers al-
located to it. Let ~ (i , l , n) be the probabili ty mass
function of/3(i, l, n). Then we have:

qY(i,l,n) = g ((T l (i , l, n) ® T 2 (i , l , n) . - - T i - l (i , l , n)

® T i + l (i , l , n) ® . - . ® T N (i , l , n)) , N - 1 , K - l) (11)

3.

4.

The normalization in Equation (11) is used to account
for the fact tha t if the system has already allocated
l servers to class i, then the number of servers that
have been allocated to other classes can only range in
{ N - i , N , . . . , K - l } .

Lastly, F(i , l, n), the function used to compute blocking
probabilities, at i terat ion n, corresponding to class i
with l allocated servers is:

where q (i , l, n; K - l) = Prob[B(i, l, n) = K - l] and
~I'(i, l, n) is computed using Equation (11).

Updating of individual class models step: given the
blocking probabilit ies P[,~) of class i in Equation (8),

we can compute the new rate matr ix Q~n) (based on
the transit ion structure given in Equation (5)) and
then compute the corresponding steady state proba-
bilities ~r~ '~) (using the procedure given in Section 3.5)

as well as ~ '~) , the probabil i ty vector of server alloca-
tion of class i (using Equation (7)). (The Ir~ ~)'s will in
turn be needed in t h e u p d a t i n g of the blocking proba-
bilities, "P[,7+l)'s (step 2 above).)

Test of convergence step: if I~/,?)-:P[,?-I)[_< e for each
class i, 1 < i < N, and each l , 1 < l < K i - 1 , then
stop. Otherwise, go to step 2 and continue iterating.

3.4 Computation of Performance Measures
In this section we briefly discuss computat ion of perfor-
mance measures. Given the steady state probabilities "wl, i =
1 , . . . , N, computed using the i terative approach described
above, we can compute various performance measures of in-
terest. More specifically, for each class i we can compute
performance measures which can be expressed in the form
of a Markov reward function, 7~i, where

T~i = ~ ~i[k, j]Ri(k, j)
k,j

and R / (k , j) is the reward for state (k,j) of class i. Some
useful performance measures include: (a) expected number
of customers of class i, (b) expected response t ime for cus-
tomers of class i, (c) probabil i ty of dropping a customer of
class i upon its arrival, (d) throughput of class i customers,
and so on.

For instance, let EINi] and E[Ti] denote the expected num-
ber of customers and the expected response time, respec-
tively, of the class i model, corresponding to the Markov pro-
cess .A4i. Then E[N~] can be expressed as ~ k , j k~i[k, j]. (A
more detailed expression for [Ni] is given in [4].) Of course,
using Litt le 's result [15], we have E[Ti] = ~E[Ni], where A~

is the class i throughput . To compute A~ we need to account
for the customers tha t are dropped from the system (see Sec-
tion 2). Hence, A~ = Ai(1 - ~-,g,-I Pih~i[Fi(j) + a~,j]). L- , j= I

We believe tha t the more interesting performance measures
are those computed on a per class basis, since a useful par t
of studying performance of multi-class threshold-based sys-
tems is to discover the effect tha t the various classes have on

201

one another. Hence above (and in Section 4) we have concen-
trate on per class performance measures. However, we can
also use these to compute overall system performance mea-
sures, for instance, as a weighted average of the individual
class performance measures. For example, we can compute
the expected system response time, E[T], as follows:

E[T] = ~ E[T~] + ~ E[T~] + . . . + ~ E[TN]

where A* = ~N=~ X~.

3.5 Analysis of the Individual Class Model
In this section we briefly summarize the solution technique
for the individual class model which was defined in Section
3.2. Specifically, we use the single class solution technique
we derived in [16] with some modifications needed to ac-
count for the structure of the multi-class model. Since these
modification axe mostly straightforward, we only summarize
the solution technique in this section, ~nd give the details
in N

The general approach is as follows. As already stated, we
model the class i queueing system as a Markov process, .h,4j,
where: (1) the main goal is to compute the" steady state
probabilities of the Maxkov process and use these to compute
various performance metrics of interest and (2) the main
difficulty is that the Maxkov process is infinite (see Section
3.2) and thus "difficult" to solve using a "direct" approach 7.

As is often done in these cases, we need to look for special
structure that might exist in the Markov process; specif-
ically, we take advantage of the stochastic complementa-
tion technique [17]. The basic approach to computing the
steady state probabilities of the Maxkov process and the
corresponding performance measures is as follows. We first
partition the state space of the original Maxkov process .L,/~
into disjoint sets. Using the concept of stochastic comple-
mentation, for each set, we compute the conditional steady
state probability w;ctor, given that the original Maxkov pro-
cess A,4j is in that set. (A relatively simple construction
of the stochastic complement is possible due to the special
structure that exists in the individual class models; specifi-
cally we exploit the "single entry" structure as in [16].) By
applying the state aggregation technique [1], we aggregate
each set into a single state and then compute the steady
state probabilities for the aggregated process, i.e., the prob-
abilities of the system being in any given set. Lastly, we ap-
ply the disaggregation technique [1] to compute the individ-
ual (unconditional',} steady state probabilities of the original
Maxkov process .Adj. These can in turn be used to compute
various performance measures of interest. (Refer to [4] for a
detailed derivation of the solution of .Adj.)

4. NUMERICAL EXAMPLES AND VALIDA-
TION OF APPROXIMATION

In this section, we present numerical examples which illus-
trate (1) the accuracy of our iterative solution technique

7We could consider finite versions of the model or trunca-
tion of the infinite version [11]; however, in either case the
Maxkov process would still be very large and the computa-
tional complexity of a "direct" solution for a reasonable size
system still high.

as compared with simulation as well as (2) the use of our
solution technique in studying performance of designs of
threshold-based systems with hysteresis behavior.

A c c u r a c y of o u r a p p r o a c h .
We begin with the illustration of accuracy of our iterative
solution. Thus, in addition to solving each example model,
represented by the Maxkovian process .h,4, using our iterative
approach (as described in Section 3) we also simulate .A/l,
for the purpose of validating this solution technique. In
all experiments presented here, our iterative approach uses

= 0.0000001 (refer to Section 3 for details). Note that,
in this section, we use the mean response time of each class
i, as the performance metric of interest. Lastly, parameter
settings s for all test cases presented in this section are listed
in Table 1.

Figures 2 and 3 depict the difference in results obtained
through simulation and through the iterative approach.

5

~ 4

3
.e
b-,

i

0
0

c l a s s '1 (i t e r a t i ve} t ' ' ' '
c l a s s 1 (s i m u l a t i o n) - - - x - - -

c l a s s 2 (i t e r a t i v e) ~-
c l a s s 2 (s i m u l a t i o n) ~ ~ . - - - - - - m- - - - ~ ' -~

c l a s s 3 (i t e r a t i v e) - - - m ~.,:.:.:.:.~'~ / -
c l a s s 3 (s i m u l a t i o n) - - - e - - - .~:.:.:" " . /

~.~.~"

I I I I I I

1 2 3 4 5 6

S y s t e m A r r i v a l R a t e

F i g u r e 2: Tes t Case - f lA .

3.5

3

2.5

2

1.5

1

0 . 5

0 <
0

c l a s s 1 (i t e r a t i v e) , •
• c l a s s 1 (s i m u l a t i o n) - - - x , .(k)

c l a s s 2 (i t e r a t i v e) ~---- m ' / " "
c l a s s 2 (s i m u l a t i o n) t3 ; : : :a"

• c l a s s 3 (i t e r a t i v e) - . - u ,11 .~¢~¢~"
c l a s s 3 (s i m u l a t i o n) - ' - ~ ' - " .~.,@;

I I I I

5 1 0 15 2 0

S y s t e m A r r i v a l R a t e

F i g u r e 3: Tes t Case ~ i B .

As can be seen from these figures, the difference between
the two results is small (e.g., in the case of Figure 2, the
largest difference is ~ 5%). Given such small differences,
which are difficult to assess using graphs, we present the
remainder of the accuracy related experiments using tables•

8For ease of specification, we use the following notation aj =
[a~ al Ki'-l] to indicate the a~ values for each class i with
j allocated servers (see Section 2).

202

Test Cases Parameters Settings
Tes t Case # I A K = 10, K1 = K 2 = K 3 = 4, 0/1 = 0.6, 0/2 = 0.3, 0/3 : 0.1, ~1 = #2 = P3 : 1.0

F 1 = [4, 8, 12] , / /1 -- [2, 6, 101, F 2 = [8, 12, 16], R2 -- [5, 9, 13],
/ ' 3 = [6, 10, 14], R 3 -- [3, 7, 11], a l -- [2, 2, 2], a2 = [2, 2, 2], a3 = [2, 2, 2].

Tes t Case # I B K = 10, t(1 -~ K2 -~ K 3 = 4, #1 = 3.0, ~2 -~ 2.0, ~.L3 = 1.2
F 1 = F 2 = F 3 = [4, 8, 12] , / /1 = / / 2 = / / 3 = [2, 6, a0]

11 = a2 -~ a3 = [2, 2, 2], 0/1 -~- 0 . 5 , 0/2 = 0.3, O/3 = 0.2
Tes t Case # 2 K = 10, K1 = 4, K2 = 4, K3 = 4 ,#1 = #2 = #3 = 1.0,

F1 : F 2 : .F3 = [6, 10, 15] , / /1 : / / 2 : / / 3 = [4, 5, 8], a l : a2 : a3 • [3, 3, 3].
Tes t Case # 3 K = 10, K1 = 3, K2 = 3, K3 = 8,~ul = ~2 = #3 = 1.0,

F 1 = [6, 10l, R1 = [4, 7], a l = [3, 31, F 2 = [6, 10] , / / 2 = [4, 7], a2 = [3, 3],
F 3 = [6, 10, 14, lS , 22, 26, 30] , / / 3 = [4, 7, 10, 13, 16, 19, 21], a3 = [3, 3, 3, 3, 3, 3, 3].

Tes t Case # 4 / (= 12, K1 = 3, K2 = 3 , / (3 = 3, K4 = 5, e l -~ [3, 3], a2 = [3, 3], a3 = [3, 3],
a 4 ~-~ [3 , 3 , 3, 3], #1 -~/~2 = , 3 ~--- 1 . 0 , E l ---- [6, 10] , / /1 • [4, 7], F 2 = [4, 8],
/ / 2 = [2, 4], F 3 = [8, 12], t / 3 = [6, 9], F , = [5, 9, 13, lZ], R4 = [3, 6, 9, 12].

Tes t Case # 5 K = 12, K1 = 3, I(2 = 3 , / (3 = 3, Ka = 6,~zl = /~2 = #3 = 1.0
F 1 = [6, 10] , / /1 = [4, 7], a l = [3, 3], F 2 = [4, 8] , / / 2 = [2, 4], 12 = [3, 3],

t ' 3 ---- [8, 12] , / / 3 ---- [6, 9], a3 ---- [3, 3],
F 4 --- [5,9, 13, 17, 21] , / / 4 -~ [3 ,6 ,9 , 12, 15], a4 -- [3 ,3 ,3 ,3 ,3] .

T e s t Case # 6 K = 10, K1 = K2 = / (3 = 4 ,#1 = #2 = / ~ 3 = 1.0,
F 1 = F 2 = F 3 = [6, 10, 15], / /1 = / / 2 = / / 3 = [4,5,8] ,

11 = 1 2 = 1 3 = [3 , 3 , 3] , A 1 = A 2 = 2 . 0 .
Tes t Case # 7 K ~- 8, K1 = K2 = K3 = K4 = 3 ,#1 -~/~2 ~- #3 = 1.0 F 1 = F 2 = F 3 = [10, 20],

/ / 1 "~- / / 2 - ~ / / 3 = [5, 15], a l -~ a2 : a3 = a4 : [2, 2], 0/1 ~- 0/2 : 0 /3 : 0 /4 = 0.25.
Class 4 has t h r ee conf igura t ions : (A) .F4 = [5, 10] , / / 4 = [3, 7];
(B) F . = [7, 1 4] , / / 4 = [4, 11]; (C) F 4 = [10, 2 0] , / / 4 = [5, 15].

Tes t Case # 8 K = 10, K1 = 6, K2 ~- 4, K3 = 2, 0/1 = 0.6, 0/2 = 0.3, 0/3 = 0.1,
O,1 = [2, 2 , 2 , 2, 2], a2 = [2, 2, 2], a3 = [2], #1 = #2 = #3 = 1.0.

T h e r e a re two conf igura t ions :
(A) F 1 = [4, 8, 12, 16, 20], R1 = [2, 6, 10, 14, 18],

F 2 = [6, 10, 14], R2 = [4, 8, 12], F 3 = [8], R3 = [6];
(B) F1 = [4, 8, 12, 16, 20] , / /1 = [2, 6, 10, 14, 18],

F 2 = [8, 12, 16], R2 = [6, 10, 14], 2"3 = [8], R3 = [6]:
Tes t Case # 9 K = 10, K1 = K2 = K3 = 4,11 = a2 = a3 = [2, 2, 2],

#a = 1.0, #2 = I0.0,/.L 3 = I 0 0 . 0 ,

F 1 = F 2 = F 3 = [4,8, 12] ,Ra = R2 = R3 = [2, 6, 10].

T a b l e 1: D a t a S e t s .

Tab les 2-6 i l l u s t r a t e severa l o t h e r e x p e r i m e n t s of v a l i d a t i n g
t h e accu racy of our t e chn ique . (Due to t h e la rge size of t h e
tab les we only give t h e i t e r a t i v e resul t and t h e p e r c e n t a g e
error .) In all cases, t h e p e r c e n t a g e e r ror (%E) is def ined as:

% E = [s imula t ion resul t - i t e r a t i v e result[x 100% (13)
s imu la t i on resu l t

A l t h o u g h Tab l e 2 is no t t h e m o s t i n t e r e s t i ng case f r o m a
des ign po in t of view, it is used to i l l u s t r a t e t h a t ou r i ter -
a t ive a p p r o a c h "does t h e r igh t t h i n g " , i.e., i t p r o d u c e s t h e
s a m e resul t s for all classes, for a s y s t e m whe re all classes
b e h a v e ident ical ly . F u r t h e r m o r e , as can be seen f rom Tab le s
2-6 t h e accu racy of our t e c h n i q u e is good, even u n d e r h igh
con ten t ion .

N o t e tha t , we have p e r f o r m e d m a n y m o r e e x p e r i m e n t s t h a n
we h a v e b e e n able to i nc lude in t h e paper . T h e resu l t s of
t hose e x p e r i m e n t s are s imi la r to t h e ones i n c l u d e d he re a n d
can be found in a t echn ica l r e p o r t [4]. OverM1, t h e p e r c e n t -
age e r ror in m o s t cases we t e s t e d was w i t h i n 5%, w i t h few
cases h a v i n g an er ror of g rea t e r t h a n 12%.

As is p r o b a b l y e x p e c t e d , in our e x p e r i m e n t s , t h e h ighe r e r ro r

cases c o r r e s p o n d e d to fa i r ly h igh c o n t e n t i o n cases. T h e s e
are also t h e cases t h a t l ikely c o r r e s p o n d e d to "poo r " des igns
whe re a r e d u c t i o n in c o n t e n t i o n for resources b e t w e e n classes
is n e e d e d in o rde r to o b t a i n a s y s t e m w i t h g o o d p e r f o r m a n c e
charac te r i s t i c s . In m o s t of our e x p e r i m e n t s (some of which
are p r e s e n t e d be low) , t h e p e r f o r m a n c e i m p r o v e m e n t s t h a t
could be o b t a i n e d , for ins tance , t h r o u g h b e t t e r t h r e s h o l d
se t t ings , were s ign i f ican t ly h igher (pe rcen tage -wise) t h a n t h e
loss in a c c u r a c y due to our a p p r o x i m a t i o n . Hence , th is is
a good i nd i ca t i on t h a t our i t e r a t i v e t e c h n i q u e is a useful
too l for fas t and fa i r ly a c c u r a t e a s ses smen t of t h r e sho ld -
based designs t h a t can be used, for ins tance , for sea rch ing
for good t h r e s h o l d se t t ings . N e x t , we i l l u s t r a t e s o m e of t h e
p e r f o r m a n c e t radeof fs a n d des igns t h a t can be s t ud i ed us ing
our t e chn ique .

R e s p o n s e t i m e b e h a v i o r .
We beg in by i l lus t ra t ing , in F i g u r e 4, t h e s o m e w h a t "pe-
cul iar" r e sponse t i m e b e h a v i o r of t h r e s h o l d - b a s e d resource
m a n a g e m e n t t e chn iques as well as the i r p o t e n t i a l u t i l i ty in
d y n a m i c r e source m a n a g e m e n t of sys tems . In th is f igure we
dep ic t a t h r ee class s y s t e m whe re we fix t h e a r r iva l r a t e of
classes 1 and 2 (a t A1 = A2 = 2.0) a n d va ry t h e a r r iva l r a t e

203

A~ A2 A3

0.40 0 .40 0.40
0 .80 0 .80 0.80
1.20 1.20 1.20
1.60 1.60 1.60
2.00 2.00 2.00
2 .40 2.40 2.40
2 .80 2.80 2.80
3.20 3 .20 3.20
3 .60 3.60 3.60

E[T,]
(i t e r a t i v e)
1 .630272
2 .597491
3 .156590
3 .304191
3 .321952
3 .379876
3 .592408
3 .981657
5 .010319

E[T2]
(i t e r a t i v e)
1 .630272
2 .597491
3 .156590
3 .304191
3 .321952
3 .379876
3 .592408
3 .981657
5 .010319

E[Ts]
(i t e r a t i v e)
1 .630272
2 .597491
3 .156590
3•304191
3 .321952
3 .379876
3 .592408
3 .981657
5 .010319

% e r r o r
(c lass 1)
1 .202181
3 .058886
2 .877489
2 .000313
1 .630424
2 .282249
3 .792533
1 .820473
0 .601689

% error
(c lass 2)
0 .735494
2 .665640
2 ,619260
1 .749316
1 .625574
1 ,994334
3 .334905
1 .245720
1 .198128

% error
(c lass 3)
1 .153579
3 .148594
2 .598514
1 .993638
1 .719706
2 .188239
3 .770227
1 .811621
1 .858318

T a b l e 2: Tes t C a s e ~2.

l i m b

0 .30 0 .30 O.30
0 .60 0 .60 0 .60
0 .90 0 .90 0 .90
1.20 1.20 1.20
1.50 1.50 1.50
1.80 1.80 1.80
2 .10 2 .10 2 .10
2.40 2.40 2 .40
2 .70 2 .70 2 .70
2 .70 2.70 3.20
2 .70 2.70 4.00
2 .70 2 .70 4 .80
2 .70 2 .70 5 .60
2 .70 2 .70 6 .40
2 .70 2 .70 7.20

E[T,]
(i t e r a t i v e)
1 .421688
2 .122039
2 .795585
3 .180244
3 .357821
3 .470854
3 .641093
4 .068188
5 .600409
5 .611609
5 .647604
5 .693371
5 .733468
5 .763689
5 .785786

E[T2]
(i t e r a t i v e)
1 .421688
2 .122039
2 .795585
3 .180244
3 .357821
3 .470854
3 .641093
4 .068188
5 .600409
5 .611609
5 .647604
5 .693371
5 .733468
5 .763689
5 .785786

E[T3]
(i t e r a t i v e)
1 .421680
2 .122039
2 .795464
3•178452
3 .344765
3 .412461
3 .441965
3 .462714
3 .512400
3 .646626
3 .935655
4 .113839
4 .178537
4 . 1 3 5 5 1 7
4 .301380

% e r r o r
(class 1)
0 .413537
2 .657185
3 .284193
2 .371027
1 .286876
0 .711188
0 .564150
0 .491789
0 .911634
0 .158437
0 .236337
0 .126605
0 . 0 4 8 7 7 7
0 .767475
2 .732223

% e r r o r
(c l a s s 2)
0 .181734
2 .095714
2 .855018
1 .896997
0 .882332
0 .498285
0 .070303
0 .814125
2 .755618
3 .637028
3 .279166
1 .469008
0 .166028
1 .791951
2 .217973

% e r r o r
(c l a s s 3)
0 .318665
2 . 3 7 8 8 9 0
2 .994942
1 .832370
1 .135763
0 .647543
0 . 5 5 7 8 3 6
0 . 4 6 8 3 7 9
0 .956535
2 .843098
5 .373869
1 .825511
0 . 9 0 9 8 1 0
1 .555702
1 .388458

Table 3: Tes t C a s e # 3 .

[..

.<

5

4.5

4

3.5

3

2.5

2

1.5
0

class 1 (iterative) i
class 2(iterative) ---~----
class 3(iterative) *---

/, '

/

~ 1 I i i 1

0.5 1 1.5 2 2.5

Arrival Rate for Class 3

i i i l l ~

/
/

/

i i

3 3.5

F i g u r e 4: Tes t C a s e ~ 6 .

of class 3. We can make a couple of observation here: (1) the
response time curve of class 3 shows the "peculiar" response
t ime behavior mentioned above, i.e., it first increases, then
"flattens" out and then increases again, as a function of in-
creasing arrival rate; (2) the response time curves of classes
1 and 2 are flat, i.e., the increased workload in the system
due to class 3 does not appear to affect the response time of
classes 1 and 2, ewm though there is contention for resources
between all classes.

P e r f o r m a n c e s ens i t i v i t y .
We continue in Figures 5 and 6 with the demonstration of
the last point, where we illustrate that it is worth while to
study the behavior of threshold-based systems, for instance,
to search for better threshold settings, as the changes in
performance (due to better parameter settings) are often
significant. Given a fast and fairly accurate analytical so-
lution technique (such as ours), these studies can be made
efficient•

11

10

9 o
~ 8
~ 7
~ 6
° 5
o
~ 4

~ 3

7 2
<

1
0

, i i , , i i ,

class 1,2,3 (class 4 at config A) i , . ~ . ~ . . _
class 4 at config A ---×--- / ~ 7 " - " - - - : ~

class 1,2,3 (class 4 at config B) ----~--- / 7
class 4 at config B .--.-o

class 1,2,3 (class 4 at config C) - . - l , - - ..2"
class 4 at config C - . - o - . - ~ ~-----"-~ D / . "-

/ /

.El" I "

..9~¢'"

I I I I I I I I

1 2 3 4 5 6 7 8

System Arrival Rate

F i g u r e 5: Tes t C a s e # 7 .

The first observation is, of course, due to the fact that
in threshold-based systems the response time can improve
at higher loads due to the crossing of a forward threshold
(which does not occur at lower loads). The second obser-
vation suggests that threshold-based techniques can reduce
the sensitivity of performance characteristics of a class of
customers to the workload of other classes without having
to partition resources statically.

In Figure 5 all classes begin with the same characteristics.
We then vary the threshold settings of class 4 to experiment
with the effect this has on class 4 performance as well as on
the performance of the remaining classes. As can be seen
from this figure, we are able to improve class 4 performance
with "more aggressive" threshold settings, without it hav-
ing a significant effect (in most cases) on the performance of
the remaining classes. It is interesting to note that in places

204

St X~ ~3

0.90
0.90
1.80
2.70

0.90 1.80
1.80 1.80
1.80 1.80
2.70 2.70

A4 E[Ti] E[T2] E[T3] E[T4] % er ro r % e r r o r % e r r o r % e r ro r
(i t e r a t ive) (i t e ra t ive) (i t e r a t i ve) (i t e r a t ive) (class 1) (c lass 2) (c lass 3) (class 4)

4.50 2 .797506 1 .994472 4 .529838 4 .374533 2 .961873 6 .642513 ! 0 .469696 0 .212680
4.50 2 .853014 2 .441160 4 .543077 4 .375314 4 .506275 2 .851423 0 .630932 0 .393236
4.50 3 .581616 2 .504496 4 .671432 4 .384649 2.517501 3 .911467 2 .294438 0 .122387
4.50 5 .734653 4 .849304 6 .490237 4 .530748 0 .130256 1 .235332 1.043941 2 .141307

Ta b l e 4: Tes t Case #4 .

)~1 A: A3

0.90 0.90 1.80
0.90 1.80 1.80
1.80 1.80 1.80
2.70 J 2.70 2.70

A4 E[T~] E[T2] E[T3] E[T4] % e r r o r % e r r o r % e r r o r % e r r o r
(i t e ra t ive) (i t e ra t ive) (i t e r a t i ve) (i t e r a t ive) (class 1) (c lass 2) (c lass 3) (class 4)

5.40 2 .843976 2 .017333 1 4 .543616 4 .177035 4 .322296 7 .654710 0 .677994 6 .927892
5.40 3 .108633 2 .510323 ' 4 .687938 4 .186058 11.183943 3 .839499 2 .575381 2 .158903
5.40 3 .785969 2 .640827 4 .934167 4 .211717 2 .996919 2 .662320 3 .703350 0 .066877
5.40 5 .762419 4 .868467 I 6.52125.3 4 .377117 1 .494872 0 .799943 2 .778988 0 .505154

Ta b l e 5: Tes t Case #5 .

5.5

5

4.5

4

3.5

V- 3

2.5

N 2

~ 1.5

i t i ~ i i i J J

c l a s s I at config A I ~ll
c l a s s 2 at conlig A --...X--- ! . , . ' " ~,
c l a s s 3 at conlig A -- -~-- . .at .- .- .- .-II-.- .--=ll----.-ii .--- '"- /
c l a s s 1 at config B -----~
class 2 at config a -.-II---- - / ~ , ~
c l a s s 3 at config B - . .o--- .+/! . - ~ -

+. .~ -X- /
• . . - - +,

+'+ 1+" z J
/ i ++~" .11+.

~ " I I I I I I I I
I 2 3 4 5 6 7 8 9

System Arrival Rate

F i g u r e 6: Tes t Case #8 .

where this does have an effect on the performance of the
other classes (e.g., at A = 6.3) the actual effect is somewhat
unexpected. That is, one might expect that the "more ag-
gressive" threshold settings of class 4 might detriment the
performance of other classes; however that is not the case
here.

In general, it is often difficult to predict the effects of changes
in threshold settings, partly due to unusual response time
behavior of threshold-based systems and partly due to the
interaction of such behavior with systems employing some
form of blocking behavior. In the case of Figure 5, this be-
havior may partly be due to the "more aggressive" threshold
settings aiding in processing of the class 4 workload faster
and hence resulting in greater resource availability for the
other classes as well. Thus, experimentation with effects of
threshold settings on system performance is of importance,
and the ability to solve the corresponding models efficiently
facilitates such experimentation.

In Figure 6 we study the effects of changes in threshold
settings of class 2 where all three classes exhibit signifi-
cantly different characteristics. In this case, partly due to
the "more aggressive" settings of thresholds (in configura-
tion A as compared to configuration B), the performance
of class 2 improves, but again without having a significant
effect on the other two classes.

Lastly, although we have not provided proofs of convergence
or of the performance of the iterative technique in terms of

convergence rates, we have performed extensive experimen-
tations to gather empirical evidence that our technique does
converge, and that it converges fairly quickly. Our exper-
iments indicate that for most test cases the iterative ap-
proach converges within approximately 5 to 10 iterations.
Based on the "wall clock" time, in most test cases, it pro-
duces results more than two orders of magnitude faster than
simulation. We note that, in general, theoretical characteri-
zation of convergence of iterative techniques which use more
than a single parameter (to characterize the intercation be-
tween the models), which is the case in our approach, is
difficult.

In summary, the main focus of this section was the illus-
tration of utility of our approach in evaluating designs of
threshold-based systems, where "good" parameter settings,
such as threshold valhes, constitute a difficult problem. We
believe that the efficiency and accuracy of our solution tech-
nique facilitates large-scale experimentation with parame-
ter settings and subsequent evaluation of performance of
threshold-based designs of systems.

5. CONCLUSIONS
In this paper, we have considered a K-server multi-class
threshold-based queueing system with hysteresis in which
the number of servers, employed for serving customers of
each class i, is governed by forward and reverse threshold
vectors. The main motivations for using a threshold-based
approach was that (a) many applications incur significant
server setup, usage, and removal costs and (b) that it is a
good approach to dynamically managing a pool of resources
between multiple workload classes. The motivation for the
use of hysteresis was to control the cost during momentary
fluctuations in workload. An important and distinguish-
ing characteristic of our work is that we developed an effi-
cient analytical solution technique for analyzing multi-class
threshold-based systems with hysteresis behavior, which is
needed in modeling of many applications. Specifically, we
proposed an iterative solution method, which our empirical
evidence indicates to be fast and fairly accurate. Most of
our test cases were within 5 percent of the simulation results
(used for validation purposes) with more than two orders of
magnitude improvement in computation time (as compared
to simulation). Furthermore, we studied the performance
characteristics of threshold-based systems and showed that
proper choices of design parameters, such as threshold val-
ues, can produce significant improvements in system per-

205

~1 ~2 ~3 E[T1]
(i t e ra t ive)

3.6 3.6 3.6 4.623164
3.6 8.0 8.0 4.623164 I

3.6 116.0 16.0 4.623164
3.6 24.0 24.0 4.623164
3.6 32.0 32.0 4.623163
3.6 36.0 36.0 4.623165
3.6 36.0 60.0 4.623203
3.6 36.0 80.0 4.623463
3.6 36.0 160.0 4.639706
3.6 36.0 240.0 4.701579
3.6 36.0 320.0 4.776830
3.6 36.0 360.0 4.813562

E[T~] E[T3]
(i t e ra t ive) (i t e ra t ive)
0.146230 0.010373
0.192905 0.010867
0.239999 0.011862
0.282280 0.012948
0.343896 0.014069
0.462318 0.014623
0.462322 0.017553
0.462348 0.019412
0.463973 0.027313
0.470160 0.034302
0.477684 0.038680
0.481358 0.048136

T a b l e 6: Tes t Case #9 .

% e r r o r
(class 1)
2.174990
0.344933
2.330279
3.795961
0.004456
0.397470
1.912505
1.140015
1.656744
8.421698
2.454293
6.936106

% error % er ror
(class 2) (class 3)
4.145004 0.192437
6.774970 0.110304
2.286976 0.550988
0.633505 1.696513
0.161939 3.182985
0.331783 4.019064
0.602542 6.828556
1.303909 7.189398
1.143159 8.942603
0.446514 7.297695
2.720231 4.943296
4.665342 12.454153

formance. Using this study, we il lustrated the uti l i ty of
our approach in evaluating designs of threshold-based sys-
tems, where "good" parameter settings consti tute not only
an impor tant but a difficult problem. We believe that the
efficiency and accuracy of our approach facilitates large-
scale experimentat ion with parameter settings and subse-
quent performance evaluation studies of threshold-based de-
signs of systems.

A c k n o w l e d g e m e n t s : The authors are grateful to the ano-
nymous referees for their helpful and insightful comments.

6. REFERENCES
[1] P. J. Courtois. Decomposability : queueing and

computer system applications. ACM monograph series,
Academic Press, New York, 1977.

[2] E. de Souza e Silva, S. S. Lavenberg, and R. R.
Muntz. A perspective on iterative methods for the
approximate analysis of closed queueing networks. In
G. Iazeola, P. J. Courtois, and A. Hordijk, editors,
Mathematical Computer Performance and Reliability,
pages 225-244. North Holland, 1984.

[3] L. Golubchik and J. C. Lui. Bounding of performance
measures for a threshold-based queueing s y s t e m with
hysteresis. In Proceedings of 1997 ACM
SIGMETRICS Conf., Seattle, WA, June 1997.

[4] L. Golubchik and J. C. Lui. A fast and accurate
i terative solution of a multi-class threshold-based
queueing system with hysteresis. Technical Report
CS-TR-4115, University of Maryland, March 2000.

[5] S. Graves and J. Keilson. The compensation method
appfied to a one-product product ion/ inventory
problem. Journal of Math. Operational Research,
6:246-262, 1981.

[6] O. Ibe. An approximate analysis of a multi-server
queueing system with a fixed order of access.
Technical Report RC9346, IBM Research, 1982.

[7] O. Ibe and J. Keilson. Multi-server threshold queues
with hysteresis. Performance Evaluation, 21:185-212,
1995.

[8] O. Ibe and K. Maruyama. An approximation method
for a class of queueing systems. Performance
Evaluation, 5:15-27, 1985.

[9] J. Keilson. Green's Function Methods in Probability
Theory. Charles Griffin, London, 1965.

[10] J. Keilson. Markov Chain Models: Rarity and
Exponentiality. Springer, New York, 1979.

[11] F. P. Kelly. Reversibility and Stochastic Networks.
John Wiley and Sons, 1979.

[12] P. King. Computer and Communication Systems
Performance Modeling. Prentice-Hall, New York, 1990.

[13] R. Larsen and A. Agrawala. Control of a
heterogeneous two-server exponential queueing
system. IEEE Trans. on Software Engineering,
9:552-526, 1983.

[14] W. Lin and P. Kumar. Opt imal control of a queueing
system with two heterogeneous servers. IEEE Trans.
on Automatic Control, 29:696-703, 1984.

[15] J. D. C. Little. A proof of the queueing formula
L = AW. Operations Research, 9:383-387, May 1961.

[16] J. C. Lui and L~ Golubchik. Stochastic complement
analysis of multi-server threshold queues with
hysteresis. Performance Evaluation, 35(1-2):19-48,
March 1999.

[17] C. Meyer. Stochastic complementation, uncoupling
markov chains and the theory of nearly reducible
systems. SIAM Review, 31(2):240-272, 1989.

• [18] D. Mitra and I. Ziedins. Vi r tua l part i t ioning by
dynamic priorities: Fair and efficient resource-sharing
by several services. In B. Pla t tner , editor,
International Zurich Seminar on Digital
Communications, Lecture Notes in Computer Science,
Broadband Communications, pages 173-185. Springer,
1996.

[19] D. Mitra and I. Ziedins. Hierarchical virtual
partit ioning: Algori thms for virtual private
networking. In IEEE GLOBECOM, pages 1784-1791,
1997.

[20] J. Morrison. Two-server queue with one server idle
below a threshold. Queueing Systems, 7:325-336, 1990.

[21] R. Nelson and D. Towsley. Approximat ing the mean
t ime in system in a multiple-server queue that uses
threshold scheduling. Operations Research,
35:419-427, 1987.

206

