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ABSTRACT 
In this paper, we consider a K-server multi-class threshold- 
based queueing system with hysteresis in which the number 
of servers, employed for servicing customers of each class i, 
is governed by a forward threshold vector F ,  = [F, (1), F, (2), 
• . . ,  F i ( K i  - 1)] and a reverse threshold vector R = [Ri(1), 
Ri(2), . . . ,  R i ( K ;  - 1)]. There are many applications and 
systems where a multi-class threshold-based queueing sys- 
tem can be of great use. One motivation for using threshold- 
based techniques is that  such systems incur significant server 
setup, usage, and removal costs. And, as in most practical 
situations, an important concern is not only the system per- 
formance but rather its cost/performance ratio. The mo- 
tivation for use of hysteresis is to control the cost during 
momentary fluctuations in workload. Moreover, servers in 
such systems are often needed by multiple classes of work- 
loads, and hence, it is desirable to find good approaches to 
sharing these serw~rs among the different workloads, prefer- 
ably without statically partitioning the server pool among 
the classes; threshold-based techniques constitute one cate- 
gory of such approaches. Consequently, an important  and 
distinguishing characteristic of our work is that  we consider 
a multi-class system, which is needed in modeling of many 
applications and systems. Our main goal in this work is 
to develop an efficient method for solving such models and 
computing the corresponding performance measures of in- 
terest, which can subsequently be used in evaluating designs 
of threshold-based systems. 

1. INTRODUCTION 
In this paper, we consider a multi-class K-server threshold- 
based queueing system with hysteresis in which the number 
of servers, employed for servicing customers of class i, i = 
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1 , . . .  N,  is governed by a forward threshold vector F i  = 
[F~(1), F;(2), . . . ,  F~(K~ - 1)] (where F~(1) < Fi(2) < - . .  < 
F ~ ( K i - 1 ) )  and a reverse threshold vector Ri  =[Ri(1), Ra(2), 
. . . ,  R ~ ( K ~  - 1)] (where R~(1) < Ri(2) < - - -  < R~(Ki  - 1)). 
This multi-server multi-class queueing system has a total 
of K servers where the allocation of servers to classes is 
performed as follows. Each class is allocated a minimum 
of one server. Thus, a customer of class i arriving to an 
empty system is served by a single server. A new arrival of 
a class i customer to a system with Fi (j) class i customers 
already there (and j servers already allocated to that  class) 
forces an attempt,  to allocate one additional server to class 
i, where j = 1 . . .  Ki - 1, and Ki is the maximum number of 
servers that  can be allocated for service of class i customers. 
A departure of a class i customer from a system (with j + 1 
servers allocated to that  class prior to this departure) which 
leaves behind R~ (j) customers of class i forces a de-allocation 
of a server, where j = 1 . . .  K~ - 1 - -  that  is, it forces the 
return of a server, that  was earlier allocated to class i, to the 
pool of "free" servers which are available for allocation to all 
classes• Hence, the N classes share a pool of K servers, with 
a dynamic allocation of servers to classes governed by a set of 

• . . N thresholds with hysteresis behavmr. If ~ = 1  Ki  < K ,  then 
the classes do not "interfere" with each other. Of course, the 
more interesting case is where ~ v = l  K~ > K, as motivated 
below. 

One motivation for using a threshold-based approach is that  
many systems incur significant server setup, usage, and re- 
moval costs. And, as in most practical situations, an im- 
portant  concern of a system designer is not only the system 
performance but rather its cost/performance ratio. Further- 
more, servers (resources) in a system are often needed by 
multiple classes of workloads (applications), and hence, it 
is desirable to find good approaches to sharing these servers 
among the different workloads, preferably without statically 
partit ioning the server pool among the classes. More specif- 
ically, under light class i loads, it is not desirable to op- 
erate unnecessarily many servers for that  class, due to the 
incurred setup and usage costs as well as due to the perfor- 
mance consequences of that  class under-utilizing the servers 
while other classes are (possibly) experiencing high loads. 
On the other hand, it is also not desirable for a system 
to exhibit very long delays, which can result from lack of 
servers under heavy loads. One approach to improving the 
cost/performance ratio of a system is to dynamically react to 
changes in workload through the use of thresholds. For in- 
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stance, one can maintain the expected job response time in a 
system at an acceptable level, and at the same time maintain 
an acceptable cost for operating that  system, by dynamically 
adding or removing servers, depending on the system load. 
Similarly, one can use the threshold-based server allocation 
approach to reduce the sensitivity of performance character- 
istics of a class of customers to the workload of other classes 
without having to statically partition resources between the 
classes. (We illustrate this further in Section 4.) 

There are many applications where threshold-based resource 
management policies can be employed, and thus performance 
evaluation of such systems through analysis of multi-class 
threshold-based queueing systems can be of great use. For 
instance, the Novell file server maintains a memory pool such 
that a fraction of it is used for communication buffers and a 
fraction is used for file buffers, where threshold-based poli- 
cies are implemented in order to make decisions about when 
to increase the number of network buffers and when to de- 
creases it; the threshold values are based on perceived packet 
losses due to increases in network traffic activity. Similarly, 
OS design has been moving towards maintaining a common 
buffer space pool that can be dynamically managed between 
the various I /O processes. Furthermore, in transport  proto- 
cols of communication networks [12], several transport-layer 
connections are multiplexed onto a single network layer con- 
nection. Whenever the traffic exceeds a certain threshold 
in the network-layer connection, another network-layer con- 
nection can be created to service the incoming traffic from 
the transport layer. Using such a control mechanism, severe 
degradations in throughput and delay can be avoided; at the 
same time operation costs can be kept at an acceptable level. 
Another example application is a system providing informa- 
tion query service via the Internet. As the number of queries 
increases, the number of servers, needed to maintain certain 
(acceptable) system response time characteristics, is also in- 
creased. Since the cost of setting up server connections can 
be significant 1, the use of a threshold-based approach can 
result in a cost-controlled creation and deletion of these con- 
nection, according to the changes in the workload. Thus, the 
model presented in this paper and its efficient solution will 
be beneficial for many systems and applications. 

As in the case of electronic circuits that are prone to oscil- 
lation effects, a "simple" threshold-based system may not 
suffice. In a computer system, one reason for avoiding oscil- 
lations are the above mentioned server setup and removal 
costs, i.e., oscillations coupled with non-negligible server 
setup and removal costs can result in a poor cost/performance 
ratio of a system. More specifically, it is desirable to add 
servers only when a system is moving towards a heavily 
loaded operation region, and it is desirable to remove servers 
only when a system is moving towards a lightly loaded op- 
eration region - -  it is not desirable to alter the number of 
servers during "momentary" changes in workload, i,e., dur- 
ing oscillations. Such oscillation regions can be avoided by 
adding a hysteresis to the system - -  hence the motivation for 
looking for efficient analysis techniques of threshold-based 
queueing systems with hysteresis behavior. 

1For instance, it may be necessary to broadcast information 
about the newly added server to the already active servers 
in the system. 

As already mentioned, a threshold-based queueing system 
with hysteresis is defined by the forward and the reverse 
threshold vectors (see Section 2 for details). The actual val- 
ues, or rather what are "good" values for these vectors is 
a function of many factors, such as the characteristics of 
the server setup, usage, and removal costs, characteristics 
of the arrival process and the service rates, as well as the 
possible "interaction" between the different classes of work- 
loads. Our main goal in this work is to develop an efficient 
method for solution of multi-class multi-server threshold- 
based queueing models with hysteresis and computation of 
corresponding performance measures of interest. The ques- 
tion of optimal values for the threshold vectors is, in general, 
a difficult problem and is outside the scope of this paper. We 
must point out, however, that efficient model solution tech- 
niques can be of great use in evaluating various parameter 
settings (such as the threshold values) and hence are needed 
for performance evaluation of systems that  manage resources 
in a threshold-based manner. Such analytical models are es- 
pecially useful at design time, when the speed of evaluation 
is key. Thus, we believe that  our solution method, due to its 
efficiency, facilitates accessible experimentation techniques 
for investigating the "goodness" of various threshold-based 
designs and parameter settings (refer to Section 4 for nu- 
merical examples). 

Given the above motivation for the use of threshold-based 
systems with hysteresis, in this paper we present an efficient 
technique for solving the corresponding analytical models 
and computing various performance measures of interest. 
We begin with a very brief survey of some of the existing 
literature on the threshold-based queueing problem. A two- 
server system is considered in [13], [14], and [20]. An approx- 
imate solution for solving a degenerate form of this problem 
(where all thresholds are set to zero) is presented in [6, 8]; 
an approximate solution for a system that employs (non- 
zero) thresholds is presented in [21] (but without hystere- 
sis). In [7], the authors solve a multi-server threshold-based 
queueing system with hysteresis, using the Green's function 
method [5, 9, 10]. In [16] We give a solution of several forms 
of the multi-server threshold-based queueing system with 
hysteresis using stochastic complementation [17]. Lastly, 
techniques for computation of bounds for performance mea- 
sures of multi-server threshold-based queueing systems with 
hysteresis and non-instantaneous server activation are given 
in [3]. 

In this work, we consider and solve a multi-class multi-server 
threshold-based queueing system with hysteresis. The con- 
tributions of this work are as follows. To the best of our 
knowledge, none of the works described above give an effi- 
cient analyticM solution technique for analyzing multi-class 
threshold-based systems with hysteresis behavior. Since in 
many applications, such as the ones described above, mul- 
tiple types of workloads "compete" for a pool of resources, 
we consider it an important and distinguishing characteris- 
tic of our work. Specifically, we present an iterative solution 
technique which solves the multi-class model by "breaking" 
it up into N single class models, "coupled" through a set 
of model parameters which capture the interaction between 
classes. As shown in Section 4, in most test cases, this it- 
erative approach produces accurate results and allows for 
efficient computation of performance measures of interest. 
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Fur thermore ,  we s tudy  the per formance  characterist ics of 
threshold-based systems and show tha t  proper  choices of 
design parameters ,  such as threshold  values, can produce 
significant improvements  in system performance.  Using this 
study, we i l lustrate  the  uti l i ty of our approach in evaluat ing 
designs of threshold-based systems, where "good" parame-  
ter  sett ings const i tu te  not  only an impor t an t  but  a difficult 
problem. We believe tha t  the  efficiency and accuracy of our 
approach facili tates large-scale exper imenta t ion  with param-  
eter  sett ings and subsequent  per formance  evaluat ion studies 
of threshold-based designs of systems.  

Finally, we note  tha t  a var ie ty  of i te ra t ive  approaches  have 
been used in the  l i tera ture  for cons t ruc t ion  of approxima-  
t ion techniques (e.g., refer to [2]). For instance,  an i tera t ive  
technique for a somewhat  different control  schemes for dy- 
namic  resource sharing between mul t ip le  classes is employed 
in [18, 19]. 

The  remainder  of this paper  is organized as follows. In Sec- 
t ion 2 we give a descript ion of our  mode l  (with fur ther  details 
given in [4]). Sect ion 3 describes our  i te ra t ive  approach to 
solving the  multi-class mode l  (with details of the  derivat ion 
of an individual  class model  solution, uti l ized by the  i tera-  
t i r e  approach,  given in [4]). The  goodness of this approach,  
i.e., its a c c u r a c y  and ut i l i ty  in sys tem design and evalua- 
tion, is discussed in Sect ion 4 th rough  the  use of numerical  
results. Finally, our  conclusions are given in Sect ion 5. 

2. SYSTEM MODEL 
In this section, we describe our multi-class threshold-based 
queueing model  with hysteresis behavior  which has an in- 
finite s ta te  space and can be defined as follows. There  
is~a to ta l  of K servers in the  system, where K is unre-  
stricted. The  service t ime  requi rements  of a class i cus- 
tomer  are exponent ia l ly  d is t r ibu ted  wi th  pa rame te r  #i.  The  
cus tomer  arrival process is Poisson with  rate  A and prob- 
abili ty a i  tha t  an arr iving cus tomer  is of class i, where g 
~ i = l a i  = 1 and 1 < i < N.  T h a t  is, we consider a 
multi-class system with N classes, where N is unrestr icted.  
Addi t ion  and removal  of servers for serving customers  Of 
class i is governed by the  forward and the  reverse thresh-  
old vectors F~ = [ F i ( 1 ) , F i ( 2 ) , . . .  , F ~ ( I K , -  1)] and R i  = 
[ R ~ ( 1 ) , R ~ ( 2 ) , - - - , R ~ ( K i -  1)] where F~(j) < F i ( j  + 1) for 
l _< j _< Ki  - 2, R i ( j )  < R , ( j  + i )  for 1 < j _< K ,  - 2, and 
R~(j)  < El ( j )  for 1 _< j _< Ki  - 1. 

Given a pool  of K servers where each server is able to serve 
a cus tomer  of any class, each class i s t a r t s -ou t  wi th  one 
server and may  a t t e m p t  to obta in  at most  Ki  servers. These 
servers are al located for service of class i customers  and 
re turned  to the  pool of available servers based on the  number  
of class i customers  current ly  in the  system (as s ta ted  more 
formally below). In general, ~/N=i I4"i may  be greater  than,  
equal  to, or less t han  K;  a l though the  more interest ing case 
is where ~iN=l Ki > K.  

Given a K server N class threshold-based queueing system 
with  hysteresis, we model  it  as a Markovian process .A4 with  
the  following s ta te  space S:  

S ---- { ( n l , s l , n 2 , s 2 , . . .  , n N , S N )  I n, >_ 0, 

si • { 1 , 2 , . . . , K , } , ~ s i _ < K , i = I , . . . , N }  

where ni is the  number  of class i customers  in the  system 
and s; is the  number  of servers current ly  al located to class 
i. Upon  an arrival of a class i customer ,  if Fi ( j )  _< nl _< 

J where J > 0 and j = sl,  then  the  system at- Fi ( j )  + a i a~ _ 
t e m p t s  to al locate an addi t ional  server for service of class i 
customers ,  which is possible only if ~iN=l sl < K.  Note  tha t  

in a sys tem where ~iN=l Ki  > K,  it may  not  always be pos- 
sible to al locate  another  server to class i upon arrival, since 
at t ha t  t ime  all K servers may  have already been allocated.  
In this case, the  arr iving class i cus tomer  joins the  queue of 

3 (where class i requests  as long as F~(j) <_ ni < F i ( j )  + a i 
J > 0 and j = si). W h e n n ~  = Fi ( j )  +a~ ,  the  arr iving al  _ 

class i cus tomer  is re jected by the  system (i.e., d ropped)  i f  
there  is no server available for al locat ion to class i (i.e., if 

si = K ) .  For correctness, we assume the  following con- 
J. s t ra int  on all a l .  

_ j+l  Fi ( j )  + a{ < F i ( j  + 1) + ~i 

for i = 1, 2 , .g .  , N  and j = 1 , 2 , . . . , K i -  1. We also as- 
sume tha t  a i i = o0; hence, we have no restr ict ions on 
queue length  when the  m a x i m u m  number  of servers t ha t  
maybe  needed by class i have been al located (i.e., when 
sl = Ki) .  The  l imi ta t ion  on queue length  when sl < Ki  is 
mo t iva t ed  by sys tem design considerations.  T h a t  is, if the  
sys tem reaches a point  where its design dictates  t ha t  an- 
o ther  server be  al located for class i workload,  bu t  a server 
is not  available (i.e., all K of the  sys tem's  servers are al- 
ready al located) ,  then  it is reasonable to assume tha t  the  
sys tem is (at least) t emporar i ly  overloaded,  par t ly  due to 
shar ing of resources wi th  o ther  classes. And,  reject ion or 
blocking of cus tomers  is a reasonable approach to dealing 
wi th  overload conditions.  Of  course, a "real" sys tem will 
also not  have an infinite queue length,  when the  m a x i m u m  
number  of servers (K{) for class i has been allocated.  In this 
case, we may  ei ther  (1) use a finite queue length  mode l  (i.e., 
a/K i is finite) and s tudy  the  sys tem's  per formance  under  a 
given queue size l imita t ion,  or (2) allow an infinite queue 
length  (i.e., a/K i = oo) and use the  mode l  to s tudy  queue 
length  requi rements  of the  corresponding system. Our  solu- 
t ion me thodo logy  (refer to Section 3) allows for ei ther  type  
of a model ,  bu t  for s implici ty of exposit ion,  in the  remain-  
der of the  paper  we will focus our discussion on the  infinite 
queue version (i.e., where a{ is finite, for j . =  1 , . . .  , K~ - 1, 
and al K' ---- cx:~) 2. 

Formally,  the  t rans i t ion  s t ruc ture  of .A/I is as follows. T h e  
t rans i t ions  corresponding to arrivals are: 

~c~i 
( h i ,  s l , .  • • , h i ,  s , . . .  , a N ,  s N )  > 

( n l , S l  . . . .  ,n i  + l ,  s l , . . .  , n N , S N )  if C1 (1) 

Ao~i 
( n i , s l , . . .  , n l , s l , . . .  , n N , s g )  

( n i , s i , . . .  , n i + l ,  s i + l , . . .  , n N , S N )  if C2 (2) 

2Note tha t ,  the  server a l loca t ion/dea l loca t ion  scheme de- 
scribed here does not  preclude potent ia l  idling of servers, 
due to  (a) requir ing tha t  each class is a l located at least one 
server and (b) al locat ion of servers to classes on arrivals only. 
Many  o ther  control  schemes are possible and are subject  of 
fu ture  work. 
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where C1 is 

( ) (s, < Ki) ^ ( ~  sj = K) ^ (F,(s~) < n, < F,(si) + a?) 
j = l  

and C2 is 

C2= ~<K ^ s~< ^ (s~)< 

/ V =' 
The transitions corresponding to departures are: 

Si~i 
( n l , S l , . . .  , h i , s i r . . .  ~nN,SN) 

( n l , S l , . . .  , n i - - l ,  s i , . . .  , n N , S N )  if C3 (3) 
silzi 

(n l ,  S l , . . .  , hi, S i , . . .  , aN, SN) > 
( h i , S 1 , . . .  ,hi  -- 1,si -- 1 , . . .  , n N , S N )  if  C4 (4) 

where C3 is 

C3 (nl > 0)A(si  = 1))  V 

((ni > O)A(ni--l> Ri(si--l))A (s~> l)) 

ni < Fi(sl) --bait 

and  C4 is 

6 4 =  ( ( n l  > O) A (ni -- l = Ri(s i  - -1))  A (si > 1) )  

A more detailed explanat ion  of the derivation of condit ions 
C1 through C4 is given in [4]. 

3. I T E R A T I V E  M E T H O D  F O R  S O L U T I O N  
O F  A M U L T I - C L A S S  M O D E L  

In this section we describe our iterative approach to solving 
the model  presented in Section 2. As described in Section 
2, the corresponding Markov process, .Ad, is infinite (in mul-  
tiple dimensions),  and hence our choices for solution are to 
either (a) s imulate  Ad, or (b) look for special s t ructure,  or 
(c) look for efficient approximat ion techniques. Since .M ap- 
pears to lack sufficient s t ructure  for an efficient exact solu- 
t ion, below we describe an approximate  solution technique,  
using iteration. The use of an approximat ion  is mot ivated  
by the desire to construct  an efficient solution approach (and 
s imulat ion can be significantly slower t h a n  analyt ical  solu- 
tions). 

3.1 Basic  A p p r o a c h  
The basic approach tha t  we pursue here is as follows. The 
original model  .hd is approximately "broken up" into N sin- 
gle class Markovian models, .A/~i , .A/~2, . . . ,  jk..~g, which are 
"coupled" through a set of blocking probabil i t ies (see Sec- 
t ion 3.2 for a more detailed description of the .A,4i's). More 
specifically, the interact ion between classes occurs when class 
i requires allocation of another  server (due to the  crossing 
of a forward threshold),  and  no servers are available in the 
system (i.e., all K servers have already been allocated) due 

to the workload of other classes. Hence, in general, there 
is a non-zero probabi l i ty  tha t  class i, which has already 
activated sl servers, is no t  able to add a server upon  the 
forward threshold crossing. Let us refer to this as a "block- 
ing" probabi l i ty  7ai,~i, which (approximately)  captures this 
in teract ion between classes 3. We now describe our i terat ive 
approach. 

Let .AdZ n) be the  Markovian process corresponding to the  
individual  class i model  at  i tera t ion n with a correspond- 
ing s teady state  probabi l i ty  vector $¢},0. The  parameters  of 

each .Ad} n) are computed  as a funct ion of blocking proba- 

l~ (n )  ~(n)  ~(~) }, which are in t u rn  bilities, p i n )  = (--i,1 , 4,2 , . ."  ,--i,Ki-1 
computed  as a funct ion of the  steady state probabil i ty  vec- 

z_(n-D tor, " i  , ob ta ined  dur ing  the previous i teration.  (We 

give the details of the const ruct ion of .hd~ =) and  the compu-  

ta t ion  of ~'}=) below4.) Then ,  an overview of our i terat ive 
approach is (a more detailed and formal description is given 
in Section 3.3): 

1. const ruct  ^A(°) ^A(°) AA(°)' ,v,1 , - - ,2  , . . .  , ' ' ' N  , s e t  n = 0  (this is it- 
erat ion 0); 

2. solve Ad~),.hd(2'~),... ,.ADZ ), i.e., compute  the  corre- 

sponding s teady state probabil i t ies to obta in  ~ n ) ,  #~,~) 
• . . , # ( g n ) ;  set n----n--b1;  

3. use these steady state  probabil i t ies to compute  p i n ) ,  

. . . ,  

4. use these blocking probabil i t ies to upda te  the indi- 
vidual  class models, i.e., const ruct  .AdZ '0,  A4(2 '~), . . . ,  
.A4~v ~), where for each i = 1 , . . .  ,N ,  parameters  of 

.hd} ~) are computed  as functions of P}~) (but  not  PJ'~) 
where j 7t i); 

5. cont inue the i terat ive process (i.e., go back to step 2) 
unt i l  the values of all P i ' s  converge• 

3.2 Indiv idual  Class  M o d e l  
Since our i terat ive approach involves solution of individ-  
ual class models (.Adi's) we now briefly describe the  class 
i model,  which can be defined as follows. There are Ki  
servers (Ki is unrestr ic ted) ,  each with an exponent ial  ser- 
vice rate /zi. Cus tomer  arrivals are governed by a Pois- 
son process with rate Ai = aiA. Addi t ion  and removal of 
servers is governed by the forward and  the reverse thresh- 
old vectors, namely FF~ = [Fi(1), Fi(2) , . . . ,  F~(K~ - ])1 and 
R,  = [ni(1) ,  R~(2) , . . .  , Ri(K - 1)1. 

Given a Ki-server  single class threshold-based queueing sys- 
t em with hysteresis, we model  it as a Markov process .hdl 
with the following state  space Si: 

Si = {(k,j) l k_> O, j E {1,2,... ,Ki}} 
where k is the  n u m b e r  of customers in the class i queueing 
system and  j is the number  of allocated servers. Figure 1 

3Of course, this is an approximat ion,  and hence, the fol- 
lowing description of the  .Adi'S used in the i terative solution 
technique is also an  approximation. 
4Note tha t  there are mul t ip le  approaches to const ruct ing 
A4(0), i s, i.e., mul t ip le  ways to s tar t  the i terat ion;  we give 
details of one such approach below. 
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~. i ~ i  ~ i Pi , l .  ~ ~ i Pi,1 

k~_ _4/2pi k._ .~2gi  _2glk~'2~Zgi k.:2.~2[1 i _2gi~+l'_Y2gi k~_+2'~2g i 

F i g u r e  1: S t a t e  t r a n s i t i o n  d i a g r a m  for  a c l a s s  i s y s t e m  w i t h  Ki = 2. 

illustrates the state transit ion diagram for such a system 
where Ki ---- 2. Formally, the transit ion structure of .hdl can 
be specified as follows 5 , where all t ransit ions are from state 
(k, j ) ,  with the state description given above: 

Next State  [ Rate Condition 

( k + l , / )  At ( I_<j<K~)A 
( k < F , ( j ) )  

( k + l , j )  Ai j = K i  
(k + 1, j )  

( k + l , j + l )  

AiPl,j 

A i ( 1  - P i j )  

(1 _< j < g d ^  
( F,(j) < k< F,(j) + a~ ) 

(1 _< j < g d ^  
(Fi(j)_< k < F,( j )  + a~) 

( k .  1 , j )  j# ,  ( k _ > l ~  
( I < j _ < K i ) A  

( k - - 1  > R i ( j - 1 ) )  
( k -  1 , j -  1) j # i  (k > 1) A (1 < j _< Ki)  

A(k -- 1 = R¢(j - 1)) 
( k - l , j )  #, ( j = l )  A ( k > l )  

(5) 

We now proceed to a more detai led 'descript ion of our iter- 
ative solution technique for the multi-class system. We do 
this under the assumption that ,  given Pi ,  we know how to 
construct .A41 (using Equation (5) above) and compute ~i  
(the s teady state probabil i ty vector corresponding to Adi). 
The procedure for computing ~i ,  is given 6 in Section 3.5. 

3.3 Iterative Computation 
First ,  note tha t  in general, there are two cases to consider 
here: 

Case  1: ~/N=i Ki ~ K; tha t  is, we have a "trivial" case, 
where the classes do not interfere with each other, and 
we can solve each individual class model once (i.e., no 
need for i teration) using the procedure given in Section 
3.5 with P~,j = 0, Vi, j .  

Case  2: ~V=l Ki > K ,  where it is possible tha t  an a t tempt  
at server allocation for class i may fail because all K 
servers in the system are currently allocated. As de- 
scribed above, in this case a form of blocking occurs 
and we solve the model using our i terat ive approach 
outlined in Section 3.1 whose details are now presented 
below. 

5Note that ,  the transit ion rates described here are a function 
of the blocking probabilities, T'i,t, which change from itera- 
tion to iteration, as outlined above; however, for simplicity 
of notation, we do not indicate the i teration step number in 
the description of the transit ion structure of a class i model. 
6The motivation for first discussing the i terative technique 
is to simpfify the presentation of our approach. 

Note also that ,  the main difficulty in the i terative technique 
outlined in Section 3.1 is in determining an appropria te  pro- 
cedure for computing the blocking probabili t ies which cap- 
ture the class interaction, i.e., the probabilit ies that ,  upon 
a forward threshold crossing, it  is not possible to allocate 
another server to class i. Recall that ,  during the n th it- 
eration (n _> 0), 7~},~ ) is the blocking probabil i ty of class 
i (1 < i < N) to which l servers have already been allo- 
cated (1 < l < Ki - 1). Before we proceed, let us state the 
following definitions. 

DEFINITION 1. Let ,~ and y be two non-negative random 
variables having values in {1, 2, ...) and let 7rx and lry be 
their respective probability mass functions. Let Z be another 
non-negative random variable where Z = 2¢ + y ;  then ~ z  -- 
7r x ® ~'y where ® is the convolution operator. 

DEFINITION 2. Let X be a non-negative random variable 
having values in { 1 ; 2 , . . . ,  } and let 7rx be its probability 
mass function. Let 

2 ( ' = {  X if  Ll  < 2d < L2 
0 otherwise. 

Then the probabil i ty  mass function of X' ,  denoted by ~'x, ,  
is equal to g(Trx, L1,L2) where function g is defined such 
that :  

~x[~] if L1 < k < L2 
7rx,[k] = EL~L, ~X[m] -- -- (6) 

0 otherwise 

Let ~}n)[k, j] be the s teady state probabil i ty of class i hav- 
ing k customers (k > 0) in the system and an allocation 
of j servers (1 _< j _< K~), computed during the n th iter- 

ation. Let It} '~) denote the steady state probabil i ty vector 
of the number of servers allocated to class i, where 7r} n) [j] 
denotes the s teady state probabil i ty of j servers having been 
allocated to class i, as computed during the n *h iteration. 
Thus, we have: 

"'i w,J] (7) 
k 

Finally, let Q~n) be the transit ion rate matr ix  corresponding 

to the class i model  Ad} '~), during the n th iteration, which 

is computed using the transit ion structure of Ad} '~) given in 
Equation (5) and p[ ,~- l) ,  where 1 < l < Ki - 1. Then, the 
i terative procedure is as follow: 
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2. 

Initialization step: set n = 0 and set 7 ~(°) ~ 0 for i , l  
1 < l < Ki.  Given these initial values of blocking prob- 
abilities, for each class i, we can construct Q}0) using 
the transit ion structure given in Equation (5) and then 
compute ~i=(°) using the procedure given in Section 3.5. 
Once we compute the steady state probabil i ty vector 
~.~0) for each class i, we can then compute their respec- 

_(o),~ t i re  server allocation probabil i ty vectors, " i  ~, using 
Equation (7). The ~r~°)'s are in turn needed in the 

computat ion of the blocking probabilities, T'(U's (step i,l 
2 below). 

Updating of blocking probabilities step: n = n + 1, and 

o i f K  >- /c  
P~,?) = 0 i f K - l > ~ j = l , S ¢ i  J (8) 

F ( i , l , n )  otherwise 

The first condition in Equation (8) indicates tha t  the 
system has a sufficient number of servers for all classes 
(we include this for completeness). The second condi- 
tion indicates tha t  the system has sufficient resources 
to allocate at least one more server to class i with- 
out affecting the maximum possible server allocation 
of other classes. In the last condition, the F function is 
used to compute the blocking probability, at  i teration 
n, for class i which has l servers already allocated to 
it. 

F(i,l,n) can be computed as follows. Let .Am(i,l,n) 
be the random variable, at i teration n, denoting server 
allocation of class m, when class i has been allocated 
l servers. Let Tin(i,  l, n) be the probabil i ty mass func- 
tion of .An(i, l, n). Then we have: 

Tm(i, l ,n) = g ( T r ~ - l ) , l ,  Lm) (9) 

for m = {1 ,2 , . . .  , i - 1 , i + 1 , . . .  ,N}  where function g 
is defined through Equation (6) and Lm is as follows: 

{ Km i f K - l - ( N - 2 ) > K m  (10) 
L~ = K - l - ( N - 2 )  otherwise 

and ~(,~-1) in Equation (9) is computed using Equa- 
tion (7). The normalization in Equation (9) is used 
to account for the fact that  if we know tha t  the sys- 
tem already allocated l servers to class i, then the sys- 
tem only has (K  - l) servers remaining. Out of these 
(K  - l) remaining servers, the system needs to allo- 
cate (N - 2) to customers tha t  are neither in class i 
nor in class m (i.e., the system allocates at least one 
server to each class). Therefore, if the system poten- 
tially has at least Km available servers, then Am (i, l, n) 
can have values in {1 , . . .  ,Kin}; otherwise, the ran- 
dom variable .A~(i,l,n) can only take on values in 
{1, 2 , . . .  , K -  l -  ( N -  2)}. 

Let B(i, l, n) be a non-negative random variable, at it- 
eration n, denoting the server allocation of all classes 
except class i, where class i already has l servers al- 
located to it. Let ~ ( i , l , n )  be the probabili ty mass 
function of/3(i,  l, n). Then we have: 

qY(i,l,n) = g ( ( T l ( i ,  l, n) ® T 2 ( i , l , n ) . - - T i - l ( i , l , n )  

® T i + l ( i , l , n ) ® . - . ® T N ( i , l , n ) ) , N - 1 ,  K - l )  (11) 

3. 

4. 

The normalization in Equation (11) is used to account 
for the fact tha t  if the system has already allocated 
l servers to class i, then the number of servers that  
have been allocated to other classes can only range in 
{ N - i , N , . . .  , K - l } .  

Lastly, F(i ,  l, n), the function used to compute blocking 
probabilities, at i terat ion n, corresponding to class i 
with l allocated servers is: 

where q ( i ,  l, n; K - l) = Prob[B(i, l, n) = K - l] and 
~I'(i, l, n) is computed using Equation (11). 

Updating of individual class models step: given the 
blocking probabilit ies P[,~) of class i in Equation (8), 

we can compute the new rate matr ix  Q~n) (based on 
the transit ion structure given in Equation (5)) and 
then compute the corresponding steady state proba- 
bilities ~r~ '~) (using the procedure given in Section 3.5) 

as well as ~ '~) ,  the probabil i ty vector of server alloca- 
tion of class i (using Equation (7)). (The Ir~ ~)'s will in 
turn  be needed in t h e u p d a t i n g  of the blocking proba- 
bilities, "P[,7+l)'s (step 2 above).) 

Test of convergence step: if I~/,?)-:P[,?-I)[ _< e for each 
class i, 1 < i < N, and each l ,  1 < l < K i - 1 ,  then 
stop. Otherwise, go to step 2 and continue iterating. 

3.4 Computation of Performance Measures 
In this section we briefly discuss computat ion of perfor- 
mance measures. Given the steady state probabilities "wl, i = 
1 , . . .  , N, computed using the i terative approach described 
above, we can compute various performance measures of in- 
terest. More specifically, for each class i we can compute 
performance measures which can be expressed in the form 
of a Markov reward function, 7~i, where 

T~i = ~ ~i[k, j]Ri(k, j) 
k,j 

and R / (k , j )  is the reward for state (k,j) of class i. Some 
useful performance measures include: (a) expected number 
of customers of class i, (b) expected response t ime for cus- 
tomers of class i, (c) probabil i ty of dropping a customer of 
class i upon its arrival, (d) throughput  of class i customers, 
and so on. 

For instance, let EINi] and E[Ti] denote the expected num- 
ber of customers and the expected response time, respec- 
tively, of the class i model, corresponding to the Markov pro- 
cess .A4i. Then E[N~] can be expressed as ~ k , j  k~i[k, j]. (A 
more detailed expression for [Ni] is given in [4].) Of course, 
using Litt le 's  result [15], we have E[Ti] = ~E[Ni],  where A~ 

is the class i throughput .  To compute A~ we need to account 
for the customers tha t  are dropped from the system (see Sec- 
tion 2). Hence, A~ = Ai(1 - ~-,g,-I Pih~i[Fi(j) + a~,j]). L- , j= I  

We believe tha t  the more interesting performance measures 
are those computed on a per class basis, since a useful par t  
of studying performance of multi-class threshold-based sys- 
tems is to discover the effect tha t  the various classes have on 
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one another. Hence above (and in Section 4) we have concen- 
trate on per class performance measures. However, we can 
also use these to compute overall system performance mea- 
sures, for instance, as a weighted average of the individual 
class performance measures. For example, we can compute 
the expected system response time, E[T], as follows: 

E[T] = ~ E[T~] + ~ E[T~] + . . . + ~ E[TN] 

where A* = ~N=~ X~. 

3.5 Analysis of the Individual Class Model 
In this section we briefly summarize the solution technique 
for the individual class model which was defined in Section 
3.2. Specifically, we use the single class solution technique 
we derived in [16] with some modifications needed to ac- 
count for the structure of the multi-class model. Since these 
modification axe mostly straightforward, we only summarize 
the solution technique in this section, ~nd give the details 
in N 

The general approach is as follows. As already stated, we 
model the class i queueing system as a Markov process, .h,4j, 
where: (1) the main goal is to compute the" steady state 
probabilities of the Maxkov process and use these to compute 
various performance metrics of interest and (2) the main 
difficulty is that the Maxkov process is infinite (see Section 
3.2) and thus "difficult" to solve using a "direct" approach 7. 

As is often done in these cases, we need to look for special 
structure that  might exist in the Markov process; specif- 
ically, we take advantage of the stochastic complementa- 
tion technique [17]. The basic approach to computing the 
steady state probabilities of the Maxkov process and the 
corresponding performance measures is as follows. We first 
partition the state space of the original Maxkov process .L,/~ 
into disjoint sets. Using the concept of stochastic comple- 
mentation, for each set, we compute the conditional steady 
state probability w;ctor, given that  the original Maxkov pro- 
cess A,4j is in that set. (A relatively simple construction 
of the stochastic complement is possible due to the special 
structure that  exists in the individual class models; specifi- 
cally we exploit the "single entry" structure as in [16].) By 
applying the state aggregation technique [1], we aggregate 
each set into a single state and then compute the steady 
state probabilities for the aggregated process, i.e., the prob- 
abilities of the system being in any given set. Lastly, we ap- 
ply the disaggregation technique [1] to compute the individ- 
ual (unconditional',} steady state probabilities of the original 
Maxkov process .Adj. These can in turn  be used to compute 
various performance measures of interest. (Refer to [4] for a 
detailed derivation of the solution of .Adj.) 

4. NUMERICAL EXAMPLES AND VALIDA- 
TION OF APPROXIMATION 

In this section, we present numerical examples which illus- 
trate (1) the accuracy of our iterative solution technique 

7We could consider finite versions of the model or trunca- 
tion of the infinite version [11]; however, in either case the 
Maxkov process would still be very large and the computa- 
tional complexity of a "direct" solution for a reasonable size 
system still high. 

as compared with simulation as well as (2) the use of our 
solution technique in studying performance of designs of 
threshold-based systems with hysteresis behavior. 

A c c u r a c y  of  o u r  a p p r o a c h .  
We begin with the illustration of accuracy of our iterative 
solution. Thus, in addition to solving each example model, 
represented by the Maxkovian process .h,4, using our iterative 
approach (as described in Section 3) we also simulate .A/l, 
for the purpose of validating this solution technique. In 
all experiments presented here, our iterative approach uses 

= 0.0000001 (refer to Section 3 for details). Note that,  
in this section, we use the mean response time of each class 
i, as the performance metric of interest. Lastly, parameter 
settings s for all test cases presented in this section are listed 
in Table 1. 

Figures 2 and 3 depict the difference in results obtained 
through simulation and through the iterative approach. 
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As can be seen from these figures, the difference between 
the two results is small (e.g., in the case of Figure 2, the 
largest difference is ~ 5%). Given such small differences, 
which are difficult to assess using graphs, we present the 
remainder of the accuracy related experiments using tables• 

8For ease of specification, we use the following notation aj = 
[a~ . . . . .  al Ki'-l] to indicate the a~ values for each class i with 
j allocated servers (see Section 2). 
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Test Cases Parameters Settings 
Tes t  Case  # I A  K =  10, K1 = K 2  = K 3  = 4, 0/1 = 0.6, 0/2 = 0.3, 0/3 : 0.1, ~1 = #2 = P3 : 1.0 

F 1  = [4, 8, 12 ] , / /1  --  [2, 6, 101, F 2  = [8, 12, 16], R2  --  [5, 9, 13], 
/ ' 3  = [6, 10, 14], R 3  --  [3, 7, 11], a l  --  [2, 2, 2], a2 = [2, 2, 2], a3 = [2, 2, 2]. 

Tes t  Case  # I B  K = 10, t(1 -~ K2 -~ K 3  = 4, #1 = 3.0, ~2 -~ 2.0, ~.L3 = 1.2 
F 1  = F 2  = F 3  = [4, 8, 12 ] , / /1  = / / 2  = / / 3  = [2, 6, a0] 

11 = a2 -~ a3 = [2, 2, 2], 0/1 -~- 0 . 5 ,  0/2 = 0.3, O/3 = 0.2 
Tes t  Case  # 2  K = 10, K1 = 4, K2 = 4, K3 = 4 ,#1  = #2 = #3 = 1.0, 

F1  : F 2  : .F3 = [6, 10, 15 ] , / /1  : / / 2  : / / 3  = [4, 5, 8], a l  : a2 : a3 • [3, 3, 3]. 
Tes t  Case  # 3  K = 10, K1 = 3, K2 = 3, K3 = 8,~ul = ~2 = #3 = 1.0, 

F 1  = [6, 10l, R1 = [4, 7], a l  = [3, 31, F 2  = [6, 10 ] , / / 2  = [4, 7], a2 = [3, 3], 
F 3  = [6, 10, 14, lS ,  22, 26, 30 ] , / / 3  = [4, 7, 10, 13, 16, 19, 21], a3 = [3, 3, 3, 3, 3, 3, 3]. 

Tes t  Case  # 4  / (  = 12, K1 = 3, K2 = 3 , / ( 3  = 3, K4 = 5, e l  -~ [3, 3], a2 = [3, 3], a3 = [3, 3], 
a 4  ~-~ [ 3 ,  3 ,  3, 3], #1 -~/~2 = , 3  ~--- 1 . 0 ,  E l  ---- [6, 10] , / /1  • [4, 7], F 2  = [4, 8], 
/ / 2  = [2, 4], F 3  = [8, 12], t / 3  = [6, 9], F ,  = [5, 9, 13, lZ], R4 = [3, 6, 9, 12]. 

Tes t  Case  # 5  K = 12, K1 = 3, I(2 = 3 , / ( 3  = 3, Ka  = 6,~zl = /~2  = #3 = 1.0 
F 1  = [6, 10 ] , / /1  = [4, 7], a l  = [3, 3], F 2  = [4, 8 ] , / / 2  = [2, 4], 12 = [3, 3], 

t ' 3  ---- [8, 12 ] , / / 3  ---- [6, 9], a3 ---- [3, 3], 
F 4  --- [5,9, 13, 17, 21 ] , / / 4  -~ [3 ,6 ,9 ,  12, 15], a4 --  [ 3 ,3 ,3 ,3 ,3 ] .  

T e s t  Case  # 6  K = 10, K1 = K2 = / ( 3  = 4 ,#1 = #2 = / ~ 3  = 1.0, 
F 1  = F 2  = F 3  = [6, 10, 15], / /1  = / / 2  = / / 3  = [4,5,8] ,  

11 = 1 2 = 1 3 = [ 3 , 3 , 3 ] , A 1  = A 2 = 2 . 0 .  
Tes t  Case  # 7  K ~- 8, K1 = K2 = K3 = K4 = 3 ,#1  -~/~2 ~- #3 = 1.0 F 1  = F 2  = F 3  = [10, 20], 

/ / 1  "~- / / 2  - ~  / / 3  = [5, 15], a l  -~ a2 : a3 = a4 : [2, 2], 0/1 ~- 0/2 : 0 /3  : 0 /4  = 0.25. 
Class  4 has  t h r ee  conf igura t ions :  (A) .F4 = [5, 10 ] , / / 4  = [3, 7]; 
(B)  F .  = [7, 1 4 ] , / / 4  = [4, 11]; (C) F 4  = [10, 2 0 ] , / / 4  = [5, 15]. 

Tes t  Case  # 8  K = 10, K1 = 6, K2 ~- 4, K3 = 2, 0/1 = 0.6, 0/2 = 0.3, 0/3 = 0.1, 
O,1 = [2, 2 ,  2 ,  2, 2], a2 = [2, 2, 2], a3 = [2], #1 = #2 = #3 = 1.0. 

T h e r e  a re  two  conf igura t ions :  
(A) F 1  = [4, 8, 12, 16, 20], R1 = [2, 6, 10, 14, 18], 

F 2  = [6, 10, 14], R2  = [4, 8, 12], F 3  = [8], R3  = [6]; 
(B) F1  = [4, 8, 12, 16, 20 ] , / /1  = [2, 6, 10, 14, 18], 

F 2  = [8, 12, 16], R2  = [6, 10, 14], 2"3 = [8], R3  = [6]: 
Tes t  Case  # 9  K = 10, K1 = K2 = K3 = 4,11 = a2 = a3 = [2, 2, 2], 

#a = 1.0, #2 = I0.0,/.L 3 = I 0 0 . 0 ,  

F 1  = F 2  = F 3  = [4,8, 12 ] ,Ra  = R2  = R3  = [2, 6, 10]. 

T a b l e  1: D a t a  S e t s .  

Tab les  2-6 i l l u s t r a t e  severa l  o t h e r  e x p e r i m e n t s  of  v a l i d a t i n g  
t h e  accu racy  of  our  t e chn ique .  (Due  to  t h e  la rge  size of  t h e  
tab les  we only  give t h e  i t e r a t i v e  resul t  and  t h e  p e r c e n t a g e  
error . )  In  all cases,  t h e  p e r c e n t a g e  e r ror  (%E)  is def ined  as: 

% E  = [s imula t ion  resul t  - i t e r a t i v e  result[  x 100% (13) 
s imu la t i on  resu l t  

A l t h o u g h  Tab l e  2 is no t  t h e  m o s t  i n t e r e s t i ng  case f r o m  a 
des ign po in t  of  view,  it  is used  to  i l l u s t r a t e  t h a t  ou r  i ter -  
a t ive  a p p r o a c h  "does  t h e  r igh t  t h i n g " ,  i.e., i t  p r o d u c e s  t h e  
s a m e  resul t s  for all classes, for a s y s t e m  whe re  all  classes 
b e h a v e  ident ical ly .  F u r t h e r m o r e ,  as can  be  seen f rom Tab le s  
2-6 t h e  accu racy  of  our  t e c h n i q u e  is good,  even  u n d e r  h igh  
con ten t ion .  

N o t e  tha t ,  we have  p e r f o r m e d  m a n y  m o r e  e x p e r i m e n t s  t h a n  
we h a v e  b e e n  able  to  i nc lude  in t h e  paper .  T h e  resu l t s  of  
t hose  e x p e r i m e n t s  are  s imi la r  to  t h e  ones  i n c l u d e d  he re  a n d  
can  be  found  in a t echn ica l  r e p o r t  [4]. OverM1, t h e  p e r c e n t -  
age e r ror  in m o s t  cases we t e s t e d  was w i t h i n  5%, w i t h  few 
cases h a v i n g  an er ror  of  g rea t e r  t h a n  12%. 

As is p r o b a b l y  e x p e c t e d ,  in our  e x p e r i m e n t s ,  t h e  h ighe r  e r ro r  

cases c o r r e s p o n d e d  to  fa i r ly  h igh  c o n t e n t i o n  cases. T h e s e  
are  also t h e  cases t h a t  l ikely c o r r e s p o n d e d  to  "poo r "  des igns  
whe re  a r e d u c t i o n  in c o n t e n t i o n  for resources  b e t w e e n  classes 
is n e e d e d  in o rde r  to  o b t a i n  a s y s t e m  w i t h  g o o d  p e r f o r m a n c e  
charac te r i s t i c s .  In  m o s t  of  our  e x p e r i m e n t s  ( some of which  
are  p r e s e n t e d  be low) ,  t h e  p e r f o r m a n c e  i m p r o v e m e n t s  t h a t  
could  be  o b t a i n e d ,  for ins tance ,  t h r o u g h  b e t t e r  t h r e s h o l d  
se t t ings ,  were  s ign i f ican t ly  h igher  (pe rcen tage -wise )  t h a n  t h e  
loss in a c c u r a c y  due  to  our  a p p r o x i m a t i o n .  Hence ,  th is  is 
a good  i nd i ca t i on  t h a t  our  i t e r a t i v e  t e c h n i q u e  is a useful  
too l  for fas t  and  fa i r ly  a c c u r a t e  a s ses smen t  of  t h r e sho ld -  
based  designs  t h a t  can  be  used,  for ins tance ,  for sea rch ing  
for good  t h r e s h o l d  se t t ings .  N e x t ,  we i l l u s t r a t e  s o m e  of t h e  
p e r f o r m a n c e  t radeof fs  a n d  des igns  t h a t  can be  s t ud i ed  us ing  
our  t e chn ique .  

R e s p o n s e  t i m e  b e h a v i o r .  
We beg in  by i l lus t ra t ing ,  in F i g u r e  4, t h e  s o m e w h a t  "pe-  
cul iar"  r e sponse  t i m e  b e h a v i o r  of  t h r e s h o l d - b a s e d  resource  
m a n a g e m e n t  t e chn iques  as well  as the i r  p o t e n t i a l  u t i l i ty  in 
d y n a m i c  r e source  m a n a g e m e n t  of  sys tems .  In  th is  f igure  we 
dep ic t  a t h r ee  class s y s t e m  whe re  we fix t h e  a r r iva l  r a t e  of  
classes 1 and  2 (a t  A1 = A2 = 2.0) a n d  va ry  t h e  a r r iva l  r a t e  
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A~ A2 A3 

0.40 0 .40  0.40 
0 .80  0 .80  0.80 
1.20 1.20 1.20 
1.60 1.60 1.60 
2.00 2.00 2.00 
2 .40  2.40 2.40 
2 .80  2.80 2.80 
3.20 3 .20  3.20 
3 .60  3.60 3.60 

E[T, ] 
( i t e r a t i v e )  
1 .630272 
2 .597491 
3 .156590  
3 .304191 
3 .321952  
3 .379876  
3 .592408  
3 .981657  
5 .010319  

E[T2] 
( i t e r a t i v e )  
1 .630272 
2 .597491  
3 .156590  
3 .304191 
3 .321952  
3 .379876  
3 .592408  
3 .981657  
5 .010319  

E[Ts] 
( i t e r a t i v e )  
1 .630272 
2 .597491  
3 .156590  
3•304191 
3 .321952  
3 .379876  
3 .592408  
3 .981657  
5 .010319  

% e r r o r  
(c lass  1) 
1 .202181 
3 .058886  
2 .877489  
2 .000313  
1 .630424 
2 .282249  
3 .792533  
1 .820473  
0 .601689  

% error 
(c lass  2)  
0 .735494  
2 .665640  
2 ,619260  
1 .749316 
1 .625574 
1 ,994334  
3 .334905  
1 .245720  
1 .198128  

% error 
(c lass  3)  
1 .153579  
3 .148594  
2 .598514  
1 .993638  
1 .719706  
2 .188239  
3 .770227  
1 .811621  
1 .858318  

T a b l e  2: Tes t  C a s e  ~2.  

l i m b  

0 .30  0 .30  O.30 
0 .60  0 .60  0 .60  
0 .90  0 .90  0 .90  
1.20 1.20 1.20 
1.50 1.50 1.50 
1.80 1.80 1.80 
2 .10  2 .10  2 .10  
2.40 2.40 2 .40  
2 .70  2 .70  2 .70  
2 .70  2.70 3.20 
2 .70  2.70 4.00 
2 .70  2 .70  4 .80  
2 .70  2 .70  5 .60  
2 .70  2 .70  6 .40  
2 .70  2 .70  7.20 

E[T,] 
( i t e r a t i v e )  
1 .421688 
2 .122039  
2 .795585  
3 .180244  
3 .357821 
3 .470854  
3 .641093  
4 .068188  
5 .600409  
5 .611609  
5 .647604  
5 .693371 
5 .733468  
5 .763689  
5 .785786  

E[T2] 
( i t e r a t i v e )  
1 .421688  
2 .122039  
2 .795585  
3 .180244  
3 .357821  
3 .470854  
3 .641093  
4 .068188  
5 .600409  
5 .611609  
5 .647604  
5 .693371  
5 .733468  
5 .763689  
5 .785786  

E[T3] 
( i t e r a t i v e )  
1 .421680  
2 .122039  
2 .795464  
3•178452 
3 .344765  
3 .412461  
3 .441965  
3 .462714  
3 .512400  
3 .646626  
3 .935655  
4 .113839  
4 .178537  
4 . 1 3 5 5 1 7  
4 .301380  

% e r r o r  
(class 1) 
0 .413537  
2 .657185  
3 .284193  
2 .371027  
1 .286876  
0 .711188  
0 .564150  
0 .491789  
0 .911634  
0 .158437  
0 .236337  
0 .126605  
0 . 0 4 8 7 7 7  
0 .767475  
2 .732223  

% e r r o r  
( c l a s s  2) 
0 .181734  
2 .095714  
2 .855018  
1 .896997  
0 .882332  
0 .498285  
0 .070303  
0 .814125  
2 .755618  
3 .637028  
3 .279166  
1 .469008  
0 .166028  
1 .791951 
2 .217973  

% e r r o r  
( c l a s s  3)  
0 .318665  
2 . 3 7 8 8 9 0  
2 .994942  
1 .832370  
1 .135763  
0 .647543  
0 . 5 5 7 8 3 6  
0 . 4 6 8 3 7 9  
0 .956535  
2 .843098  
5 .373869  
1 .825511  
0 . 9 0 9 8 1 0  
1 .555702  
1 .388458  

Table  3: Tes t  C a s e  # 3 .  
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F i g u r e  4: Tes t  C a s e  ~ 6 .  

of class 3. We can make a couple of observation here: (1) the 
response time curve of class 3 shows the "peculiar" response 
t ime behavior mentioned above, i.e., it first increases, then 
"flattens" out and then increases again, as a function of in- 
creasing arrival rate; (2) the response time curves of classes 
1 and 2 are flat, i.e., the increased workload in the system 
due to class 3 does not appear to affect the response time of 
classes 1 and 2, ewm though there is contention for resources 
between all classes. 

P e r f o r m a n c e  s ens i t i v i t y .  
We continue in Figures 5 and 6 with the demonstration of 
the last point, where we illustrate that  it is worth while to 
study the behavior of threshold-based systems, for instance, 
to search for better threshold settings, as the changes in 
performance (due to better parameter settings) are often 
significant. Given a fast and fairly accurate analytical so- 
lution technique (such as ours), these studies can be made 
efficient• 
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F i g u r e  5: Tes t  C a s e  # 7 .  

The first observation is, of course, due to the fact that  
in threshold-based systems the response time can improve 
at higher loads due to the crossing of a forward threshold 
(which does not occur at lower loads). The second obser- 
vation suggests that  threshold-based techniques can reduce 
the sensitivity of performance characteristics of a class of 
customers to the workload of other classes without having 
to partition resources statically. 

In Figure 5 all classes begin with the same characteristics. 
We then vary the threshold settings of class 4 to experiment 
with the effect this has on class 4 performance as well as on 
the performance of the remaining classes. As can be seen 
from this figure, we are able to improve class 4 performance 
with "more aggressive" threshold settings, without it hav- 
ing a significant effect (in most cases) on the performance of 
the remaining classes. It is interesting to note that  in places 
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St X~ ~3 

0.90 
0.90 
1.80 
2.70 

0.90 1.80 
1.80 1.80 
1.80 1.80 
2.70 2.70 

A4 E[Ti] E[T2] E[T3] E[T4] % er ro r  % e r r o r  % e r r o r  % e r ro r  
( i t e r a t ive )  ( i t e ra t ive )  ( i t e r a t i ve )  ( i t e r a t ive )  (class  1) (c lass  2) (c lass  3) (class 4) 

4.50 2 .797506 1 .994472 4 .529838 4 .374533 2 .961873 6 .642513 ! 0 .469696 0 .212680 
4.50 2 .853014 2 .441160 4 .543077  4 .375314 4 .506275 2 .851423 0 .630932  0 .393236 
4.50 3 .581616 2 .504496 4 .671432 4 .384649 2.517501 3 .911467 2 .294438 0 .122387 
4.50 5 .734653 4 .849304 6 .490237  4 .530748 0 .130256 1 .235332 1.043941 2 .141307 

Ta b l e  4: Tes t  Case  #4 .  

)~1 A: A3 

0.90 0.90 1.80 
0.90 1.80 1.80 
1.80 1.80 1.80 
2.70 J 2.70 2.70 

A4 E[T~] E[T2] E[T3] E[T4] % e r r o r  % e r r o r  % e r r o r  % e r r o r  
( i t e ra t ive )  ( i t e ra t ive )  ( i t e r a t i ve )  ( i t e r a t ive )  (class  1) (c lass  2) (c lass  3) (class  4) 

5.40 2 .843976 2 .017333 1 4 .543616 4 .177035  4 .322296 7 .654710 0 .677994 6 .927892 
5.40 3 .108633 2 .510323 ' 4 .687938 4 .186058 11.183943 3 .839499 2 .575381 2 .158903 
5.40 3 .785969 2 .640827 4 .934167  4 .211717  2 .996919 2 .662320 3 .703350 0 .066877 
5.40 5 .762419 4 .868467 I 6.52125.3 4 .377117  1 .494872 0 .799943 2 .778988 0 .505154 

Ta b l e  5: Tes t  Case  #5 .  
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F i g u r e  6: Tes t  Case  #8 .  

where this does have an effect on the performance of the 
other classes (e.g., at A = 6.3) the actual effect is somewhat 
unexpected. That  is, one might expect that the "more ag- 
gressive" threshold settings of class 4 might detriment the 
performance of other classes; however that is not the case 
here. 

In general, it is often difficult to predict the effects of changes 
in threshold settings, partly due to unusual response time 
behavior of threshold-based systems and partly due to the 
interaction of such behavior with systems employing some 
form of blocking behavior. In the case of Figure 5, this be- 
havior may partly be due to the "more aggressive" threshold 
settings aiding in processing of the class 4 workload faster 
and hence resulting in greater resource availability for the 
other classes as well. Thus, experimentation with effects of 
threshold settings on system performance is of importance, 
and the ability to solve the corresponding models efficiently 
facilitates such experimentation. 

In Figure 6 we study the effects of changes in threshold 
settings of class 2 where all three classes exhibit signifi- 
cantly different characteristics. In this case, partly due to 
the "more aggressive" settings of thresholds (in configura- 
tion A as compared to configuration B), the performance 
of class 2 improves, but  again without having a significant 
effect on the other two classes. 

Lastly, although we have not provided proofs of convergence 
or of the performance of the iterative technique in terms of 

convergence rates, we have performed extensive experimen- 
tations to gather empirical evidence that our technique does 
converge, and that it converges fairly quickly. Our exper- 
iments indicate that for most test cases the iterative ap- 
proach converges within approximately 5 to 10 iterations. 
Based on the "wall clock" time, in most test cases, it pro- 
duces results more than two orders of magnitude faster than 
simulation. We note that, in general, theoretical characteri- 
zation of convergence of iterative techniques which use more 
than a single parameter (to characterize the intercation be- 
tween the models), which is the case in our approach, is 
difficult. 

In summary, the main focus of this section was the illus- 
tration of utility of our approach in evaluating designs of 
threshold-based systems, where "good" parameter settings, 
such as threshold valhes, constitute a difficult problem. We 
believe that the efficiency and accuracy of our solution tech- 
nique facilitates large-scale experimentation with parame- 
ter settings and subsequent evaluation of performance of 
threshold-based designs of systems. 

5. CONCLUSIONS 
In this paper, we have considered a K-server multi-class 
threshold-based queueing system with hysteresis in which 
the number of servers, employed for serving customers of 
each class i, is governed by forward and reverse threshold 
vectors. The main motivations for using a threshold-based 
approach was that  (a) many applications incur significant 
server setup, usage, and removal costs and (b) that it is a 
good approach to dynamically managing a pool of resources 
between multiple workload classes. The motivation for the 
use of hysteresis was to control the cost during momentary 
fluctuations in workload. An important  and distinguish- 
ing characteristic of our work is that  we developed an effi- 
cient analytical solution technique for analyzing multi-class 
threshold-based systems with hysteresis behavior, which is 
needed in modeling of many applications. Specifically, we 
proposed an iterative solution method, which our empirical 
evidence indicates to be fast and fairly accurate. Most of 
our test cases were within 5 percent of the simulation results 
(used for validation purposes) with more than two orders of 
magnitude improvement in computation time (as compared 
to simulation). Furthermore, we studied the performance 
characteristics of threshold-based systems and showed that 
proper choices of design parameters, such as threshold val- 
ues, can produce significant improvements in system per- 
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~1 ~2 ~3 E[T1] 
( i t e ra t ive)  

3.6 3.6 3.6 4.623164 
3.6 8.0 8.0 4.623164 I 

3.6 116.0  16.0 4.623164 
3.6 24.0 24.0 4.623164 
3.6 32.0 32.0 4.623163 
3.6 36.0 36.0 4.623165 
3.6 36.0 60.0 4.623203 
3.6 36.0 80.0 4.623463 
3.6 36.0 160.0 4.639706 
3.6 36.0 240.0 4.701579 
3.6 36.0 320.0 4.776830 
3.6 36.0 360.0 4.813562 

E[T~] E[T3] 
( i t e ra t ive)  ( i t e ra t ive)  
0.146230 0.010373 
0.192905 0.010867 
0.239999 0.011862 
0.282280 0.012948 
0.343896 0.014069 
0.462318 0.014623 
0.462322 0.017553 
0.462348 0.019412 
0.463973 0.027313 
0.470160 0.034302 
0.477684 0.038680 
0.481358 0.048136 

T a b l e  6: Tes t  Case  #9 .  

% e r r o r  
(class 1) 
2.174990 
0.344933 
2.330279 
3.795961 
0.004456 
0.397470 
1.912505 
1.140015 
1.656744 
8.421698 
2.454293 
6.936106 

% error  % er ror  
(class 2) (class 3) 
4.145004 0.192437 
6.774970 0.110304 
2.286976 0.550988 
0.633505 1.696513 
0.161939 3.182985 
0.331783 4.019064 
0.602542 6.828556 
1.303909 7.189398 
1.143159 8.942603 
0.446514 7.297695 
2.720231 4.943296 
4.665342 12.454153 

formance. Using this study, we il lustrated the uti l i ty of 
our approach in evaluating designs of threshold-based sys- 
tems, where "good" parameter  settings consti tute not only 
an impor tant  but  a difficult problem. We believe that  the 
efficiency and accuracy of our approach facilitates large- 
scale experimentat ion with parameter  settings and subse- 
quent performance evaluation studies of threshold-based de- 
signs of systems. 
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