
Adaptive Flow Aggregation - A New Solution for
Robust Flow Monitoring under Security Attacks

Yan Hu
Dept. of Information Engineering
Chinese University of Hong Kong

Email: yhu4@ie.cuhk.edu.hk

D. M. Chiu
Dept. of Information Engineering
Chinese University of Hong Kong

Email: dmchiu@ie.cuhk.edu.hk

John C.S. Lui
Dept. of CSE

Chinese University of Hong Kong
Email: cslui@cse.cuhk.edu.hk

Abstract— Flow-level traffic measurement is required for a
wide range of applications including accounting, network plan-
ning and security management. A key design challenge is how
to gracefully deal with traffic surges that exhaust the resources
(memory, export bandwidth or CPU) of the flow monitor. A
standard solution is to do sampling (look at one out of every
n packets). This is implemented in Cisco’s Netflow, a popular
platform. Setting the sampling rate according to the normal
traffic, however, cannot avoid overrunning available memory for
flow records during abnormal situations, such as when there
is a DoS attack or other security breaches. Currently available
countermeasures have their own problems: (1) reject new flows
when the cache is full - some legitimate new flows will not be
counted; (2) export not-terminated flows to make room for new
ones - this will exhaust the export bandwidth; (3) adapt the
sampling rate to traffic rate - this will reduce the overall accuracy
of accounting, including legitimate flows.

In this paper, we propose a new counter-measure to deal with
abnormal traffic conditions - adaptive flow aggregation. Often the
reason for abnormal traffic conditions is due to security attacks.
Fortunately, such attacks usually have some common patterns.
For example, packets of DoS attacks have the same destination
IP address, while traffic for worm spreading has the same source
IP address. Our flow monitoring algorithm identifies these traffic
clusters in real-time and aggregates these large amount of short
flows into a few flows. Compared to currently available solutions,
our solution not only alleviates the problem in memory and
export bandwidth, but also guarantees the accuracy of legitimate
flows. In addition, it could provide network operators some useful
information on potential security problems.

I. Introduction

Traffic measurement and monitoring are crucial to operating
IP networks, because network administrators need to have a
good understanding of how their networks are used. Especially,
flow-level measurement is widely used for a wide range of
applications. One example is network planning, the ISP needs
to know how the traffic load is distributed in its network.
It relies on measuring the amount of traffic among pairs of
customers. Flow based traffic analysis can also be used for
accounting purposes, when clients are billed based on their
traffic volume. Other applications include security or denial-
of-service (DoS) analysis. It is also possible to see what
applications are using the network by looking at traffic flows
based on their port numbers.

NetFlow [1], first implemented in Cisco routers, is the
most widely used flow measurement solution today. Flows
are defined by seven keys: source and destination IP address,

protocol, source and destination port, type of service and input
interface. Routers running NetFlow maintain a “flow cache”
to keep active flows passing through it. When a packet arrives
at the router, the router determines if this packet belongs to
an active flow in the cache. If yes, relevant fields (number of
packets, number of bytes, timestamp of last packet, etc) of this
flow are updated. If not, the router inserts a new flow record
into the flow cache.

The router will terminate a flow in its cache if any one of
these criteria are met: 1) the interpacket time within the flow
exceeds theinactive timer(15 sec is the default); 2) this flow
record was created longer than theactive timer(30 min is the
default); 3) observation of TCP flags (FIN or RST); 4) the
flow cache is full. For those terminated flows, their records
will be exported using UDP to collectors (i.e., computing
machines which have private processors and memory) for
future analysis.

When a packet arrives at the router, NetFlow needs to look
up the flow cache for an existing flow, update that entry or
create a new entry. For high speed interfaces, the processor
and the memory holding the flow cache can not keep up with
the packet rate, so Cisco introduced sampled NetFlow [2].
There are several types of sampling methods, deterministic
sampling involves random selection of one packet from the
first N packets, and selection of everyN th packet thereafter.
Random sampling selects packet randomly with a fixed sam-
pling probability.

It is important to note that the sampling rate of Cisco Net-
Flow is usually setmanuallyby network operators according
to thenormal traffic volumein their network. When there is an
anomaly in the network, such as DoS attacks, worm spread,
aggressive port scans and flash crowds, which generates a large
number of small flows, the surge in the number of small flows
may overwhelm the router memory and the export bandwidth
to the collector.

Current countermeasures to the above problem include: 1)
Reject new flows when the cache is full. In this case, legitimate
new flows will not be accounted for and the operator will
lose the information; 2) When the cache is full, export the
flow records more aggressively for those non-terminated flows
so as to make room for new ones. The implication of this
action is that the export bandwidth demand will be very high
and may run into trouble at the collector or the way to the

collector; 3) Authors in [3] proposed a method of adapting the
sampling rate to traffic. They divide the NetFlow operation into
measurement bins. They do not terminate flow records during
the bin, but terminate all active flow records at the end of the
bin. They use a maximum sampling rate at the beginning of
each bin, which is determined by the router’s CPU capability.
During the measurement bin, they dynamically decrease the
sampling rate until it is low enough for the flow records to fit
into memory. This algorithm guarantees a stable flow cache
and export bandwidth even under severe DoS attacks. But
under DoS attacks the sampling rate will decrease to a very
low level, which results in poor overall accuracy in per flow
counting including legitimate flows.

Our solution is to implementadaptive flow aggregation
when the router is running low on memory resource. Note that
attacks usually have some common patterns: DoS attacks often
have the same destination IP address, while worm spreads
have the same source IP address. If we dynamically aggregate
the numerous number of such small flows into a few flows,
then we can alleviate the problem of memory shortage under
attacks. Compared to other countermeasures, our method has
several advantages:
• We do not need to decrease the sampling rate drastically

under attacks, neither would we reject new legitimate
flows because the cache is full. So we guarantee the
accuracy of legitimate flows.

• Without aggressively exporting the records of non-
terminated flows so as to make room for new ones, we
would not overwhelm the collector.

• Using the information from flow aggregation, we can
provide network administrators some useful information
to detect DoS attacks and worm spreads.

The rest of the paper is organized as follows. We describe
related work in Section II. In Section III, we describe our
solutions and we provide some analysis in Section IV. Exper-
imental evaluation based on the proposed method is presented
in Section V. Conclusion is given in Section VI.

II. Related work

One of NetFlow’s problems is the amount of data gen-
erated can be so large that it may overwhelm the collector
or its network connection. Cisco’s solution to this problem
is to implement router-based flow aggregation [4]. Different
aggregation schemes summarize NetFlow data on the router
before the data is exported to the collector, resulting in lower
bandwidth requirement. The IETF (Internet Engineering Task
Force) working group IPFIX (Internet Protocol Flow Informa-
tion eXport) also recommends aggregating similar flows into
one metaflow [5]. Compared to these predefined aggregation
schemes, our goal is to dynamically find flows which form a
largeclusterand aggregate these flows in real time.

In [6], authors describe a method of traffic characterization
that automatically groups traffic into minimal clusters of
conspicuous consumption. Instead of using individual flows
or other predefined aggregates, they dynamically define multi-
dimensional traffic clusters, so that any meaningful aggregate

of individual flows is a traffic cluster. Their idea of finding
the most conspicuous clusters of underlying traffic is similar
to ours. The difference is that their objective is to present a
good traffic report to the network manager, and their system
can be considered as a “post-processing” system instead of a
real-time one.

In [7], authors present a system that computes multiple
summaries of IP traffic in real time. They refer to sources or
destinations that send or receive many packets, bytes or flows
as “packet hogs”, “byte hogs” or “flow hogs”. This system
produces these hog reports keyed by source IP, destination IP,
source port and protocol, and destination port and protocol.
These summaries provide information of some kind of cluster
in real time, but their 12 hog reports are also predefined
clusters. Another important element which is different from
our solution is that their system only provides the summary
information, and it does not keep any original flow information
as Cisco NetFlow does.

In [8], authors focus on network congestion caused by ag-
gregate. They state that in both flash crowds and DoS attacks,
the congestion is not due to a single flow, nor to a general
increase in traffic, but due to a subset of the traffic which
they called as an aggregate. Their approach involves both a
local mechanism for detecting and controlling an aggregate
at a single router, and a cooperative pushback mechanism in
which a router can ask adjacent routers to control an aggregate
along its upstream path. The definition of an aggregate and the
detection of aggregate in this paper is similar to ours.

In [9], authors present algorithms that automatically identify
large flows. In [10], authors use adaptive sampling to guarantee
that the variance introduced by the variability of packet sizes
does not exceed a pre-defined limit. In [11], authors develop
estimators for flow length distributions.

III. Propose Solution

A. Defining clusters

Our mechanism intends to protect NetFlow from running
out of memory and high rate exporting due to rapid increases
in traffic from one or more traffic aggregates which we called
clusters. The first issue we have to address is how many
distinct fields are used in constructing traffic clusters? We
choose five fields typically used to define a flow: source IP
address, destination IP address, protocol, source port, and
destination port. For simplicity, we regard these five fields as
four keys, srcIP, dstIP, srcPort (and protocol), dstPort (and
protocol). Individual flows are defined by unique values for
each of these four keys, while clusters are defined by unique
values forsomeof these key values. In other words, values for
these keys can be a single value, or all possible value (we use
* to denote this). For example, a cluster with values (srcIP =
*, dstIP = 210.0.0.3, srcPort = *, dstPort = 80,TCP) represents
all web traffic to the server with IP address 210.0.0.3.

The justification for choosing these four keys to define
clusters is that these four keys are consistent with commonly
used keys to define a flow. Additionally, this definition is
sufficient for the existing NetFlow data applications such as

network planning and application monitoring. Among these
four keys, port and IP address have different sensitivity for
the aggregation process. The reason is as follows, first, almost
all DoS attacks, worm spread, port scan, and flash crowds
have either a common source or destination IP address, but
not always have a fixed port number. Second, some network
applications with a well-known port number such as web
traffic with port 80 are always big clusters in the network, but
we have no reason to aggregate them to a single flow because
they are normal traffic and we surely need to maintain a more
detailed information for the accounting purpose.

Clusters are flows with the same value in some combinations
of these four keys. We illustrate this using some examples.
In Smurf attack [12], the attacker sends a forged ICMP
packet to a broadcast address and all receivers respond with
a reply to the spoofed IP address (the victim). Cluster for
this type of traffic can be represented by ICMP packets to
the same dstIP (the victim). The MS-SQL server worm [13]
exploits a vulnerability which allows for the execution of
arbitrary code on the SQL server computer due to a stack
buffer overflow. Once the worm compromises a machine, it
will craft packets of 376-bytes and send the packets (usually
using the same srcPort) to randomly chosen IP addresses
on port 1434/UDP. A cluster for this type of worm packets
will have the same srcIP (the infected computer) plus the
same dstPort (1434/UDP) and the same srcPort. One can find
packets of DoS attacks often have a common destination IP
(sometimes with a common destination port); Packets of worm
spreads often have the same source IP address (sometimes
with a common destination port); Packets of port scan usually
have a common destination IP address (sometimes with a
common source IP address). Besides these flooding attacks,
another network behavior which may cause the NetFlow to
run out of memory is flash crowds. It occurs when a large
number of users try to access the same server simultaneously.
While its intent is quite different from DoS attacks, but from
the network operator’s perspective, these two cases are quite
similar. Similar to the DoS attack, a cluster can be defined
for packets with the same dstIP (and maybe with the same
dstPort).

Based on the above analysis, we regard source and desti-
nation IP address as more important than the other two keys.
So for defining clusters we only consider combinations which
at least contain the source or destination IP address. In other
words, we would not consider a cluster which only has the
same source port, and/or the same destination port. Among the
16 arbitrary combinations of four keys, we would not consider
a) clusters with no key, b) clusters with all four keys, and we
also ignore trivial cases like c) clusters that only have srcPort,
d) clusters that only have dstPort, and e) clusters that only have
srcPort plus dstPort. Finally, we get 11 combinations. These
combinations and their corresponding examples are shown in
Table I.

This is but only one of many possible ways to define and
identify big clusters. Other definitions can be, for example,
based on srcIP/dstIP prefixes such as 210.0.0.0/24; or based

combinations examples
srcIP most worms
dstIP smurf attack ([12])
srcIP + dstIP most portscans
srcIP + srcPort response from syn flooding victim;

response from flash crowds web server
srcIP + dstPort W32/Blaster worm ([14])
dstIP + srcPort N/A
dstIP + dstPort syn flooding attacks ([15]);

WWW flash crowds
srcIP + dstIP + srcPort response from non-IP-spoofing syn flooding
srcIP + dstIP + dstPort non-IP-spoofing syn flooding attacks
srcIP + srcPort + dstPort MS-SQL server worm ([13])
dstIP + srcPort + dstPort DNS flash crowds

TABLE I

COMBINATIONS OF FOUR KEYS

on a range of port numbers such as ports higher than 1024. Yet
other clusters can be designed based on other attributes such
as AS numbers. Note that more complex definitions would
require more flexible algorithms and more complicated data
structures, which may impose too much overhead to real-time
flow aggregation. This would be a subject of further research.

B. Data Structure

First we take fprobe [16] as an example to illustrate the data
structure of ordinary NetFlow process. Fprobe is a libpcap-
based tool that collects network traffic data and emits it as
NetFlow flow records towards the specified collector. It is
an open source software distributed under GNU GPL. The
data structure used to store active flows in this software is
hash table, in which flows are indexed by hash values of their
flow ID. The number of flows is often larger than the length
of the hash table (in fprobe, there are two choices for the
length, 256 and 65536), so two or more flows can hash to the
same value. Linked List is used to store flows of this kind
of hash collisions. Assume flows are defined in terms of five
keys, source/destination IP address, source/destination port and
protocol. When a packet arrives, the system first computes a
hash value on its flow ID (five keys), and then looks up in
the hash table. It looks at every flow in the list with this hash
value, to determine which flow this packet belongs to, or create
a new flow entry if the packet does not belong to any existing
flow. Hash table is an appropriate data structure for flow look
up, so softwares that collect network traffic and generate flow
information usually use this data structure.

We need a new data structure for our flow aggregation. This
is a tradeoff. If we use a simple data structure like hash table
with linked list as mentioned above, it will be inefficient to
aggregate flows in a cluster, which needs to traverse every node
in the hash table. We need to put flows which are more likely
to be aggregated later closer. On the other hand, if we use a
complicated data structure like multi-dimensional tree in [6],
it will use excessive memory, and bring too much overhead to
normal flow operations like flow look up.

Our data structure is as shown in Figure 1, which is a two-
dimensional hash table. One dimension of the hash table is

0 65535...130...1 2

0

...

2

1

...

115

655
35

srcIP: 137.8.6.5

dstIP: 120.0.0.1

srcIP: 210.70.1.4

srcIP: 202.75.1.7

dstIP: 210.0.0.3dstIP: 138.0.0.2

A

TSR

DCB

X Y

Fig. 1. data structure

hash value based on flow’s source IP (the left table of hash
number from 0 to 65535 in Figure 1), the other is hash value
based on flow’s destination IP (the top table of hash number
from 0 to 65535 in Figure 1). Take source IP as an example,
hash value of a packet is computed based only on its source
IP, instead of its flow ID of five keys. Packets with the same
source IP will definitely be mapped to the same hash value,
on the other hand, packets with different source IP may be
mapped to the same hash value because of hash collision. Hash
value nodes have a linked list, which consists of all source IP
mapped to this hash value. For instance, in Figure 1, source
IP of 137.8.6.5, 202.75.1.7 and 210.70.1.4 are all mapped
to hash value 115. In addition, every source IP node has a
list, which consists of all flows having this source IP address.
The destination IP dimension of the hash table has a similar
structure. Hash value of a packet is computed based on its
destination IP. Hash value nodes have a linked list, which
consists of all destination IP addresses mapped to this hash
value. For example, in Figure 1, destination IP of 120.0.0.1,
138.0.0.2, and 210.0.0.3 are all mapped to value 130. And
every destination IP node has a list, which consists of all flows
with this destination IP.

Every flow ID node has two parents, one is the previous
node in the source IP list, the other is the previous node
in the destination IP list. For example, in Figure 1, flow S
has a parent of flow R in the source IP list of 202.75.1.7,
and has a parent of flow B in the destination IP list of
120.0.0.1. We only consider clusters containing a fixed source
or destination IP, so we compute hash value based on these
two fields. In the source/destination IP list, we put flow ID
nodes sorted by destination/source IP. This data structure lets
us find flows in one cluster more easily. First, all flows in one
cluster of the same source or destination IP are in one list.
Second, flow ID nodes in source/destination IP list are sorted
by destination/source IP, so it’s easy to aggregate flows in one
cluster of the same srcIP plus the same dstIP.

C. Three levels of clusters

In the data structure, every IP node has a counter to indicate
the number of flow nodes with this IP address. For example,
in Figure 1, source IP node 137.8.6.5 has a counter of 4
to indicate there are totally 4 flows from this source IP.
With this counter, we can easily get a top list for source

and destination IP address. Entries in the top list have a
flow counter and a pointer pointing to the corresponding IP
address node. Now the problem is that the top list is only
for source/destination IP address, not for all combinations. In
addition, different combinations have different priorities to be
aggregated. For example, combination of dstIP plus dstPort
has a higher priority to be aggregated than combination of
only dstIP because it keeps more information.

srcIP = 137.8.6.5

 N = 100srcIP = 137.8.6.5

dstIP = 138.0.0.2
N = 30

srcIP = 137.8.6.5
dstIP = 138.0.0.2
dstport = 80

N = 20

srcIP = 137.8.6.5
dstIP = 210.0.0.3
dstport = 80

N = 15

N = 40

srcIP = 137.8.6.5

dstport = 80

Cluster A:

Cluster B:

Cluster C:

Cluster E:Cluster D:

Fig. 2. three levels of cluster

Our method is to divide different clusters into three levels.
There is only one global top list, so it’s a mixture of source
and destination IP address. Take a source IP top list node as an
example, we divide different combinations with this source IP
into three levels. 1) The lowest level is L1, flows in L1 cluster
only have the same srcIP. 2) L2 cluster is about combinations
of two keys, flows in L2 cluster can have a) the same srcIP
plus destIP, b) the same srcIP plus srcPort, or c) the same
srcIP plus destPort. 3) L3 cluster is about combinations of
three keys, flows in L3 cluster can have a) the same srcIP
plus destIP plus srcPort, b) the same srcIP plus destIP plus
destPort, or c) the same srcIP plus srcPort plus dstPort.

For example, in Figure 2, the largest ellipse is a L1 cluster
of flows with the same srcIP of 137.8.6.5 (We define it as
cluster A). Flows in this L1 cluster also form two narrower
L2 clusters: cluster B has the same srcIP of 137.8.6.5 plus
the same dstIP of 138.0.0.2; cluster C has the same srcIP
of 137.8.6.5 plus the same dstPort of 80. There are even
two L3 clusters: cluster D and cluster E both have the same
srcIP plus dstIP plus dstPort. Our definition of clusters allows
clusters to overlap. If there exists a L3 cluster, there must
be corresponding L2 cluster(s) and L1 cluster(s). Actually,
L3 cluster ⊆ L2 cluster ⊆ L1 cluster. This example
has several subset relationships including:D ⊂ B ⊂ A,
D ⊂ C ⊂ A, and E ⊂ C ⊂ A. In addition, higher level
clusters have higher priority to be aggregated, because they
keep more information after aggregation. In this example,
when we perform aggregation, cluster D and E have the
highest priority, cluster B and C have the middle priority, and
cluster A has the lowest priority.

D. Algorithm for identifying clusters

Next we illustrate the algorithm to identify appropriate
clusters. The objectives of this algorithm are, first, flow entries

freed during aggregating these clusters should satisfy the
memory’s requirement, second, the level of clusters being
aggregated should be as high as possible. We first define
several parameters and variables:

• P : the number of all IP nodes in the top list
• mmax: the memory usage that triggers aggregation
• mdes: the expected memory usage after aggregation
• T : the number of entries the aggregation tries to free, i.e.

T = (mmax − mdes)/sizeof(a flow entry)
• r: the smallest size of clusters the algorithm identifies
• Ni(IPj): the number of flow entries which will be freed

if we aggregate all level i clusters with the IP address of
nodej

The algorithm identifies large clusters based on valuesT , r
and the information in the top list. Thefirst stepis to compute
N1(IPj), N2(IPj), andN3(IPj) for every node in the top list.
N1(IPj) is the number of flow entries which will be freed if
we aggregate all level 1 clusters with the IP address of node
j, so it equals counter of nodej minus 1. For example, in
Figure 2,N1 of this IP node is 99, because if we merge all
flows in the L1 cluster - all flows with the same srcIP of
137.8.6.5 - into one flow, we can free 99 flow entries.

For a fixed source IP address, there are three kinds of level
2 clusters. To computeN2, we need to compute the following
three values corresponding to three kinds of level 2 clusters:

• n21: number of flows which will be freed if we aggregate
all srcIP plus dstIPclusters with this IP address

• n22: number of flows which will be freed if we aggregate
all srcIP plus srcPortclusters with this IP address

• n23: number of flows which will be freed if we aggregate
all srcIP plus dstPortclusters with this IP address

Taken21 as an example, we traverse flows in the list of this
srcIP to find clusters with the same dstIP.n21 is the number of
flows which will be freed if we aggregate all these srcIP plus
dstIP clusters. We can getN2 by N2 = max(n21, n22, n23).
Because flow nodes in srcIP list are sorted by dstIP, finding
clusters with the same dstIP in a srcIP list is easy, which
only needs a counter. While finding clusters with the same
srcPort or dstPort in a srcIP list needs some temporary arrays.
ComputingN3 is similar to computingN2.

After gettingNi(IPj) (1 ≤ i ≤ 3 , 1 ≤ j ≤ P) for the IP
nodes in the top list, thesecond stepis to determine to which
level we aggregate. If

∑
j Ni(IPj) < T ≤ ∑

j Ni−1(IPj),
we will aggregate to level(i − 1) clusters. For example, if∑

j N3(IPj) < T ≤ ∑
j N2(IPj), then we will aggregate to

level 2. If we aggregate level 3 clusters for all IP nodes, the
sum of all N3 is still less thanT , which can not satisfy our
needs. But aggregating level 2 clusters for all IP nodes can
satisfy our needs, so we choose to aggregate to level 2. It is
important to note that the level of clusters being aggregated
should be as high as possible. So aggregating to level(i− 1)
means we aggregate leveli clusters for as many IP nodes as
possible, and aggregate level(i−1) clusters for the remaining
IP nodes.

The third stepis to determine which IP nodes to be aggre-
gated in leveli and which IP nodes to be aggregated in level
(i − 1). Note thatL3 cluster ⊆ L2 cluster ⊆ L1 cluster,
and N3(IPj) ≤ N2(IPj) ≤ N1(IPj). Assume aggregating
to level 2, our objective in this step is to choose as many IP
nodes as possible to aggregate their level 3 clusters. So those
IP nodes whoseN2 is closer toN3 should be chosen.

This part is implemented by the algorithm in figure 3. First
we computedi(IPj), which is the difference ofNi−1(IPj)
and Ni(IPj), then sort thesedi(IPj) to di(IPj′) such
that di(IPj′) is ascending. After that we choose the small-
est di(IPj′), the correspondingNi(IPj′) is the closest to
Ni−1(IPj′). If

∑
j Ni−1(IPj′) - di(IPj′) is still no smaller

than T , we can choose leveli cluster for IPj′ and level
(i − 1) cluster for other IP nodes. Then we look at the
second smallestdi(IPj′), and so on, until the difference is
less thanT . Through this algorithm, we get resultt. For
{di(IPj′)|1 ≤ j′ ≤ t − 1}, we choose leveli clusters for
correspondingIPj′ , and choose level(i−1) clusters for other
IP nodes.

clusters selection algorithm:

for j = 1 to P
di(IPj) = Ni−1(IPj)−Ni(IPj)

endfor
sort {di(IPj)|j = 1, ..., P} to {di(IPj′)|j′ = 1, ..., P} ,
such thatdi(IPj′) is ascending.
T ′ =

∑
j Ni−1(IPj)

for j′ = 1 to P
T ′ = T ′ − di(IPj′)
if T ′ < T break;

endfor
t = j′

Fig. 3. clusters selection algorithm

One possibility is
∑

j N1(IPj) < T , then even we ag-
gregate all level 1 clusters, the memory freed still can not
satisfy the requirement. In this situation, the increase in
number of flows is not caused by a few dominated clusters,
so flow aggregation can not deal with the memory exhaustion
completely.

E. Flow aggregation and export

For every node in the top list, we have decided if we should
do aggregation on clusters for this IP address, and for which
level of clusters, and if for L2 or L3 clusters, which kind
of combinations (eg, srcIP plus dstIP, or srcIP plus srcPort,
or srcIP plus dstPort for L2 clusters). After that, we find
the list of flows of this IP address, merge them in selected
clusters to one metaflow. Information of the metaflow comes
from information of flows in this cluster. For example, if

the cluster is srcIP plus dstIP, then srcIP and dstIP of the
metaflow are the exact values, but its srcPort and dstPort are
changed to *, denoting all possible values. Other information
of this metaflow is similar to those defined in [5], number
of packets/bytes is the sum of number of packets/bytes of all
aggregated flows, time stamp of first seen packet (create time
of the metaflow) is the minimum of this time stamp of all
aggregated flows, and time stamp of last seen packet (modify
time of the metaflow) is the maximum of this time stamp of
all aggregated flows. Number of flows can not be counted
directly, it might be estimated using other techniques.

When a packet arrives, the system determines if this packet
belongs to an active flow. For metaflow, only fields of an exact
value are compared with corresponding fields of the packet.
For example, if a metaflow is (srcIP = *, dstIP = 210.0.0.3,
srcPort = *, dstPort = 80,TCP), then all following packets
of web traffic to the server with IP address of 210.0.0.3 will
be regarded as belonging to this metaflow. Metaflow will be
terminated and exported as other normal flows when those
termination criteria are met, includinginactive timerandactive
timer. Note that criteria of observation of certain TCP flags
would not be used, because these flags indicate the termination
of only one flow but not the metaflow. After metaflow is
terminated and exported, flows belonging to this cluster are
not aggregated to one metaflow any more. So deaggregation
is done automatically based on the underlying traffic.

IV. Analysis

In this section, we analyze our algorithm (adaptive flow
aggregation), and compare it with other solutions including, 1)
NetFlow without memory constraint (basic NetFlow), 2) Net-
Flow which rejects new flows when the cache is full (rejecting
NetFlow), 3) NetFlow which exports more aggressively when
the cache is full (exporting NetFlow), and 4)adaptive NetFlow
proposed in [3]. We take the implementation of fprobe as an
example of NetFlow, because the detailed implementation of
Cisco NetFlow is not documented.

A. Resource requirement

First we analyze the resources required by the algorithms.
The key resource measures include the size of flow memory,
the size of export bandwidth, and CPU utilization.

1) Flow memory:Because of our modified data structure,
our algorithm uses a bit more memory thanbasic NetFlow.
AssumeSf is the size of a flow entry,Sip is the size of a IP
Node in Figure 1. Considering the worst case, every flow entry
has different source IP and destination IP, then our algorithm
uses(Sf + 2 ∗ Sip + 4)/Sf times memory ofbasic NetFlow.
4 denotes we use one more pointer in the flow entry.Sf is
around 64 bytes,Sip is around 10 bytes (two pointers and one
counter). So our data structure uses 1.4 times memory ofbasic
NetFlow in the worst case.

Adaptive NetFlowmay also use more memory thanbasic
NetFlow. The algorithm divides the NetFlow operation into
measurement bins. They do not terminate flow records during
the bin, but terminate all active flow records at the end of the

bin. A fixed size of measurement bin is a problem, because its
optimal size depends on the traffic mix. If the measurement bin
is too large, it keeps many short flows unnecessarily long in
the memory cache, and uses more memory than necessary. If
the memory is bounded, then the adaptive algorithm decreases
sampling rate lower than necessary, and sacrifices the accuracy
of all flows. On the other hand, if the measurement bin is
too small, it splits many long flows to several flows, hence
increases the export bandwidth and burdens the collector. Once
adaptive NetFlowfixes the size of the measurement bin, how
much memory that it uses more thanbasic NetFlowdepends
on the traffic mix, while our algorithm uses fixed amount of
additional memory.

2) Export bandwidth:Besides memory, another main re-
source constraint is export bandwidth. Ouradaptive flow
aggregationuses either the same or less export bandwidth
thanbasic NetFlow. Its export bandwidth is the same asbasic
NetFlow when the system does not aggregate flows, and less
than basic NetFlowwhen it performs aggregation.Exporting
NetFlowmay use a very high export bandwidth, and may flood
the collector. Inadaptive NetFlow, router operator specifies
the reported number of flow recordsM desired for each
measurement bin, the algorithm guarantees this fixed export
bandwidth by decreasing the sampling rate.

3) CPU utilization: Because our algorithm intents to per-
form all these operations - keeping flow information, exporting
flow and aggregation - in real time, it must not bring too much
overhead. We will first describe the overhead to normal flow
operations, that is, update flow cache when new packets come
in and periodically check flow cache looking for expired flows.
In extreme conditions, if a large part of flows have the same
source or destination IP address, then the corresponding IP
node list will be so long that it would slower flow lookup.
Actually, we can define a threshold, length of IP node list
reaches this threshold triggers aggregation. Another overhead
to normal flow operations is that our algorithm needs to
maintain a top list. Every time we create or delete a flow entry,
we need to update the top list. However, maximum number
of top list is not large (20 or even less is enough), and under
normal conditions the number of top list entry is often less
than the maximum number. So this part of overhead is not
large.

We need some extra process for performing aggregation.
First, we need to traverse lists of all IP nodes in the top list to
computeN2, which is the number of flow entries that will be
freed if we aggregate all level 2 clusters with this IP address.
If there are level 3 clusters with this IP address, we also need
to traverse this list again to getN3. After that, we need one
more traversal to do aggregation for those IP nodes which
need aggregation. Assume the number of all IP nodes in the
top list isP , the maximum length of IP node lists isLm, then
the running time of the aggregation operation is bounded by
3 ∗ P ∗ Lm.

In adaptive NetFlow, for finding the right sampling rate,
they also need to maintain a histogram by performing one
more addition and one subtraction for each processed packet.

This histogram is the sizes of the packet counters, that is, how
many flow entries have 1 packet, and how many flow entries
have 2 packets, and so on. When decreasing the sampling rate,
first they compute the right sampling rate using this histogram
and then renormalize all existing flow entries. While we only
need to perform aggregation on flows in the lists of those IP
nodes in the top list, which is a small part of the existing flow
entries.

B. Accuracy

When there is anomaly in the network, the number of
flows generated would exceed the resource constraints. All
kinds of countermeasures would affect the accuracy of the
result. Rejecting NetFlowrejects all new flows when the
cache is full. Forexporting NetFlow, even the system can
process all packets and export all flow records, there are
still two ways which bring inaccuracy. First, routers export
NetFlow records to the collector using UDP. So flow records
may be lost during periods of congestion. [17] showed the
errors introduced by lost NetFlow records. Second, many post-
processing analysis and visualization tools can not process
this avalanche of flows. FlowScan [18] is a package used for
visualizing network traffic. The author said its near real-time
processing can not catch up when processing flows produced
during most Denial-of-Service attacks. Foradaptive NetFlow,
it would automatically choose a lower sampling rate during a
DoS attack, which affects accuracy of all flows. Results of our
adaptive flow aggregationalso lose information, because our
solution reduces resolution for some clusters.

Comparison of lower resolution with lower sampling rate
of adaptive NetFlowis hard to quantify. Lower sampling rate
will affect the accuracy of all flows with equal probability, so
inaccuracy for all kinds of aggregates (by ports, IP address, AS
numbers etc.) is probabilistically equivalent. [3] presents the
relative standard deviation for the number of packets and the
number of bytes when estimating the traffic of any aggregate
amounting to a fraction of the total traffic. On the other hand,
our adaptive flow aggregationuses a lower resolution only
for some, but not all clusters, so inaccuracy for different
aggregates is quite different.

There are many analysis and visualization tools. Flowscan
[18] uses NetFlow data to give detailed information about the
traffic, while CoralReef [19] produces breakdown of traffic
based on packet traces instead of NetFlow data. AutoFocus
[6] analyzes traffic along dynamically defined multiple di-
mensional clusters. These tools extract, record and help us
understand the flows. They measure the traffic in the number
or rate of packets, bytes and flows by breaking it down in a
number of ways: by the IP protocol; by well-known services or
applications; by hosts; by IP prefixes associated with networks;
or by ASes and countries. These keys (protocol, applications,
hosts etc.) can be predefined such as finding out how much
web traffic on your link, or the topN entries such as finding
hosts generating the most traffic.

We will present some examples to show the inaccuracy for
different aggregates. The first example is that we aggregate L2

clusters of srcIP plus dstIP. Then we would get some errors
if we are interested in breakdowns by the IP protocol and
by applications, but we would get accurate results if we are
interested in breakdowns by hosts, by IP prefixes associated
with networks, or by ASes and countries. We would note that
for accurate results we only mean the number of packets and
bytes, because the number of flows are not counted after we
merge flows in one cluster to a metaflow. Another example is
that we aggregate L2 clusters of dstIP plus dstPort. Assume
this large cluster is caused by a busy web server (produced by
flash crowds) instead of a DDoS victim, such that the srcIP
is meaningful. Then we get accurate results for protocol and
application breakdowns. However, if the network operators are
interested in the source of this web traffic, we would lose this
kind of information.

From above examples and analysis, we get the following
conclusions. The inaccuracy thatadaptive flow aggregation
would bring depends on both what kind of aggregation that we
perform and what kind of information that network operators
need. The aggregation is based on five dimensions, and the
information that network operators are interested is also about
these five dimensions, because other information such as IP
prefix, ASes or countries would be kept if we keep the
dimension of IP address. If the dimensions that we discard
during aggregation are included in the dimensions network
operators are interested, then the result would be inaccurate,
otherwise, it would be accurate.

Above is the general case. In practice, keeping or discard-
ing which dimensions is dynamically decided based on the
underlying traffic. First, we choose as high level clusters as
possible to keep more dimensions. Second, flow aggregation is
usually triggered by network anomaly, so the dimensions we
discard are often less important, for example, large amount
of spoofed source IP addresses in DoS/DDoS attacks, random
chosen destination IP addresses in worm spread, and random
chosen destination ports in port scans.

C. Implementation issues

Often the reason for abnormal traffic conditions is due to
security attacks and such attacks often have some common
patterns. So our algorithm can relieve the resource overload by
identifying these traffic clusters in real-time and aggregating
these large amount of short flows into a few flows. Sometimes,
the overload may be caused by undifferentiated traffic not
dominated by any particular cluster, e.g., a shift in load caused
by link failure or routing change. In this situation, even we
aggregate all level 1 clusters, the memory which will be freed
may still not satisfy the requirement. In other words, our
solution can not deal with this case. From this point of view,
our solution should be considered as a way to complement
other current solutions, rather than completely replace them.
If our algorithm fails to find appropriate clusters, we conclude
that the traffic is undifferentiated and take other actions such as
in Rejecting NetFlow, exporting NetFlowor adaptive NetFlow.

The recent rise in the use of peer-to-peer applications may
also cause overload of NetFlow, because one host would open

λ τ n T Description
A 10s 1s [900, 1200] [0, 5400s]
B 10s 5s [180, 240] [0, 5400s]
C 10s 1s [180, 240] [0, 5400s]
D 10s 5s [36, 48] [0, 5400s]
E 0.1s 0.1s [2, 20] [2700s, 3700s] DoS attack
F 0.1s 0.1s [2, 20] [2000s, 4000s] worm spreading
G 10s 1s [180, 240] [0, 5400s] web traffic

TABLE II

FLOW INFORMATION

many connections to its peers and thus lead to the increase in
number of active flows. Although unlike flows of DoS attacks
and worm spreading traffic, which could be aggregated to one
or a few flows, aggregating the flows originating from the same
host also could mitigate the resource problem.

There are links in the network that are dominated by
particular clusters, in the normal case. Network operators can
use policy if they want to protect such clusters, resulting in the
algorithm looking for other clusters or perform aggregation
only when they exceed their policy defined limits. Another
threshold that network operators can set isr, which is the
smallest number of flows in an identified cluster.

V. Experimental evaluation

In this section, we evaluate different solutions by running
them on a synthetic trace file and traces of actual traffic.
These solutions includebasic NetFlow, rejecting NetFlow,
exporting NetFlow, adaptive NetFlow, and ouradaptive flow
aggregation. We first present our experimental setup, and then
give out evaluation results on different trace files.

A. Experimental setup

We first present our metrics and experimental datasets. The
metrics we use to evaluate these solutions are:

• memory usage - memory used at the observation point
• export bandwidth - flows exported during the past 2

minutes
• run time - time spent by the entire process
• relative error - average error for byte, packet, or flow

estimates:

relerr =

√√√√ 1
N

N∑

i=1

(
n̂i − ni

ni
)2 (1)

In Equation 1,n̂i is the estimated value for number of
bytes, packets or flows,ni is the accurate value.

The data sets that we measure different solutions are:

• “Synthetic” - a synthetic trace file generated by CSIM
• “DarpaIDE” - the training data of the 1998 DARPA

Intrusion Detection Evaluation

B. Resource evaluation on synthetic trace file

We use CSIM to generate a synthetic trace file. During the
observation time of 5400s, there are seven types (A, B, C,
D, E, F, G) of flows. Flows of each type arrive as a Poisson

process, and the inter flow time is exponentially distributed
with meanλi. In every flow, the packet arrival is also Poisson,
and inter packet time is exponentially distributed with mean
τi. The number of packets for every type of flow is a uniform
distribution ofni. Characteristic of these seven types of flows
is shown in Table II. Flow E is a simulated DoS attack, all
flows of type E have the same dstIP and dstPort. It does not
last during the whole duration of 5400s, but starts at 2700s
and ends at around 3700s. Flow F is a simulated worm spread,
all flows of type F have the same srcIP. It starts at 2000s, and
ends at around 4000s. Flow A, B ,C, D and G are simulated
normal traffic, they last during the whole duration.λ, µ andn
are different for each type, so they have different characteristic,
long-lived or short-lived, dense or sparse. But compared with
flow E and F, theirλ andµ are longer, andn is larger. Their IP
address and port are randomly generated except that all flows
of type G are web traffic to the same dstIP.

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

exporting NetFlow

basic NetFlow
exporting NetFlow

Fig. 4. memory usage forexporting NetFlow

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow

basic NetFlow
adaptive NetFlow

Fig. 5. memory usage foradaptive NetFlow

For calculating the memory usage, we only count memory
allocated for storing the active flows and record the memory
usage every 10 seconds. Figure 4, Figure 5, and Figure 6 are
memory usages ofexporting NetFlow, adaptive NetFlow, and
adaptive flow aggregationrespectively. The solid lines with
pointer marker in these three figures are memory usage of
basic NetFlow, served as the benchmark. We record export
bandwidth every 2 minutes, which is defined as number of
flows exported during the past 2 minutes. Figure 7 is export
bandwidth for these solutions.

In these experiments, we definemmax = 40000, and
mdes = 30000. When memory usage reachesmmax, the

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive Flow aggregation

basic NetFlow
adaptive Flow aggregation

Fig. 6. memory usage foradaptive flow aggregation

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

systime (sec)

ex
po

rt
ba

nd
wi

dt
h

export bandwidth

basic NetFlow
exporting NetFlow
adaptive NetFlow
adaptive flow aggregation

Fig. 7. export bandwidth for different solutions

system performs some operations to reduce memory usage to
mdes. In exporting NetFlow, the operation is to export some
oldest flows. Inadaptive NetFlow, the operation is to decrease
sampling rate as described in [3]. While inadaptive flow
aggregation, the operation is to find some large clusters and
aggregate flows in these clusters. Packet processing is stopped
during these operations, because input to the system is a trace
file. In practice, these operations need to proceed in parallel
with the processing of new packets.

For exporting NetFlow, before reachingmmax, its memory
usage and export bandwidth are the same as that ofbasic
NetFlow. After exceedingmmax, its memory usage is bounded
by mmax, but the export bandwidth is much higher than that
of basic NetFlow.

For adaptive NetFlow, we use the measurement bin of 1
minute. Before reachingmmax, memory usage ofadaptive
NetFlow is a little greater than that ofbasic NetFlow, due to
the unnecessarily long time thatadaptive NetFlowkeeps short
flows in the memory, as we mentioned in section IV-A.1. On
the other hand, export bandwidth ofadaptive NetFlowis also
greater than that ofbasic NetFlow. The reason is that many
flows we generated are much longer than the measurement
bin of 1 minute, so they are split to several flows. After
exceedingmmax, its memory usage is bounded bymmax and
export bandwidth is stable. For more detail, its memory usage
and sampling rate in several measurement bins are shown
in Figure 8. At the beginning of one measurement bin, the
sampling rate is equal to 1 (process every packet). When the
memory usage reachesmmax, adaptive NetFlowdecreases

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280
0

1

2

3

4

x 104

systime (sec)

adaptive NetFlow

m
em

or
y

us
ag

e

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280

0.02

0.05

0.1

0.2

0.5

1

sa
m

pl
in

g
ra

te

Fig. 8. memory usage and sampling rate in several measurement bins

sampling rate. At the end of one measurement bin, all active
flows in the cache memory are exported and the sampling rate
is reset to 1. In this experiment, the sampling rate decreases
to a low value of around 1/30 (as shown in Figure 8).

For adaptive flow aggregation, before reachingmmax, its
memory usage is larger than that ofbasic NetFlow, due to the
overloads caused by the new data structure, as we analyzed
in section IV-A.1. Its export bandwidth is the same as that of
basic NetFlow. At time around 2000 sec, the memory usage
exceedsmmax. The algorithm identifies the cluster of the
simulated worm spread (with the same srcIP) and aggregates
flows in this cluster. Both the memory usage and export
bandwidth are much lower than those ofbasic NetFlow. At
time around 2700 sec, the simulated DoS attack is generated,
so the memory usage exceedsmmax again, which triggers the
second aggregation. The third aggregation occurs at around
3800 sec. The reason is that we use anactive timer of 30
minutes, the metaflow generated from aggregation at time
2000 sec is terminated and exported. But packets in this worm
spread have not stopped, many new generated flows make the
memory usage reachmmax again. Except flow E and F, the
arrival of other flows is stable. The system aggregates all flows
in type E and F to one or two flows, so export bandwidth is
stable after the initial phase. The increase at the end of the
observation duration is because we flush out all active flows
at the end of the program.

Finally, another metrics is the run time of these different
processes. We find from multiple runs of these experiments
that the run time of ouradaptive flow aggregationis similar
to that of basic NetFlow. The run time ofadaptive NetFlow
even shorter than that ofbasic NetFlow. The reason is that
other solutions check all flows in memory to look for expired
flows every 2 sec (fprobe checks memory every 5 sec), while
adaptive NetFlowonly terminates all flows in memory every
1 min (we use 1 min as the size of measurement bin).

C. Resource evaluation on “DarpaIDE” dataset

From the above section, the evaluation result on the syn-
thetic trace file is quite consistent with what we expect. In this
section, we will show results from experiments on traces of
actual traffic. The dataset we use is part of the training data of
the 1998 DARPA Intrusion Detection Evaluation [20], which

0 1 2 3 4 5 6 7 8

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

basic NetFlow

Fig. 9. memory usage ofbasic NetFlow

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow

basic NetFlow
adaptive NetFlow

Fig. 10. memory usage ofadaptive NetFlow

contained a wide variety of simulated intrusions. We choose
Wednesday data of week 1 as our experiment data, because
it contains DoS attacks such as smurf and neptune. Figure 9
is the memory usage ofbasic NetFlow. The peak memory
usage is caused by the smurf attack (ICMP packets to the same
desIP). Figure 10, 11, and 12 are memory usage and export
bandwidth ofadaptive NetFlowandadaptive flow aggregation.
In this experiment, we record memory usage every 60 sec,
which is the maximum memory usage during the past 60 sec
instead of memory usage at the observation point.

In this experiment, we usemmax = 30000, andmdes

= 20000. From figure 10 and 11, one can find that the
memory usage ofbasic NetFlowonly exceedsmmax at around
1000 sec. However, bothadaptive NetFlowandadaptive flow
aggregationmay use more memory thanbasic NetFlowand
their memory usage may exceedmmax at other points besides
at around 1000 sec, so they decrease sampling rate or perform
aggregation more than once.

For adaptive NetFlow, before reachingmmax, its memory
usage is often greater than that ofbasic NetFlow, even greater
than that ofadaptive flow aggregationmost of the time. The
reason is that many of the flows in this data set are shorter
than the measurement bin of 1 min and are kept in memory
longer than necessary. Its export bandwidth is similar to or
less than (when decreasing the sampling rate) that ofbasic
NetFlow. Figure 13 is its memory usage and sampling rate
when DoS attack occurred. When the smurf attack occurred
at 1010 sec, the memory usage quickly reachedmmax. To

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive flow aggregation

basic NetFlow
adaptive flow aggregation

Fig. 11. memory usage ofadaptive flow aggregation

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

systime (sec)
ex

po
rt

ba
nd

w
id

th

basic NetFlow
adaptive NetFlow
adaptive flow aggregation

Fig. 12. export bandwidth ofadaptive NetFlow& adaptive flow aggregation

keep the memory usage bounded bymmax, the sampling rate
was decreased once and again, with the lowest value of less
than 1/100. The attack stopped at time 1046 sec, but the
sampling rate would not be increased until the beginning of
next measurement bin of 1070 sec.

For adaptive flow aggregation, the memory usage is a little
higher than that ofbasic NetFlow. Its export bandwidth is the
same as or less than (when performing aggregation) that of
basic NetFlow, as expected. Figure 14 is its memory usage
when DoS attack occurred. When its memory usage reached
mmax, the cluster of ICMP packets to the victim was identified
and flows in this cluster were merged to one metaflow. After
that, the memory usage would not increase any more because
all following attack packets belonged to this metaflow.

D. Accuracy evaluation on “DarpaIDE” dataset

To compare the accuracy ofadaptive NetFlowandadaptive
flow aggregation, we perform post-processing on the flow
records exported fromadaptive NetFlow, adaptive flow aggre-
gation and basic NetFlow. We perform three post-processing
based on the applications used by most analysis and visual-
ization tools.

The first post-processing is protocol breakdown. For these
solutions, protocol breakdown counts the number of bytes,
packets and flows for TCP, UDP and ICMP. We repeat each
experiment for 5 times, and getrelerr using Equation 1.
The configuration for these experiments is the same as in
section V-C:mmax = 30000, mdes = 20000, and the size

1000 1010 1020 1030 1040 1050 1060 1070 1080
0

2

x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow1000 1010 1020 1030 1040 1050 1060 1070 1080

0.01

0.02

0.05

0.1

0.2

0.5

1

sa
m

pl
in

g
ra

te

Fig. 13. memory usage ofadaptive NetFlowunder DoS attack

950 1000 1050 1100 1150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive flow aggregation

basic NetFlow
adaptive flow aggregation

Fig. 14. memory usage ofadaptive flow aggregationunder DoS attack

of measurement bin foradaptive NetFlowis 1 min. Relerr
results foradaptive NetFlowand adaptive flow aggregation
are shown in Table III.

The second post-processing is port breakdown, which
counts the number of bytes, packets and flows for different
ports. Foradaptive NetFlowandadaptive flow aggregation, we
calculaterelerr for the top 10 source/destination ports sorted
by the number of bytes, packets and flows. For brevity, we only
show relerr of the top 10 source ports sorted by the number
of bytes ofadaptive NetFlowand adaptive flow aggregation
in Table IV, and omit the other fiverelerr tables.

The third post-processing is to find the top 10 hosts by
bytes, packets or flows of traffic generated/received. We get
six tables similar to port breakdown.Relerr results of top 10
source IP addresses sorted by bytes ofadaptive NetFlowand
adaptive flow aggregationare shown in Table V.

From theserelerr results, we conclude that ouradaptive flow
aggregationprovides better accuracy for legitimate flows than
adaptive NetFlow. Its measurement for the number of bytes
and packets are all accurate in these scenarios, and itsrelerr
for the number of flows is also lower than that ofadaptive
NetFlow. Its only relerr greater than that ofadaptive NetFlow
is flow error for ICMP, because the algorithm aggregates the
ICMP packets in the smurf attack. The aggregation can keep
the number of bytes and packets accurate, but can not count
the number of flows directly.

adaptive NetFlow
protocol % of total byte error packet error flow error

TCP 85.2 0.002147 0.002827 0.151821
UDP 0.6 0.009679 0.007714 0.331545
ICMP 14.2 0.212056 0.210449 0.369882

adaptive flow aggregation
protocol % of total byte error packet error flow error

TCP 85.2 0.000000 0.000000 0.007840
UDP 0.6 0.000000 0.000000 0.059900
ICMP 14.2 0.000000 0.000000 0.663537

TABLE III

RELATIVE ERROR OF PROTOCOL BREAKDOWN

adaptive NetFlow
srcPort % of total byte error packet error flow error
80 , tcp 66.54 0.003118 0.003229 0.166314
20 , tcp 11.45 0.002629 0.002636 0.083098
25 , tcp 0.58 0.006846 0.003628 0.029989
53 , udp 0.52 0.017324 0.012561 0.266825
21 , tcp 0.075 0.012907 0.004036 0.213127
23 , tcp 0.072 0.020535 0.012695 0.161913

123 , udp 0.069 0.029045 0.029045 0.379118
11306 , tcp 0.019 0.000000 0.000000 0.000000
11360 , tcp 0.019 0.000000 0.000000 0.000000
11304 , tcp 0.019 0.000000 0.000000 0.000000

adaptive flow aggregation
srcPort % of total byte error packet error flow error
80 , tcp 66.54 0.000000 0.000000 0.006993
20 , tcp 11.45 0.000000 0.000000 0.000000
25 , tcp 0.58 0.000000 0.000000 0.000000
53 , udp 0.52 0.000000 0.000000 0.000000
21 , tcp 0.075 0.000000 0.000000 0.000000
23 , tcp 0.072 0.000000 0.000000 0.000000

123 , udp 0.069 0.000000 0.000000 0.000000
11306 , tcp 0.019 0.000000 0.000000 0.000000
11360 , tcp 0.019 0.000000 0.000000 0.000000
11304 , tcp 0.019 0.000000 0.000000 0.000000

TABLE IV

RELATIVE ERROR OF PORT BREAKDOWN

E. Adjusting parameters

These solutions have some parameters including, size of
measurement bin foradaptive NetFlow, r for adaptive flow ag-
gregationandmmax, mdes for both of them. We setmmax =
30000, 35000, 40000, 45000, andmdes = mmax − 10000. We
choose 10s, 30s, 60s and 90s for the size of measurement bin,
and 2,4,5,10 forr. For brevity, we only give some conclusions
here:

• When the size of measurement bin is small,adaptive
NetFlow uses less memory but more export bandwidth,
and therelerr is low.

• The values we chose forr have little impact on memory
usage, export bandwidth, and therelerr. This is because
the sizes of all clusters identified are greater than these
r.

• Whenmmax is large,relerr is low.

VI. Conclusion

NetFlow is the traffic measurement solution most widely
used by ISPs to determine the composition of the traffic

adaptive NetFlow
srcIP % of total byte error packet error flow error

197.218.177.69 6.16 0.004704 0.009845 0.050996
172.16.114.148 4.95 0.010789 0.012045 0.193561
208.134.241.210 3.79 0.008269 0.010362 0.166214
207.25.71.143 3.09 0.015963 0.017205 0.206470
207.25.71.29 2.79 0.039143 0.021262 0.174608
167.8.29.15 2.46 0.008376 0.008679 0.139553

207.46.130.138 2.09 0.015371 0.033316 0.267461
199.95.74.90 2.01 0.016042 0.029919 0.230012
192.168.1.10 1.25 0.008386 0.027705 0.368439

205.181.112.65 1.14 0.025910 0.022647 0.271724
adaptive flow aggregation

srcIP % of total byte error packet error flow error
197.218.177.69 6.16 0.000000 0.000000 0.000000
172.16.114.148 4.95 0.000000 0.000000 0.033207
208.134.241.210 3.79 0.000000 0.000000 0.000000
207.25.71.143 3.09 0.000000 0.000000 0.000000
207.25.71.29 2.79 0.000000 0.000000 0.000000
167.8.29.15 2.46 0.000000 0.000000 0.000000

207.46.130.138 2.09 0.000000 0.000000 0.000000
199.95.74.90 2.01 0.000000 0.000000 0.081798
192.168.1.10 1.25 0.000000 0.000000 0.000000

205.181.112.65 1.14 0.000000 0.000000 0.000000

TABLE V

RELATIVE ERROR OFIP BREAKDOWN

mix in their networks. However, NetFlow has the problem
of overrunning available memory for flow records during
abnormal situations. Currently available countermeasures have
their own problems. We proposeadaptive flow aggregation,
which identifies large clusters in real-time and aggregates large
amount of short flows into a few flows. This mechanism,
while certainly not a panacea, provides relief from DoS attacks
and other security breaches. Additionally, it guarantees the
accuracy of legitimate flows.

We choose five fields typically used to define a flow, and
use 11 combinations of these five fields to define clusters. To
efficiently implement the algorithm in real-time, we design
a new data structure called two-dimensional hash table. One
objective of the algorithm is to keep as much information
as possible when performing aggregation. We divide different
clusters to three levels and maintain counters to help assess
their effect for aggregation. We then choose as high levels of
clusters as possible to aggregate to minimize loss of resolution.

We analyze the resource requirement and accuracy of our
solution, and compare it with other current solutions including
rejecting NetFlow, exporting NetFlow, andadaptive NetFlow.
Experimental evaluations on synthetic and actual trace files
confirm our analysis on resource requirement, and show that
our solution provide better accuracy for legitimate flows.

Our future work includes: first, formal model and analysis
for accuracy comparison ofadaptive NetFlowand ouradaptive
flow aggregation, which depends on traffic characteristics and
what is the use of the flow information. In this paper, we
only give some scenarios in the analysis and experimental
evaluation part. Second, more experiments on additional data
sets of different traffic characteristics.

REFERENCES

[1] http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
[2] http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/

120newft/120limit/120s/120s11/12ssanf.htm.
[3] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better

netflow,” in SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communications, pp. 245–256, ACM Press, 2004.

[4] http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t3/netflow.htm.

[5] http://www.ietf.org/internet-drafts/draft-dressler-ipfix-aggregation-
00.txt.

[6] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” inSIGCOMM ’03: Proceed-
ings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 137–148, ACM Press,
2003.

[7] K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-
time summaries of internet traffic,”SIGMETRICS Perform. Eval. Rev.,
vol. 33, no. 1, pp. 85–96, 2005.

[8] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 62–73, 2002.

[9] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” inSIGCOMM ’02: Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for computer
communications, pp. 323–336, ACM Press, 2002.

[10] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling for
load change detection,”SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1,
pp. 272–273, 2002.

[11] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” inSIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and pro-
tocols for computer communications, pp. 325–336, ACM Press, 2003.

[12] CERT Coordination Center. CERT Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks, http://www.cert.org/advisories/CA-1998-
01.html.

[13] CERT Coordination Center. CERT Advisory CA-2003-04 MS-SQL
Server Worm, http://www.cert.org/advisories/CA-2003-04.html.

[14] CERT Coordination Center. CERT Advisory CA-2003-20 W32/Blaster
worm, http://www.cert.org/advisories/CA-2003-20.html.

[15] CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks, http://www.cert.org/advisories/CA-
1996-21.html.

[16] http://sourceforge.net/projects/fprobe.
[17] N. Duffield and C. Lund, “Predicting resource usage and estimation

accuracy in an ip flow measurement collection infrastructure,” inIMC
’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pp. 179–191, ACM Press, 2003.

[18] D. Plonka, “Flowscan: A network traffic flow reporting and visualization
tool,” in Proceedings of USENIX LISA, 2000.

[19] D. Moore, K. Keys, R. Koga, E. Lagache, and kc Claffy, “Coralreef
software suite as a tool for system and network administrators,” in
Proceedings of USENIX LISA, 2001.

[20] http://www.ll.mit.edu/IST/ideval/data/1998/training/.

