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Abstract— While the practical coding scheme [1] has been
shown to be able to improve throughput of wireless networks,
there still lacks fundamental understanding on how the coding
scheme works under realistic settings, namely, when it operates
on a realistic physical layer and the medium access is controlled
by some random access methods. In this paper, we provide a for-
mal analysis on the performance of the practical coding scheme
under such realistic settings. The key performance measureis
the encoding number, i.e., the number of packets that can be
encoded by a coding node in each transmission. We provide an
upper bound on the encoding number for the general coding
topology, and derive the average encoding number and system
throughput for a general class of random access mechanisms.
Based on the practical coding scheme, we also derive a tighter
upper bound on the throughput gain for a general wireless
network. Our results can be particularly useful for coding-related
MAC/Routing protocol design and analysis.

I. Introduction

The practical XOR coding scheme proposed in [1] has
been shown to be able to improve the throughput of wireless
networks. Consider an example in Fig.1(a), suppose nodeS1

wants to transmit a packetP1 to nodeD1 via nodeC, while
nodeS2 wants to transmitP2 to D2 via nodeC. The dashed
arrows S1 99K D2 and S2 99K D1 indicate thatD2, D1 are
within the transmission ranges ofS1, S2 respectively. There-
fore, D1, D2 can perform “opportunistic listening”: when S1

(S2) transmitsP1 (P2) to nodeC, nodeD2 (D1) can overhear
the transmission ofP1 (P2). Without network coding, node
C needs to transmitP1 and P2 separately. However, when
one uses the XOR coding scheme, nodeC can broadcast an
encoded packet(P1 ⊕ P2) to both D1 andD2, thenD1 can
decodeP1 by performingP2⊕(P1⊕P2), while D2 can decode
P2 by performingP1 ⊕ (P1⊕P2). Therefore, nodeC delivers
two packets worth of information using a single transmission
so that1/4 of the bandwidth is saved. Another typical coding
scenario is shown in Fig.1(b), whereno opportunistic listening
is required because each of the two source nodes are also
destination nodes. Finally, Fig.1(c) shows ahybrid form of
coding which combines the former two cases, namely, some
packets for decoding are obtained via opportunistic listening
while other packets are obtained by the fact that the node is
the source of that packet. In this scenario, nodeC can at most
encode four packets together and save three transmissions.

We use the termencoding numberto refer to the number of
packets that can be encoded by a relay node (i.e., nodeC in
Fig.1) in each transmission. Intuitively, the higher the encoding

(a) Coding scenario
with opportunistic
listening.

(b) Coding scenario
without opportunistic
listening.

(c) Hybrid scenario.

Fig. 1. Basic scenarios of XOR coding under idealized link-scheduling.

number, the higher bandwidth efficiency and throughput can
be achieved. One fundamental question iswhether there is an
upper bound on the encoding number for a general coding
structure. While former works ( [1], [5]) assume that there
can be infinite nodes around the relay node such that the
encoding number is unbounded, we show that this number is
upper bounded by aconstantfor a general coding structure (in
Section II). As we will show in later sections, the upper bound
of encoding number directly affects the highest throughput
gain by the coding scheme, as well as other performance
measures like throughput and packet loss ratio.

Another important question that we address ishow well the
coding scheme works under random access link-scheduling
mechanisms. For example, in Fig.1(a), if the link-scheduling
is such that the transmitters always transmit following the
cycle of S1, S2, C, · · · (or S2, S1, C, · · · ), then nodeC can
always encode two packets in each transmission and max-
imize the total throughput. However, if the link-scheduling
is S1, C, S2, C, S1, C, · · · , then nodeC cannot encode any
packets. In practice, most of the wireless link-schedulingalgo-
rithms areprobabilistic(due to the random access mechanism)
andnon-coding-oriented, i.e., the potential coding opportunity
may not be fully utilized. In Section III, we model how the
random accessaffects the encoding number in different coding
structures. In particular, we formally characterize the interplay
of throughput, buffer size and the random access mechanisms
used. Surprisingly, we find that the simpleequal access
mechanism outperforms other sophisticated mechanisms in
most cases. We then use the analysis in the coding structures
to provide an upper bound on throughput gain for a general
wireless network (in Section IV).



In summary, the main contributions of this paper are:

• We derive an upper bound on the encoding number for
general coding structures. This shows the contradiction
to the assumption made in [1], [5].

• We propose a methodology to obtain theaverage en-
coding numberunder a general class of random access
mechanisms.

• We compare the performance of different random access
mechanisms, and find the importance ofbuffer sizeon
the coding performance.

• We formally prove the upper bound of throughput gain
by the practical XOR coding scheme forgeneral wireless
networks.

The paper is organized as follows. In Section II, we charac-
terize the general coding structure, and provide an upper bound
on the encoding number in any possible coding structures.
In Section III, we use a stochastic model to examine the
coding performance under various random access mechanisms.
In Section IV, we analytically derive the upper bound of
throughput gain for general wireless networks. In Section V,
we verify our analytical results by simulation. In Section VI,
we introduce the potential applications of our results and the
future work. In Section VII, we present the related work and
Section VIII concludes.

II. Coding Structure: Characterization and Properties

We first define the terminology that will be used throughout
this paper. For the XOR coding, acoding nodeis the node
which encodes packets for several flows, e.g., nodeC in
Fig.1(a) to 1(c) is a coding node.Coding flowsare flows
that transmit via a coding node and their packets have the
opportunity to be encoded (e.g., flowS1−D1 andS2−D2 in
Fig. 1(a) and 1(b)). Acoding structureincludesone coding
node as well as theone-hop predecessor nodesand theone-
hop successor nodesof the associated coding flows. In general,
there can ben ≥ 2 coding flows within a coding structure.
Clearly the encoding numberis at mostn in one coding
structure. When a coding node decides to use the XOR coding,
then we say that acoding schemeis applied, otherwise, anon-
coding schemeis used.
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Fig. 2. (a) Logical and (b) physical representation of a coding structure.

For the ease of presentation and analysis, we first show the

“ logical view” of a coding structure in Fig. 2(a), wheren two-
hop coding flows intersect at the coding nodeC. One possible
physical representation1 of this logical coding structure is
shown in Fig. 2(b): there aren nodes evenly spaced apart along
a circle, the coding nodeC is at the center of the circle. Each
node along the circle, say nodei, has its corresponding node
j, and the segment|ij| traverses nodeC (i.e., |ij| is a diameter
of the circle). We assume that the transmission of nodei can
be successfully received by all nodes along the circle except
for nodej. Each source node chooses its corresponding node
as its destination, and all coding flows are relayed by node
C at the center. Therefore, in this symmetric structure, if we
let each source node along the circle transmit one packet to
nodeC first, then nodeC can encode all thesen packets and
broadcast the encoded packet to all destination nodes along
the circle. Each destination node can perform proper decoding
because it has already obtained the othern−1 packets, either
by opportunistic listening or due to the fact that it is the source
of that packet.

We assume that wireless nodes operate at half-duplex mode,
and nodes that interfere with each other share the common
channel bandwidth which is denoted byB. Clearly, all the
transmitters in a coding structure are within a single inter-
ference range. The maximum total throughput2 for the non-
coding schemeandcoding-schemecan be achieved, when the
conditions described in the following lemmas are met.

Lemma 1 Under the “non-coding scheme”, the maximum
total throughput is achieved when “flow rate conservation”
is ensured at the relay node (i.e. nodeC). In other words, the
total bandwidth allocated to nodeS1, . . . , Sn should be equal
to the bandwidth allocated to nodeC. When this condition is
met, the maximum total throughput, denoted asT ∗

nc, is B/2.

Lemma 2 Under the “coding scheme”, the maximum total
throughput is achieved when: 1) the transmission schedule
follows some cyclic pattern likeS1, S2, · · · , Sn, C, such that
the encoding number is maximized in each transmission; 2)
equal bandwidth allocation to allS1, . . . , Sn and C. When
these conditions are met, the maximum total throughput,
denoted asT ∗

c , is nB/(n + 1).

The proofs of the above lemmas are straightforward. We omit
them due to lack of space. For detail, please refer to our
technical report [10]. One should note that while the optimal
throughput fornon-coding schemeis a constant, the optimal
throughput forcoding schemeis crucially dependent onn, the
number of coding flows in the coding structure, which is also
the maximum encoding numberin this coding structure.

A. The Upper Bound of Maximum Encoding Number

As discussed before,n, the number of coding flows within
a coding structure, is the maximum encoding number and

1Please note that there can be other possible topologies, we choose this one
here only because it can cover the generaln ≥ 2 cases.

2We refer to “total throughput” as the sum of end-to-end throughput for all
coding flows.



directly affects the optimal throughput of the coding scheme.
In [1], [5], the authors assume thatn can bearbitrarily large.
However, we will show that under a realistic wireless setting,
n is indeed bounded. The main reason for this upper bound
is the geometrical constraintsassociated with opportunistic
listening and two-hop relaying.

Consider a coding structure withn > 2 coding flows.
There aren receivers located within the transmission range
of the coding node. For each receiver, say receiverDi, it has
to decode its own packet from the XOR combination ofn
packets. In other words, it must have already obtained the other
n−1 packets either by (a) it has transmitted that packet or (b)
it has overheard that packet by opportunistic listening. Note
that forn>2 coding flows, there must be some opportunistic
listening involved.

Suppose receiverDi gets packetPj (which is destined to
receiver Dj) by opportunistic listening. LetV i

j denote the
transmitter for this opportunistic listening, thenDi must be
within the transmission range ofV i

j whereasDj must be
outside the transmission range ofV i

j . Having this in mind,
let |AB| denote the distance between nodeA and B, then
we must have|V i

j Di| ≤ r and |V i
j Dj | ≥ r + δ, where

r is the reliable transmission rangeof node V i
j , and δ is

a positive constant characterizing thedistance gapbetween
“reliable transmission” and “unreliable transmission”. In other
words, we say that if|AB| ≤ r then nodeB can successfully
receive nodeA’s transmissionwith high probability, while
if |AB| ≥ r + δ then nodeB can only receive nodeA’s
transmissionwith a very low probability.

Let us illustrate the concept ofr andδ in wireless networks.
In [8], the authors derived the successful reception probability
(P ) as a function of distance (x) between a transmitter and
a receiver under the log normal shadow fading model. In
particular,P (x) can be approximated as:

P (x) =

{

1 −
(

( x
R )2β

)

/2 x ≤ R,
(

(2R−x
R )2β

)

/2 x > R

where R is the distance such thatP (R) = 1/2, and β is
the power attenuation factor ranging between 2 and 6. We
illustrate P (x) in Fig.3(a) by settingR = 40 and β = 4.
One may chooser = 30 and δ = 20 in this example since
P (30) ≈ 1.0 while P (30+20) ≈ 0.0. Although the actual
value ofr andδ may vary for different physical layer models,
the key point is that the “gap”δ is not neglectablecompared
to the transmission ranger, which we need to consider in our
analysis.

Now we can focus on the determination of the maximum
value ofn as a function of the successful transmission range
r and the channel parameterδ. The results are summarized in
the following theorem.

Theorem 1 The number of coding flows (or the maximum
encoding number)n in any possible coding structure is upper
bounded byO

(

(r/δ)2
)

in 2D space, andO
(

(r/δ)3
)

in 3D
space.
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(a) P (x) is a continuous decreasing
function of the distance between a
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Fig. 3. Characteristics of transmission range under a typical fading model.

Proof: We first consider the 2D case. Based on the above
discussion, for each group ofV i

j , Di and Dj, we have the
distance relationship as shown in Fig. 3(b) (the relationship
is a result of the triangular inequality). Obviously, everytwo
receiversDi andDj must be at leastδ apart from each other.
Equivalently, each circle with radiusδ/2 centered at a receiver
must bedisjoint with each other. Meanwhile, each receiver
Di must be located within the successful transmission range
(denoted byr) of the coding nodeC. We show such scenario
in Fig. 4(a). The question is how many small circles with
radius δ/2 can we pack in a big circle with radiusr. This
number is upper bounded byO

(

(r/δ)2
)

, which is also the
upper bound forn, the maximum encoding number in a
coding structure. For 3D case, the circles become spheres
and we can carry similar analysis to show the upper bound is
O

(

(r/δ)3
)

.
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Fig. 4. Geometrical constraints that bound the number of coding flows n.

Remark: The bound in Theorem 1 applies toall possible
coding structures. It does not require every transmitter tohave
the same transmission range, and also does not assume the
transmitter for opportunistic listening to be within only one-
hop from the coding node. Therefore, the upper bound is
very general. For the representative coding structure shown
in Fig.2(b), one can further provide a tighter bound.

Theorem 2 For the coding structure in Fig.2(b), the number
of coding flows (or maximum encoding number) is upper



bounded byπ/arccos
(

r/(r+δ)
)

.

Proof: For the coding structure in Fig. 2(b), we show the
distance relationship in Fig. 4(b). Clearly there is a minimum-
sized arc separating everyDi and Dj , which holds for any
two receivers along the circle. Accordingly, the size of the
minimum central angle (θ in Fig. 4(b)) separating any two
receivers is2 arccos

(

r/(r + δ)
)

, and the maximum number3

of coding flows in this structure isπ/ arccos
(

r/(r + δ)
)

.

Remark: The following table shows the bound in Theorem 2
for different values ofr/(r + δ). Surprisingly, the maximum
number of coding flows (or encoding number) is quite small.
This explains why the encoding number observed by the
authors of [1] is at most5, and in most cases, only 2 to 4.

r/(r + δ) 0.6 0.7 0.8 0.9

max encoding no. 3.3879 3.9497 4.8820 6.9654

III. Coding Performance under Random Access
Link-Scheduling

In previous section, we derived the upper bound of max-
imum encoding number for any possible coding structures.
Note that the maximum encoding number is achieved by the
optimal conditions stated in Lemma 2. Now for a given coding
structure withn coding flows, we examine theaverage en-
coding numberwhen the link-scheduling uses generic random
access mechanism. We will first assume that the coding node
never delays transmission, i.e., it competes for channel access
whenever it has packets to send and encodes as many packets
as possible. At the later part of this section, we will relax this
assumption and analyze the performance when a coding node
uses delaying strategies.

A. Key Intuition

Before delving into the analysis, let us first present the
high-level intuition that underlies the results in the restof
this section. Consider a coding structure withn coding flows
operating under the coding scheme. The number of packets
encoded by the coding node is closely related to number of
its bufferedpackets at the instant right before the transmission.
If we classify packets in coding node’s buffer inton groups,
each containing only the packets of one coding flow, then the
encoding number is exactly the number ofnon-empty groups
at the instant right before coding node transmits. In other
words, higher packet diversity in the buffer will result in higher
encoding number.

Two main factors that affect the number of buffered packets
at the coding node aretraffic volume and random access
mechanism. We discuss the effect of traffic volume first. If
there is only light traffic across the coding structure, the coding
node will have lots of opportunities to transmit its packets
before accumulating a large number ofnon-empty groupsin
its buffer. On the other hand, if the coding structure is nearly

3Similarly, this bound can be extended to a 3D case, by changing the
“minimum arc” into the “minimum area” on the sphere.

saturated, packets in the coding node’s buffer will accumulate
and have morenon-empty groups. In short, the effect of coding
becomes more prominent as the traffic volume increases. We
should also emphasize here that the encoding number tends
to be larger when the traffic rates of the coding flows are
comparableto each other.

The link-level random access mechanism also crucially
affects the number of buffered packets. For instance, consider
using the basic DCF of 802.11 under heavy traffic. Because
the coding node has equal channel access opportunity as all its
contenders (i.e., other source nodes), packets may accumulate
quickly in its buffer, resulting in a high encoding number.
On the other hand, if we try to assign a higher channel
access priority to the coding node (since it is most likely
the bottleneck node), as suggested by thebackward pressure4

scheme proposed in [9], then the coding node can clear out the
buffered packets faster such that the encoding number will be
smaller. We should note that thebackward pressureis clearly
a good choice fornon-coding scheme, because it reduces
the self-interference between upstream and downstream nodes
along the flow. However, when acoding schemeis employed,
one may prefer ahigher buffer occupationat the coding node
so as to increase the coding opportunity.

B. Calculating the Average Encoding Number

Based on the above discussion, we use the following
stochastic model to capture the dynamics of the coding node’s
buffer by taking the traffic volume and random access mech-
anisms into consideration. For simplicity of derivation, we
assume aseparate buffer structureat the coding node: the
coding node maintains a separate buffer for each coding flow.
We will show later (in Section V) that the analytical results
from separate buffer structure matches well even when one
uses a single buffer structure.

Let M denote the buffer size for each coding flow at the
coding node. Consider the buffer for one specific coding flow,
say flowSi−C−Di (following the notations in Fig. 2(a)). We
use an embedded Markov chain to represent the dynamic of
this tagged buffer at the coding node and it is illustrated in
Fig. 5. The embedded points are right before each successful
packet transmission by a source node or the coding node,
and we call the interval between two consecutive observation
points aslot. Given certain traffic loading at the source nodes,
the slot time is a random variable relating to the back-off
mechanism and collision probability. For the rest of this paper,
the throughput is expressed in the unit of “packet/slot”, and the
total bandwidth for any random access mechanism is clearly
1 packet/slot.

Now we consider the state transitions of this embedded
Markov chain. LetPi (i = 1, . . . , n) denote the probability
that the source nodeSi transmits in the corresponding slot, and
let Pc denote the probability that the coding node transmits
in the corresponding slot. LetNi(t) be the random variable

4Whenever the downstream node has packets to send, it will restrain the
transmission of upstream node.



0 1 2 M-1 M
Pi Pi Pi Pi

1-Pi 1-Pi-Pc

Pc Pc Pc Pc

1-Pi-Pc 1-Pc

....

1-Pi-Pc

Fig. 5. Embedded Markov chain for the tagged buffer.

representing the number of buffered packets at the coding node
for the i-th flow at slott, then we have the following events
at each state transition:

• If Si transmits, thenNi(t+1) = Ni(t)+1 if Ni(t) < M ,
andNi(t + 1) = Ni(t) = M otherwise.

• If the coding node transmits, thenNi(t + 1) = Ni(t)− 1
if Ni(t) > 0, andNi(t + 1) = Ni(t) = 0 otherwise.

• If Sj (for j 6= i) transmits, thenNi(t + 1) = Ni(t).

Let πi
j denote the steady state probability that the tagged

buffer (for flow i) has j packets. Solving this embedded
Markov chain, we have

πi
j = (αi)

j

[

1 − αi

1 − (αi)M+1

]

, j = 0, 1, . . . , M (1)

whereαi = Pi/Pc. The probability that the tagged buffer is
not empty, denoted asκi, is

κi = 1 − πi
0 =

αi − (αi)
M+1

1 − (αi)M+1
. (2)

Define Ωi as a random variable such thatΩi = 1 if the
tagged buffer isnot empty, andΩi = 0 otherwise. Then the
average encoding numberper slot can be expressed as

E[Ω] =

n
∑

i=1

E[Ωi] =

n
∑

i=1

κi. (3)

We can express the total effective throughput, denoted by
T , as

T = E[Ω]Pc (4)

and the effective throughput for theith coding flow is simply
Ti = κiPc.

The remaining issues are to derive the transmission proba-
bilities Pi andPc, which are determined by thetraffic volume
andrandom access mechanism. We use the “contending prob-
ability”, ρi or ρc, to denote the probability that nodeSi or
nodeC competes for channel access at each slot. We have the
following expression forρc:

ρc = 1 −
n

∏

i=1

(1 − κi). (5)

Now we model the effect ofrandom access. We are par-
ticularly interested in two generic classes of random access
mechanisms: 1) equal access (i.e., all transmitters havingthe
same priority for channel access), and 2) higher priority for
the relay (coding) node (e.g., backward pressure in [9]).
Equal Access:When all competing nodes have equal channel
access probability, then the probability that nodeSi transmits

in a slot, conditioned that it is the contender for this slot,is
1/(ρc+

∑

j 6=i ρj +1), and the probability that the coding node
transmits conditioned that it contends is1/(1 +

∑

i ρi). We
can expressPi andPc as:

Pi = ρi
1

ρc +
∑

j 6=i ρj + 1
, Pc = ρc

1

1 +
∑

i ρi
. (6)

K-Priority: Assume the relay (coding) node has “K-priority”
over its upstream nodes, namely, the coding node getsK times
(K > 1) of the opportunity that another competing source
node transmits. ThenPi andPc can be expressed as:

Pi = ρi
1

Kρc +
∑

j 6=i ρj + 1
, Pc = ρc

K

K +
∑

i ρi
. (7)

C. Case Studies

We conduct several case studies to gain the important
insights on the effect of traffic volume and random access.
Case 1—Saturation Throughput: We first examine thesat-
uration throughputof both “equal access” and “K-priority”
mechanisms. By saturation, we mean thateach source node
always has backlogged packets to transmit.Under such con-
dition, we haveρi = 1 for all i = 1, . . . , n. Combining Eq.
(2)(5)(6)(7), we have the following fixed-point equation:

ρc = 1 −
(

1 − α

1 − αM+1

)n

(8)

where

α =

{

1+n
ρc(ρc+n) (for Equal Access)

K+n
Kρc(Kρc+n) (for K-priority)

(9)

Given n, K and M , one can findρc using numerical
method, and then calculate the average encoding number and
throughput using Eq. (3)(4). In particular, we find that for
the “equal access” mechanism,ρc = 1 is a good enough
approximation for alln > 1 andM ≥ 1 cases. Therefore, the
average encoding number of equal access under saturationis

E[Ω] = n
M

M + 1
, (10)

and the corresponding total throughput is

T = E[Ω]Pc =

(

n

n + 1

) (

M

M + 1

)

. (11)

Nonetheless, for the “K-priority” mechanism,ρc = 1 is no
longer a good approximation especially whenK is relatively
large. The main reason behind is that the coding node now
clears its buffer faster such that it is less likely to have packets
for transmission.

For instance, we setn = 4 (i.e., 4 coding flows), and find
ρc (and hence average encoding number and throughput) for
different values of buffer size (M ) and priority (K) using
numerical method. We illustrate the interplay of encoding
number, throughput and buffer for different values ofK in
Fig. 6, which shows that higher priority (K) results in both
lower encoding number and lower throughput in most cases. In
particular, when the coding node has a very high priority (e.g.,



K = 10), nearly all the coding opportunities are diminished
such that the throughput of coding scheme is only around 0.5,
the optimal throughput of thenon-coding scheme.
Remark: We have observed the advantage of ”equal access”
over ”K-priority” especially with relatively large buffer size
(i.e., M > 5). Recall from Lemma 2 that the optimal
throughput for the coding scheme isnB/(n + 1) with B = 1
packet/slot here. Now we can see that theequal random access
adds a fraction ofM/(M + 1) onto the optimal encoding
number as well as the throughput! A large buffer size (say
M > 10) can alleviate the performance degradation, but will
induce longer queuing time at the coding node and hence
longer delay. This illustrates an importanttradeoff between
throughput and delay at the coding node.
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Fig. 6. Interplay of buffer size (M ), encoding number,K-priority and
throughput under saturation.

Case 2—Feasible and Optimal Bandwidth Allocation:The
transmission probabilitiesPi, Pc essentially reflect theband-
width shareamong the source nodesSi (i = 1, . . . , n) and
the coding node. Based on Eq. (6) and (7), we can examine
the feasible bandwidth allocationof both “equal access” and
“K − priority” as follows: given a desired set of bandwidth
allocation {Pi}

⋃

Pc, we can put the values ofPi and Pc

into Eq. (6) or (7) and get{ρi}
⋃

ρc. The desired bandwidth
allocation isfeasibleonly if 0 ≤ ρi ≤ 1 ∀i and0 ≤ ρc ≤ 1.

We formulate theoptimal bandwidth allocationproblem
as follows: given a desired proportional bandwidth allocation
among the source nodes, i.e.,γ1, . . . , γn such thatP1 : P2 :
· · · : Pn = γ1 : γ2 : · · · : γn, determine the value ofPc so
as to maximize the total end-to-end throughput. To solve the
problem, we can expressαi as

αi =
Pi

Pc
=

γi(1 − Pc)/
∑

i γi

Pc
i = 1, . . . , n, (12)

and combine with Eq. (2)(3)(4) to express the total throughput
as a function ofPc. In particular, given the number of coding
flowsn and the buffer sizeM , one can show that the maximum
total end-to-end throughput is achieved when all source nodes
get equalbandwidth share, i.e.,γ1 = · · · = γn.

For instance, whenn = 4, γ1 = γ2 = γ3 = γ4, we obtain
the optimal P ∗

c and throughputT ∗ for different values of
buffer sizeM . Furthermore, we obtain theoptimal values of
K such that the corresponding optimal bandwidth allocation
is feasiblefor the random access mechanisms. The results are
summarized in the following table. One can observe that with

higher buffer size (M ), the optimal bandwidth share of the
coding node is lower while both the throughput and average
encoding number is higher. The “equal access” (i.e., K = 1)
tends to becloser to the optimalwith larger buffer size.

M 2 5 7 10 20

P ∗
c 0.296 0.251 0.239 0.229 0.215

T ∗ 0.576 0.696 0.723 0.745 0.772
avg. encoding # 1.95 2.77 3.03 3.26 3.58

K∗ 1.32 1.19 1.15 1.11 1.06

Case 3—Performance under Adequate Buffer Size:We
have seen that a large buffer size isessential in utilizing
the coding opportunities, and it is with large buffer size that
“equal access” outperforms “K-priority”. To further explore
the reason behind, let us assumeadequate buffer size(say
M > 10) and consider a general case where the coding flows
may haveasymmetrictraffic rates. From Eq. (1), one can show
that the packet loss ratiofor flow i at the coding node is
equal toπi

M . With adequate buffer size, the prerequisite for
low packet loss is onlyPc ≥ Pi ∀i. In other words, the coding
node only needs to get thesame bandwidthas allocated to the
source node with thehighest load5. We let Pc = maxi{Pi}
and examine whether such bandwidth allocation isfeasible
for “equal access” or “ K-priority”. From Eq. (6) and (7),
we can see that such allocation is feasible for “equal access”
by simply letting ρc = maxi{ρi}, while “K-priority” fails
to provide a feasible solution even with small values ofK
(e.g.,K=2). This explains why “random access” is particularly
suitable for coding scheme with adequate buffer size.

D. Will Delaying Strategy at the Coding Node Help?

In the above analysis, we assume the coding node competes
for channel access whenever it has packets in the buffer. Now
we discuss the delaying strategies of the coding node. We call
such strategies as “Wait-for-X”, namely, letting the coding
nodehold transmission until it can encode at leastX packets.
By such scheme, the average encoding number is at leastX .
Although it seems to be promising at the first glance, it has
the following drawbacks.

First of all, the effect of “Wait-for-X” on increasing the
encoding number is only significant whenX is large enough
(e.g.,X ≥ M/(M + 1) with symmetric flow rates), and in
many cases, only whenX = n. However, a largeX means
the coding node may hold back its transmission for a longer
time, which will significantly increase the packet loss ratio,
unless the coding node also has a very high “K-priority”.

Secondly, “Wait-for-X” increases encoding number signif-
icantly only when the network is far from saturation and the
buffer size is relatively small. However, trying to have a high
encoding number when there is only light traffic load has little
benefit on the throughput because the network can sustain the
traffic even without network coding at all. When the traffic
intensity increases, the encoding number can “automatically”

5When such condition is met, the packet loss ratio will not exceed1/(M +
1) for all flows.



increase due to higher buffer occupancy. We have shown that
when the network is operating close to saturation, the “equal
access” with a moderate buffer size at the coding node is
sufficient to utilize most of the coding opportunity.

Last but not least, when the coding flows haveasymmetric
traffic rates, “Wait-for-X” will easily lead to buffer overflow
because it takes more time to accumulate enough packets for
encoding compared to the symmetric case.

IV. Fundamental Limits of the Coding Scheme

In previous two sections, we have characterized the basic
coding structure and examined its performance under various
random access mechanisms. Now we provide an upper bound
on the throughput gain for ageneral wireless network, i.e.,
a network with any possible topology and traffic demand.
In such setting, there are two main differences from the
single coding structure case: 1) there may exist several coding
structures in the network; 2) there may exist “non-coding
flows”, i.e., flows that are not relevant to any coding process,
and these non-coding flows may eveninterferewith the coding
flows. Due to the lack of space, we omit the detailed proofs
here but choose to go through the main logical process. For
more detail, please refer to our technical report [10].

Let us first define the throughput for a general network.
Given a set of traffic demands{Di}, each containing a
source node, a destination node, and a traffic value denoted
as λi, the throughput scale-up of the network is a positive
real numberk such that the set of flow rates{kλi} can be
supported by the network. We usek∗

c and k∗
nc to denote

the maximum throughput scale-upachieved by the coding
and non-coding schemes respectively. Thethroughput gain,
denoted asG, is equal tok∗

c/k∗
nc, and themaximum throughput

gain, denoted asG∗, is the maximum value ofG over all
possible network topologies, traffic demands, link-scheduling
and routing algorithms.

One should note that the coding scheme and non-coding
scheme may usedifferent routes to achieve their respective
maximum throughput. However, the following lemma states
that to obtain the upper bound ofG∗, we only need to consider
a smaller feasible space.

Lemma 3 For a general wireless network, the maximum
throughput gain G∗ is upper bounded by the maximum
throughput gain when both coding and non-coding schemes
operate under the same routes, over all feasible routing
policies.

Proof: Due to the lack of space, please refer to [10].

Now we consider the impact to asingle coding structure
when there is interference from othernon-codingflows. One
important observation is that non-coding flows that interfere
with the coding node can also benefit from the coding scheme,
because the coding node can send out the same amount
of information by consuming less bandwidth, thus leaving
more bandwidth for other competing nodes, including the

non-coding flows. In case that there exists non-coding flows
sharing the bandwidth with coding flows, the following lemma
provides an upper bound on throughput gain by the coding
scheme within asinglecoding structure.

Lemma 4 For a single coding structure with possibly non-
coding flows interfering with the coding node, the maximum
throughput gain for both the coding flows and non-coding
flows is upper bounded by2n/(n+1) when the buffer sizeM
at the coding node approaches infinity, and this upper bound
can be approximated as2n/

(

n + M
M+1

)

.

Proof: Due to the lack of space, please refer to [10].

Another key insight that enables us to get the upper bound
for a general wireless network is that the coding scheme
only brings local improvement. In particular, coding scheme
only increases the bandwidth efficiency of the coding node.
Consider the two cases shown in Fig. 7, where there are
non-coding flowsinterfering with eitherS1, S2 (Fig. 7(a))
or the coding nodeC (Fig. 7(b)). In such cases, there is
not much room left for the coding flows to improve their
throughput, and the overall throughput gain is diminished.
Moreover, if a coding flow traverses several coding structures,
its end-to-end throughput is upper bounded by the bottleneck
coding structure: its throughput improvement is bounded by
the throughput gain in one of the traversed coding structures
which gives it the least improvement. Therefore, we have the
following result.

Theorem 3 For a general wireless network, the end-to-end
throughput gainG by using the XOR coding is upper bounded
by 2n/(n + 1) when the buffer sizeM at the coding node
approaches infinity, and this bound can be approximated as
2n/

(

n+ M
M+1

)

, wheren is the maximum encoding number in
one of its coding structures.

Proof: Due to the lack of space, please refer to [10].

Remark: 1) Compared to the bound provided in [3], our bound
is tighter and holds for any possible topologies. 2) Our def-
inition of throughput gain provides an analytical justification
for the “coding gain” defined in [1]. Note that authors of [1]
also define a “coding+MAC gain” that can even approachn.
However, the “coding+MAC gain” compares thesaturation
throughputof both coding and non-coding schemes, which
is not a “fair” comparison because the saturation throughput
of non-coding scheme is much lower than the maximum
throughput it can achieve.

V. Verification of the Analysis

The goal of this section is to verify the analytical results
in Section III. We implement a discrete-event simulator that
approximates the random access mechanisms including Equal
Access, “K-Priority” and “Wait-for-X” discussed in Section
III. Note that we do not simulate the general wireless network
because such scenario is already studied in [1], [6], [7],



(a) Excessive contention at
nodeS1, S2.

(b) Non-coding flow
interferes withC.

Fig. 7. Two scenarios that limit the throughput gain by coding.

and their results are consistent with the bound we give in
Section IV. Instead, we conduct extensive simulation insingle
coding structure, to verify the correctness and precision of the
methodology used in Section III.

For the coding scheme, we use two types of buffer structure:
separate structure (i.e., independently maintaining a buffer for
each coding flow) and single structure (i.e., maintaining one
large buffer for all coding flows) at the coding nodeC. For
the single buffer structure, the buffer size is equal tonM ,
where n is the number of coding flows, andM is the per
flow buffer size. We present the simulation results in two
main perspectives: 1) performance with fixed traffic load and
varying buffer size; 2) performance with adequate buffer size
(M = 20) and varying traffic load. We normalize the channel
bandwidthB = 1 and the main parameters aren (number
of coding flows),M (buffer size per flow), values ofK (K-
Priority) andX (Wait-for-X). Note that, although our results
hold for any givenn in general, we choosen = 4 in the
following experiments for consistency of presentation.
Experiment 1 (Performance of “Equal Access”): Fig. 8
shows the performance withn = 4 coding flows under
saturated condition. Each flow has a traffic load equal to
the total bandwidth to saturate the system, and we vary the
per flow buffer size at the coding node between 1 and 20.
We depict the results by both the separate buffer structure
and the single buffer structure, and compare them with the
analytical results. By the analysis, the saturated throughput and
packet loss ratio can be approximated asn

n+1
M

M+1 and 1
M+1

respectively. One can see that the analytical results matchvery
closely to the simulation results. Note that for thenon-coding
scheme, the throughput and packet loss are not sensitive to
buffer size.
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(a) Total throughput.

5 10 15 20
0

0.2

0.4

0.6

0.8

Buffer size per flow

P
ac

ke
t l

os
s 

ra
tio

 

 

analysis
simulation, separate queue
simulation, single queue
non−coding scheme

(b) Packet loss ratio.

Fig. 8. Results withn = 4 coding flows under saturation and equal access.

To further observe the performance withadequate buffer

size, we set the per flow buffer size (M ) to 20 and vary traffic
load of the source nodes. In Fig. 9(a), we keep increasing the
symmetric offered load and observe the total throughputT .
Based on the analysis, the optimal bandwidth allocation for
achieving maximum throughput isP ∗

c ≈ 0.22, P ∗
i ≈ 0.19 and

the optimal throughput is about0.77. One can see that through-
put of the coding scheme does approach maximum when the
traffic load approaches 0.19, and the maximum throughput by
equal access is very close to the optimal. Furthermore, the
throughput remains stable as the load increases. Nonetheless,
for the non-codingscheme, the saturation throughput (about
0.2) is much lower than the maximum throughput (about 0.48)
that the system can achieve.

In Fig. 9(b), we illustrate the total throughput with asym-
metric flow rates. We fix the traffic load of three existing flows
to be 0.05, 0.1 and 0.15, and keep increasing the load of an
incoming flow. We depict both the total throughput and the
throughput for the incoming flow. Not surprisingly, the total
throughput remains stable at around0.65 when the arrival
rate of the incoming flow exceeds0.33. One can check that
the optimal bandwidth share for the incoming flow is indeed
around0.33 while the optimal total throughput is around0.65.
This justifies thatequal access with adequate buffer sizedoes
lead to close-to-optimal throughput.
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(a) Symmetric flow rate.
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Fig. 9. Throughput withn=4 andM = 20 under equal access.

Experiment 2 (Performance of “K-priority” and “Wait-
for-X”): Let us first study the performance of the “K-priority”
mechanism. We setn=4 coding flows, each with the offered
load of 0.2, the theoretically optimal bandwidth share stated
by Lemma 2. We compare the total throughput and packet
loss ratio of different values ofK (K = 1 is simply the equal
access). One can see that the simulation results in Fig. 10(a)
matches well with the analytical results shown in Fig. 6(b).
The throughput performance of random access outperforms all
other K-priority schemes when the buffer sizeM is greater
than5. Nonetheless,K-priority indeed guarantees low packet
loss at the relay (coding) node.

In Fig. 11(a), we compare the total throughput of several
combinations of “K-priority” and “Wait-for-X” schemes. The
offered load of each flow is set to 0.2. As we have discussed, a
large value ofX with K = 1 results in the lowest throughput
and the highest loss ratio. Even when the “Wait-for-X” scheme
is accompanied with a proper “K-priority” (K = 10, X = 4),
there is no significant performance improvement compared to
the simple (X = 1, K = 1) pair.
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(a) Throughput.
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Fig. 10. Performance of “K-priority” mechanism.
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Fig. 11. Performance of combinations of “K-priority” and “Wait-for-X”.

VI. Potential Applications

We now briefly introduce the potential research directions
where our analysis can be useful:
1) Designing coding-efficient link-schedulers:A coding-
efficient link-scheduler should utilize most of the coding op-
portunities to improve throughput. In Section III, we examine a
general class of random access mechanisms that can be used in
a coding structure. In particular, we have found the advantage
of equal accessmechanisms and characterized the importance
of buffer size. These insights can be particularly valuable for
designing coding-efficient link-schedulers.
2) Deriving per-flow throughput under coding scheme:The
effective sending rate of the coding node is simply the product
of average encoding number and the physical bandwidth it
consumes. In general, the throughput in unit of “packet per
second” can be derived as long as the average slot time is
calculated based on the random access mechanism used.
3) Designing algorithms for coding-aware routing: In [6],
[7], the authors proposed thecoding-aware routing. The main
reason for incorporating coding considerations into routing
algorithm is that the coding opportunity are crucially de-
pendent on traffic pattern, which in turns is affected by the
routing decision. If using throughput capacity as the metric for
evaluating a new path, our throughput analysis in the coding
structure can be useful for determining the throughput capacity
of a new path with potential coding opportunity.

VII. Related Works

The concept of network coding is first proposed in [2].
Since then, the potential benefit of network coding has been
studied in various settings. For the wired case, [4], [5] provides
various bounds on the throughput gain for single multicast,
single/multiple unicast and single broadcast cases. More re-
cently, for multiple unicast sessions in wireless networks, [3]

shows that the throughput gain is upper bounded by1+∆
1+∆/2

in 1D random networks, and upper bounded by2c
√

π 1+∆
∆ in

2D random networks, where∆ is a parameter characterizing
the intensity of interference, andc = max{2,

√
∆2 + 2∆}. It

is conjectured in [3] that the throughput gain is also upper
bounded by 2 in 2D random networks. In [1], authors propose
the distributed XOR coding scheme and demonstrate the
throughput gain via implementation and measurement. Based
on the XOR coding scheme, [6], [7] introduce the coding-
aware routing and formulate the max-flow LP with coding
considerations, however, they do not incorporate the effect of
random access by assuming an optimal link-scheduling for
the coding scheme, further study is also necessary on how to
realize the coding-aware routing in practice.

Comparing with former works, we analytically examine the
coding performance underrandom access, and shows that
the maximum encoding number (which was assumed to be
unbounded before) is upper bounded by aconstant. Focusing
on the coding scheme proposed in [1], we obtain a tighter
bound on throughput gain for general wireless networks.

VIII. Conclusion

In this paper, we provide an analysis of the practical coding
scheme under realistic physical layer and random access. The
key performance measure is theencoding number. We derive
an upper bound on the encoding number in any possible coding
structures. By calculating theaverage encoding number, we
examine the performance of a general class of random access
mechanisms. We also provide a tighter upper bound on the
throughput gain by the practical coding scheme. Our analysis
can be useful for future coding-related protocol design and
analysis.
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