Security Services for Internet Flows and Multicasts

Simon S. Lam

Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712 lam@cs.utexas.edu

Basic Cryptography

Symmetric Key System a shared symmetric key examples, DES, IDEA, RC4

Asymmetric Key System a pair of private and public keys examples, RSA, ElGamal, DSA, Rabin, FFS

Authentication Services

Needham-Shroeder Protocols (*CACM*, 1978) Kerberos (MIT, 1988)

Secure Sockets

SNP (U. Texas at Austin, 1993) published in *Proceedings USENIX*, June 1994 SSL (Netscape, 1996)

Motivation

Traditional network applications message-oriented unicast, e.g., email, file transfer, client-server Emerging network applications flow-oriented, e.g., digitized video, stock quotes multicast, e.g., teleconference, software distribution Problem 1: How to share a group key?

Problem 2: How to sign efficiently?

Secure Group Communications Using Key Graphs

by Chung Kei Wong, M. Gouda, and Simon S. Lam in *Proc. ACM SIGCOMM '98* available from **www.cs.utexas.edu/users/lam**

Confidential group communications Examples teleconference information services collaborative work virtual private networks Members share a key to encrypt/ decrypt group communications

Group key management

Secure rekeying

after each join
after each leave
periodically

Scalable server and protocols

for large groups with frequent joins and leaves

Assumptions

Key server is trusted and secure An authentication service for example, SSL mutual authentication of server and joining user distribution of a key shared by server and joining user (individual key) Access control by key server or an authorization service

Secure rekeying

Non problem after a join

new group key encrypted by old group key one encryption/rekey msg for all existing users After a leave has occurred

new group key encrypted by individual key of each user n-1 encryptions/rekey messages for group size n not scalable

A hierarchy of security agents No globally shared group key join/leave affects local subgroup only

Agents forward message key

decrypting and re-encrypting with subgroup keys

A hierarchy of security agents No globally shared group key join/leave affects local subgroup only

Agents forward message key

decrypting and re-encrypting with subgroup keys

A hierarchy of security agents No globally shared group key join/leave affects local subgroup only

Agents forward message key

decrypting and re-encrypting with subgroup keys

A hierarchy of security agents No globally shared group key join/leave affects local subgroup only

Agents forward message key

decrypting and re-encrypting with subgroup keys

A hierarchy of security agents No globally shared group key join/leave affects local subgroup only

Agents forward message key

decrypting and re-encrypting with subgroup keys

Our approach

group key
subgroup key
individual key
user

A hierarchy of keys

Multiple keys for each user

> user has every key along path to root

A single trusted key server is sufficient (may be replicated for reliability)

Key graph

For a single secure group key tree sufficient for scalability Multiple secure groups merging multiple trees into a graph

Rekeying strategies

User-oriented Key-oriented Group-oriented

User-oriented rekeying

Select new keys needed by a user, form a rekey message and encrypt it Multiple rekey messages Most work on server, least work on user

Leaving $s \otimes \{u_1, u_2, u_3\} : \{k_{1-8}\}_{k_{123}}$ $s \otimes \{u_4, u_5, u_6\} : \{k_{1-8}\}_{k_{456}}$ $s \otimes u_7 : \{k_{1-8}, k_{78}\}_{k_7}$ $s \otimes u_8 : \{k_{1-8}, k_{78}\}_{k_8}$

Key-oriented rekeying

Encrypt each new key, then compose rekey messages Multiple rekey messages Less work on server than user-oriented

Leaving $s \otimes \{u_1, u_2, u_3\} : \{k_{1-8}\}_{k_{123}}$ $s \otimes \{u_4, u_5, u_6\} : \{k_{1-8}\}_{k_{456}}$ $s \otimes u_7 : \{k_{1-8}\}_{k_{78}}, \{k_{78}\}_{k_7}$ $s \otimes u_8 : \{k_{1-8}\}_{k_{78}}, \{k_{78}\}_{k_8}$

Group-oriented rekeying

One rekey message containing all encrypted new keys Message size $O(\log n)$ Each user decrypts what it needs

Least work on server, more work on user


```
Leaving

s \otimes \{u_1, ..., u_8\}:

\{k_{78}\}_{k_7}, \{k_{78}\}_{k_8}, \{k_{1-8}\}_{k_{123}}, \{k_{1-8}\}_{k_{456}}, \{k_{1-8}\}_{k_{78}}\}_{k_{78}}
```

Experiments

Two SGI machines connected by 100 Mbps Ethernet

server on one, users on the other

Rekey messages sent as UDP packets DES, MD5, RSA from CryptoLib *n* joins, then 1000 randomly generated join/leave requests

Server processing time versus key tree degree

Initial group size 81924 is optimal degree (analytic result)

Server processing time versus group size

Increases linearly with logarithm of group size

Number of key changes by a user (per request)

Very close to analytic result, d / (d - 1)

Rekey messages sent by server

With encryption and signature (initial group size 8192, key tree degree 4)

Rekey messages received by user With encryption and signature (initial group size 8192, key tree degree 4)

Conclusions

Scalable performance demonstrated experimentally and analytically

Group-oriented rekeying requires smallest processing time and transmission bandwidth of server

Hybrid approach with use of user- or key-oriented rekeying for users with limited capabilities

Hybrid approach with use of some Iolus agents at strategic locations (C. Partridge)

Multiple secure groups (work in progress)

Security issues for flows and multicasts

Confidentiality of group communications this paper

Authenticity, integrity, non-repudiation

Digital Signatures for Flows and Multicasts IEEE ICNP '98, Austin, October 1998