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Self Balance Vehicle / Robot
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» http://www.segway.com/
» http://wowwee.com/mip/

The WowWee MiP Robot paired with WowWee’s free app creates a consumer
robot with lots of potential.

Relatively small in size, the WowWee MiP Robo is only 7 inches tall and has
no feet. It is black and white in design with a round head and emoticon eyes.
It might remind you of Disney’s Wall-E.

The WowWee MiP Robot can balance and move quite well, similar to a Segway.
The connection is extremely easy. To connect MiP to your mobile device you
simply need to download the app. Once opened the MiP’s ID will appear on
the screen and you choose how you want to control the robot.



http://www.segway.com/
http://wowwee.com/mip/

Basic Idea

Normal Tilt Angle Normal

Motor Direction
_

Motion against the tilt angle, so it can stand upright.
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IMU Board

MC5883L L3G4200D
Magnetometer Gyroscope

‘ l; bd 1z L}
00000 OOOCDQ

"ADXL345  BMPOS5
Accelerometer Barometer/Temp

http://www.hotmcu.com/imu-10dof-13g4200dadx1345hmc58831bmpl80-p-190.html

P> L3G4200D: gyroscope, measure angular rate (relative value)
> ADXL345: accelerometer, measure acceleration ﬁ
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http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html

Overview

Complementary Filter

6/26



Complementary Filter

gl

X now sees some gravity.

X reads slightly positive. X reads slightly negative

Accelerometer

» Give accurate reading of tilt angle
» Slower to respond than Gyro’s

» prone to vibration/noise
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Gyro reads positive. Gyro reads negative.

Gyroscope

» response faster

» but has drift over time




Complementary Filter (cont.)

» Since

Gyroscope

High

frequency

» Combine two sensors to find output
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Accelerometer

Low

frequency




Complementary Filter (cont.)
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Mapping Sensors )
Complementary Filter

» Angle

Low-Pass
Filter %: ~
High-Pass

Numeric L2 Filter
Integration

»  Angular Velocity

Read_acc () ;
Read_gyro();

Ayz=atan2 (RwAcc[1l],RwAcc[2])*180/PI;

Ayz—=offset;

Angy = 0.98% (Angy+GyroIN[0O] xinterval/1000)+0.02*Ayz;

//angle by accelerometer
//adjust to correct
//complement filter
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Rudolf Kalman (1930 — 2016)

» Born in Budapest, Hungary
» BSin 1953 and MS in 1954 from MIT electrical engineering
» PhD in 1957 from Columbia University.

» Famous for his co-invention of the Kalman filter — widely used in control systems to
extract a signal from a series of incomplete and noisy measurements.

» Convince NASA Ames Research Center 1960
» Kalman filter was used during Apollo program
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He was a professor at Stanford University from 1964 until 1971, and then at
the University of Florida from 1971 until 1992




Problem Example 1

Self-Driving Car Location Problem

o

Self-driving car
locates itself using GPS
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u, z, = Az, _, + Bu, +w,
Yy, =Cz, +7,
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Car dynamics

%, = A%,_, + Bu,
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function

! Predicted state
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Kalman filter combines the measurement
and the prediction to find the optimal
estimate of the car’s position.

Optimal state estimate
Ty
v

Measurement

Ty Ty Y

Initial state estimate

Car’s position x



Problem Example 1
Self-Driving Car Location Problem

Car's Process noise
Velocity position w~ N(0,Q)
b T, = Az,_, + Bu, +w, Y ~ 3\
y, =Cz, + 7,
Car dynamics 4_Q N
0
&, = Ai,_, + Bu, v
g, =C1z,
Car model L Measurement noise
T v~ N(0,R)
N 0_2.
v
T, = [position]
c=1 A (2 N
v
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Kalman filter Z, = Az, , + Bu, + K, (y, — C(A%,_, + Bu,))

S
i; : A Priori Estimate

Probability
density
function
Optimal state estimate

[ Predicted state
uri{mce estimate

Measurement
|

Ty T, Yy Car's position x

Initial state estimate



Problem Example 1
Self-Driving Car Location Problem

Prediction

&, = AZ,_, + Bu,

- T
P = AP_A"+Q

__FRe
*“ CPC"+R

‘ik = :i; + Kk(yk - Cj;)

P =(I- KkC)P;

-,
Probability
density
function
Optimal state estimate
Zy
Predicted state
= Ll Measurement
1
T T Car’s position x
o . 8 " &
Initial state estimate
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A Posteriori Estimate
Kalman filter %, =1, +K,(y, - Ci;)
—_— —_—
Predict Update
3
Probability
density
function
Optimal state estimate
Ty
|
|
| Predicted state
ri¢nce estimate TR
|
ik_‘ j; Yy Car's position x

Initial state estimate



Exercise: Analyse Kalman Gain

What is Kalman Gain K, if measurement noise R is very small? What if R is very big?
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Calculation of #,

*TCPCT+R |y

AT

PC )

N . . " - Ai = i (T = )-l C'I:

&, =& +K,(y, - ;) N eyl = Yo !

P.=(I-KQC)P, &, =i + K, (y, - C&}) = &; + C(y, +Ci})

=g+Cly, + clet,
&=y

Probability
density
function

Optimal state estimate

Predicted state

estimate Measurement

Ty T, Yy Car's position x
Initial state estimate




Problem Example 2
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Angle Measurement System

X = Ax;—1 + B 4w,

> x,: state intime ¢

> A,: state transition matrix from time ¢t — 1 to time ¢
P u,: input parameter vector at time ¢

> B;: control input matrix — apply the effort of u,

> w,: process noise, w, ~ N(0,0,)x

%@
(5

*w; assumes zero mean multivariate normal distribution, covariance matrix O,



Problem Example 2 (Update on Oct. 29, 2018)

Angle Measurement System
x; =Ax; | +Bu +w,

> x, =[x, %] ": x, is current angle, while X is current rate

1 At
>A’:[O 1]

(Ar)> o
>Bt:[ 2 ,At]

> u,:A)i,
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Problem Example 2
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System Measurement
z = Cx; + v,
> z;: measurement vector

> (: transformation matrix mapping state vector to measurement
> v,;: measurement noise, v, ~ N(0,R,)t

1w, assumes zero mean multivariate normal distribution, covariance matrix R,



Exercise

In angle measurement lab, what is the transformation matrix C?

= Cx[+vt
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(1, 0]



Model with Uncertainty

> Model the measurement w. uncertainty (due to noise w;)
» P,: covariance matrix of estimation x;
» On how much we trust our estimated value — the smaller the more we trust

note: here F;, = A,
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Fuse Gaussian Distributions

Measurement (Noisy)

Prediction (Estimate)
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Fuse Gaussian Distributions

Measurement (Noisy)

Prediction (Estimate)

Measurement (Noisy)

Prediction (Estimate)
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Exercise

1 _(’*Ml)z

(o) = ——e
\/2WU%

e 1

Their product is
_(Emnp? | @mng)?
o) = e (T 51)

N 2moso,

Examine the term in the exponent

g @)
20% 202

Expanding the two quadratics and collecting terms in powers of z gives

(a? +02)2? —2(ppol + uga}):c + M?aé + uza}
20%02

B=

Dividing through by the coefficient of z? gives
2 2 2,2, 2 2
2 nfogtpgo ulﬂgﬂtgvﬁ
752 u!g+r7§ T+ oj+o2
571

7
I+a?

B =

This is again a quadratic in z, and so Eq. 2 is a Gaussian function. Compare the terms in Eq. 5 to a the usual
Gaussian form 1 ) 1
P(z) = e =
2o V2mo

Since a term e that is independent of z can be added to complete the square in 3, this is sufficent to complete the
proof in cases where the normalisation can be ignored. The product of two Gaussian PDFs is proportional to a
Gaussian PDF with a mean that is half the coefficient of z in Eq. 5 and a standard deviation that is the square
root of half of the denominator i.e.

2

_ (@2 —2uzty
e 20°

_ Hgog + pgoF
o7 +o2

1

2 (15 b, 02) = ——=
\/27‘(’0’%

e

_ (r—pp)?

20%

Given two Gaussian functions y; (r; i1, 01) and y(r; pz, 02), prove the product of these two
Gaussian functions are still Gaussian.



Step 1: Prediction

x, ZA[x[_l —i—B,ut
Py =AP Al + 0
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Step 1: Prediction

xt_ =A[xt_1 —i—B,ut
Py =AP Al + 0

Step 2: Measurement Update

X :xt_ +K[(ZI—Cxt_)
Pt:Pt__KtCP[_

K, =P C"(CP,CT +R))~
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. (8 =t (m)+2 »(ﬂz—%)A
Y185 11,01,0) £ ———=e" 2(af . +o2
V2n(F) ) (16)
d Substituting H = 1/c and K = (Ho?)/
an (H*0% + 03) results in
_ (-}
Y2(8; f2, 02) = ﬁe 207 » Hissed = 1+ K-(u2 — Hun).  (17)
032
(15)  Similarly the fused variance estimate
where both distributions are now defined becomes
in the measurement domain, radio sig- ) , (ﬂy‘
nals propagate along the time “s” axis, OLZW = (%) - 06272
and the measurement unit is the second. ¢ (Tl) + o}
Following the derivation as before )
X o1
we now find ) o1 o
P = Ofwed = 01 — 0‘+2Tl
1
s g (%) (e +ot
¢ ¢ ("7) o} = o} - KHo} (18)
Hot
w K=———"—-K
Hoi+o)

=Py H! (H/Py i HT +R ) 712
the Kalman gain.

It is now easy to see how the stan-
dard Kalman filter equations relate to
(17) and (18) derived above:

ﬂfuszd=ﬂl+(’{2[120_:_ )(/12 Hu)

— Xy = Reje-1 + Ke(ze = HiXeje-1)

2
2 2 Hoti 2
Ofused = O1 _(HZGf ol )Hdl

o B w
g & &



Basic Concepts

Prior knowledge Pr_1jk—1 _)Pl;(iiec;ig:es;ep

of state
. Xk—1[k—1 physical model

Next timestep 1?k|k—1

k< k+1 Xk|k—1
Pk|k Update step Measurements
fck|k -<—Compare prediction -«— Yy -

to measurements

/

Output estimate
of state
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More Applications: Robot Localization
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More Applications: Path Tracking
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)

Pixels

400




More Applications: Object Tracking

a b

The 50" frame The 118" frame

The 124" frame The 127" frame
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Overview

Software
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C Implementation

24/26

// Kalman filter module
float Q_angle = 0.001;
float Q_gyro 0.003;
float R_angle 0.03;

float x_angle = 0;
float x_bias
float P_00 =
float dt, vy,
float K 0, K

Z
S:
_dlg
| 2 (Z
> R:
> P:



C Implementation (cont.)
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float kalmanCalculate (float newAngle, float newRate, int

{

dt = float (looptime) /1000;

x_angle
P_00
P_01
P_10
P_11

= N K
= o
{11

x_angle
X_bias
P_00 -=

+=
+=
+=
+=
+=

00
00
10

+=
+=

dt * (newRate - x_bias);

dt ~ (P_10 + P_01) + Q_angle x dt;
dt * P_11;

dt = P_11;

Q_gyro * dt;

newAngle - x_angle;
12_|
2_|
=P_

+ R_angle;
/ S;
7 Sg

>~

0 * y;
S
P_00;
P_01;
P_00;
P_01;

=

* % ok

return x_angle;

looptime)



Summary

» Complementary Filter
> Kalman Filter
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