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Self Balance Vehicle / Robot

I http://www.segway.com/

I http://wowwee.com/mip/

3 / 26

http://www.segway.com/
http://wowwee.com/mip/


Basic Idea

Motion against the tilt angle, so it can stand upright.
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IMU Board

http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html

I L3G4200D: gyroscope, measure angular rate (relative value)
I ADXL345: accelerometer, measure acceleration

5 / 26

http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html


Overview

Introduction

Complementary Filter

Kalman Filter

Software

6 / 26



Complementary Filter

X reads slightly negative

g

X reads slightly positive.

X now sees some gravity.

Accelerometer

I Give accurate reading of tilt angle
I Slower to respond than Gyro’s
I prone to vibration/noise

Gyro reads positive. Gyro reads negative.

Gyroscope

I response faster
I but has drift over time
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Complementary Filter (cont.)

I Since

Gyroscope

High 
frequency

Accelerometer

Low 
frequency

I Combine two sensors to find output
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Complementary Filter (cont.)

Mapping Sensors

Y

X

Angle

Angular Velocity

Complementary Filter

Numeric 
Integration

Low-Pass
Filter

High-Pass
Filter

Σ

Read_acc();
Read_gyro();
Ayz=atan2(RwAcc[1],RwAcc[2])*180/PI; //angle by accelerometer
Ayz-=offset; //adjust to correct
Angy = 0.98*(Angy+GyroIN[0]*interval/1000)+0.02*Ayz; //complement filter
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Rudolf Kalman (1930 – 2016)

I Born in Budapest, Hungary
I BS in 1953 and MS in 1954 from MIT electrical engineering
I PhD in 1957 from Columbia University.

I Famous for his co-invention of the Kalman filter – widely used in control systems to
extract a signal from a series of incomplete and noisy measurements.

I Convince NASA Ames Research Center 1960
I Kalman filter was used during Apollo program
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Problem Example 1

Self-Driving Car Location Problem
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Exercise: Analyse Kalman Gain

What is Kalman Gain Kk, if measurement noise R is very small? What if R is very big?
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Problem Example 2

Angle Measurement System

xt = Atxt−1 + Btut + wt

I xt: state in time t
I At: state transition matrix from time t − 1 to time t
I ut: input parameter vector at time t
I Bt: control input matrix – apply the effort of ut

I wt: process noise, wt ∼ N(0,Qt)∗

∗wt assumes zero mean multivariate normal distribution, covariance matrix Qt
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Problem Example 2 (Update on Oct. 29, 2018)

Angle Measurement System

xt = Atxt−1 + Btut + wt

I xt = [xt, ẋt]
>: xt is current angle, while ẋt is current rate

I At =

[
1 ∆t
0 1

]
I Bt = [

(∆t)2

2
,∆t]>

I ut = ∆ẋt
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Problem Example 2

System Measurement

zt = Cxt + vt

I zt: measurement vector
I C: transformation matrix mapping state vector to measurement
I vt: measurement noise, vt ∼ N(0,Rt)†

†wt assumes zero mean multivariate normal distribution, covariance matrix Rt
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Exercise
In angle measurement lab, what is the transformation matrix C?

zt = Cxt + vt
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Model with Uncertainty
I Model the measurement w. uncertainty (due to noise wt)
I Pk: covariance matrix of estimation xt
I On how much we trust our estimated value – the smaller the more we trust

note: here Fk = Ak
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Fuse Gaussian Distributions
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Fuse Gaussian Distributions
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Exercise
Given two Gaussian functions y1(r;µ1, σ1) and y2(r;µ2, σ2), prove the product of these two
Gaussian functions are still Gaussian.

y1(r;µ1, σ1) =
1√

2πσ2
1

e
− (r−µ1)

2

2σ2
1 y2(r;µ2, σ2) =

1√
2πσ2

2

e
− (r−µ2)

2

2σ2
2
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Step 1: Prediction

x−t =Atxt−1 + Btut (1)

P−t =AtPt−1A>t + Qt (2)

Step 2: Measurement Update

xt = x−t + Kt(zt − Cx−t ) (3)
Pt = P−t − KtCP−t (4)

Kt = P−t C>(CP−t C> + Rt)
−1 (5)
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Basic Concepts
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More Applications: Robot Localization
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More Applications: Path Tracking
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More Applications: Object Tracking
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C Implementation

// Kalman filter module
float Q_angle = 0.001;
float Q_gyro = 0.003;
float R_angle = 0.03;

float x_angle = 0;
float x_bias = 0;
float P_00 = 0, P_01 = 0, P_10 = 0, P_11 = 0;
float dt, y, S;
float K_0, K_1;

I Q:
I R:
I P:
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C Implementation (cont.)

float kalmanCalculate(float newAngle, float newRate,int looptime)
{

dt = float(looptime)/1000;
x_angle += dt * (newRate - x_bias);
P_00 += dt * (P_10 + P_01) + Q_angle * dt;
P_01 += dt * P_11;
P_10 += dt * P_11;
P_11 += Q_gyro * dt;

y = newAngle - x_angle;
S = P_00 + R_angle;
K_0 = P_00 / S;
K_1 = P_10 / S;

x_angle += K_0 * y;
x_bias += K_1 * y;
P_00 -= K_0 * P_00;
P_01 -= K_0 * P_01;
P_10 -= K_1 * P_00;
P_11 -= K_1 * P_01;

return x_angle;
}
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Summary

I Complementary Filter
I Kalman Filter
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