
CENG4480 Embedded System Development and Applications
The Chinese University of Hong Kong

Laboratory 10: Self-balancing Robot (2) (Software)

Student ID:

2018 Fall

1 Introduction

n this lab you will complete your self-balancing robot by coding the program and tuning the PID
constants such that make your robot to standing up. The program flow chart is shown in Figure 1.

Figure 1: CENG4480 self-balancing robot program flow chart.

1

2 Objectives

1) To learn how to develop software to control the system.

2) To familiar with the practical work in engineering.

3 Procedures

1) Calculate the angle from accelerometers values

On the provided skeleton program Lab10.ino add the angle calculation codes as following:

Ayz=atan2 (RwAcc [1] , RwAcc [2])∗1 8 0 / PI ; // ang le measured by acce l e romete r
Ayz−=o f f s e t ; // ad jus t to c o r r e c t balance po int

2) Add the complement and Kalman filters

On the provided skeleton program Lab10.ino add the complement and Kalman filters codes as
following:

Angy = 0 .998∗ (Angy+GyroIN [0] ∗ i n t e r v a l /1000)+0.002∗Ayz ; //complement
kang = kalmanCalculate (Angy , GyroIN [0] , i n t e r v a l) ; //kalman
S e r i a l . p r i n t l n (kang) ;

3) Add the PID calculation and update the speed of motors
On the provided skeleton program Lab10.ino add the PID calculation and update the speed of
motors as following:

i f ((abs (kang)>=minangle)&&(abs (kang)<maxangle)){
d e l t a = kang ;
d i f f = d e l t a − l a s t ;
d i f f 2 = de l t a − l a s t 2 ;
d i f f = c o n s t r a i n (d i f f ,−maxdiff , maxdi f f) ;
d i f f 2 = c o n s t r a i n (d i f f 2 ,−maxdiff , maxdi f f) ;
l a s t 2 = l a s t ;
l a s t = d e l t a ;
LRspeed=P∗ d e l t a+I ∗accu∗ i n t e r v a l ∗0.001+D∗(d i f f ∗100+ d i f f 2 ∗100)/ i n t e r v a l ;
accu += d e l t a ;
accu = c o n s t r a i n (accu ,−maxaccu , maxaccu) ;
}
e l s e {
LRspeed = 0 ;
accu = 0 ;
l a s t =0;
d i f f =0;
}

2

4) Calibrate the offset

• After adding all codes in Lab10.ino then upload it to the Arduino board.

• Hold the robot vertically.

• Open the COM window and find out the offset value.

• Change the offset value in Lab10.ino accordingly.

• Upload the Lab10.ino to Arduino board again.

5) Tuning the PID constantst

• Increase the P value in the step of 50 upload to the Arduino each time until the robot start
to oscillate (move back and forth).

• Increase I in the step of 50 so that the robot accelerates faster when off balance.

• Increase D in the step of 10 so that the robot would move about its balanced position more
gentle, and there shouldn’t be any significant overshoots.

• If first attempt doesn’t give the satisfying results, reset PID values and start over again
with different value of P.

• Repeat the steps until you find a certain PID value which gives the satisfactory results.

• A fine tuning can be done to further increase the performance of PID system.

• In fine tuning, PID values are restricted to neighboring values and effects are observed in
practical situations.

6) Demo your robot to TAs

3

