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Centrality in Social Networks 
Conceptual Clarification 

Linton C. Freeman 

Lehigh university * 

The intuitive background for measures of structural centrality in social 
networks is reviewed aPzd existing measures are evaluated in terms of their 
consistency with intuitions and their interpretability. 

Three distinct intuitive conceptions of centrality are uncovered and 
existing measures are refined to embody these conceptions. Three measures 
are developed for each concept, one absolute and one relative measure of the 
~entra~~t~~ of ~os~tio~ls in a network, and one relenting the degree of centrali- 
zation of the entire network. The implications of these measures for the 
experimental study of small groups is examined. 

The problem of centrality 

The idea of centrality as applied to human communication was introduced 
by Bavelas in 1948. He was specifically concerned with communication in 
small groups and he hypothesized a relationship between structural cen- 
trality and influence in group processes. 

The first research application of centrality was made under the direction 
of Bavelas at the Group Networks Laboratory, M.I.T., in the late 1940s. The 
first studies were conducted by Harold Leavitt (1949) and Sidney Smith 
(19.50). They were reported by Bavelas (1950) and Bavelas and Barrett 
(195 l), and were first described in detail by Leavitt (195 1). These reports all 
concluded that centrality was related to group efficiency in problem-solving, 
perception of leadership and the personal satisfaction of participants. 

These reports provided the impetus for a great many more ~xpe~ments 
through the 1950s and 1960s. There were extensions, modifications and 
elaborations of the original M.I.T. design. As evidence accumulated, how- 
ever, the results turned out to be confusing and often contradictory. Sum- 
marizing the experimental literature in 1968, Burgess (1968) concluded that 
“the research has not produced consistent and cumulative results”. Never- 
theless, the results do show that centrality is relevant to the way groups get 

*Department of Social Relations, Price Hall, Building $40, Bethlehem, PA 18015, U.S.A. 



organized to solve at least some kinds of problems. Reviews of this experi- 
mental work have been produced by Flament (1956, 1960, 1963, 1965), 
Mulder (1956, 1958), Glanzer and Glaser (1957, 1961), Cohen (1964), 
Shaw (1964), Burgess (1968), Snadowsky (1972), and Rogers and Agarwala- 
Rogers ( 1976). 

Applications of the concept of centrality, however, have not been con- 
fined to experimental studies of group problem-solving. Cohn and Marriott 
(1958) used the centrality idea in their attempt to understand political inte- 
gration in the context of the diversity of Indian social life. In effect, they 
asked how a nation as large and heterogeneous as India could be administered 
at all. Their conclusion was that every aspect of Indian social life was knit 
together by network centers that “bound and intertwined” diverse strands 
into a coordinated structure. Pitts (1965) examined the consequences of 
centrality in communication paths for urban development. He reconstructed 
the twelfth century network of river transportation in central Russia in an 
attempt to explain the preeminence of the modern city of Moscow as it 
emerged from among the many hamlets in the area. Moscow, it turned out, 
was a major structural center in the medieval Russian transportation and 
communication network. Both Beauchamp ( 1965) and Mackenzie (1966b) 
explored the implications of centrality for the design of organizations. Beau- 
champ suggested that the efficiency of a new organization combining two or 
more existing ones could be optimized by connecting the subunits together 
at their most central points. Mackenzie, on the other hand, argued that the 
relationship between organizational structure and efficiency should depend 
upon the complexity of the organizational task. 

More recently, Czepiel (1974) used the concept in an attempt to explain 
the patterns of diffusion of a technological innovation in the steel industry. 
His results were not statistically significant, but he found that steel firms 
that were more central in a network of informal inter-firm communications 
were, in general, earlier adopters of a new casting process. Centrality, it 
seemed, gave them a technological edge. 

Rogers (1974) studied the emergence of two kinds of centrality in inter- 
organizational relations. He discovered that, regardless of the way in which 
centrality was indexed, certain organizations tended to be consistently more 
central than others. Moreover, it appeared that the centrality of an organiza- 
tion was predictable in part from its own characteristics and in part from the 
properties of the network in which it was embedded. 

In addition to these rather academic illustrations, concepts relating to 
centrality, and more particularly to decentrality, have recently attracted the 
attention of people working in community organizations and planning. 
There is a growing discussion of the democratization of society through de- 
centralization of decision making. l The ideas generated in this literature have 
clear reference to structural centrality. 

‘See, for example, Sarason et al. (1978). 
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Thus, the idea of centrality is alive and well and is being mobilized in an 
ever widening range of applications. Everyone agrees, it seems, that centrality 
is an important structural attribute of social networks. All concede that it is 
related to a high degree to other important group properties and processes. 
But there consensus ends. There is certainly no unanimity on exactly what 
centrality is or on its conceptual foundations, and there is very little agree- 
ment on the proper procedure for its measurement. 

Over the years, a great many measures of centrality have been proposed. 
The development of measures should help to clarify a concept by specifying 
its components and their interrelationships. In the case of centrality, how- 
ever, the opposite effect seems to have been achieved. The several measures 
are often only vaguely related to the intuitive ideas they purport to index, 
and many are so complex that it is difficult or impossible to discover what, 
if anything, they are measuring. 

The time has come, it would seem, to stop, take stock and try to make 
some sense of the concept of centrality and the range and limits of its poten- 
tial for application. That is exactly the aim of the present essay. The purpose 
here is to clarify and resolve some of the conceptual problems of centrality 
and to explore some of the ways in which centrality can be used in under- 
standing human groups. 

This essay, then, will begin with an examination of conceptual and 
measurement problems with respect to centrality. Obviously, the emphasis 
in such a discussion will be on the structural properties of human communi- 
cation networks. The discussion of structural properties of networks is 
greatly simplified by reference to a few terms and concepts from the theory 
of graphs. Before examining centrality as such, then, the next section will 
provide a brief review of the relevant properties of graph theory. 

The conceptual foundations of centrality will be explored in the following 
two sections. First we shall take up the centrality concept as it refers to the 
locations of positions or points in networks, and then examine the concept 
as it is applied to the overall structure of a network taken as a whole. 

Several new measures will be introduced in an attempt to explicate the 
conceptual foundation of centrality. In a sense, the introduction of new 
measures at this stage is inappropriate. Ideally, measures should grow out of 
advanced theoretical efforts; they should be defined in the context of explicit 
process models. Before such models can be developed, however, a certain 
amount of conceptual specification is necessary; the basic parameters of the 
problem must be set down. Thus, the introduction of measures in the present 
context must be understood simply as a way of clarifying the centrality con- 
cept. The aim is not to “lock in” to any sort of ultimate centrality measure. 

Some terms and concepts of graph theory 

A graph consists of a set of points and a set of lines or edges connecting 
pairs of points. A graph consisting of five points and five edges is shown in 
Figure 1. 
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Figure 1. A graph with five points and five edges. 
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When two points are directly connected by an edge they are adjacent. 
The number of other points to which a given point is adjacent is called the 
degree of that point. In the illustration of Figure 1, point p, has a degree of 
I and point p2 has a degree of 3. 

Given an unordered pair of points, (pi, pi), each is reachable from the 
other if and only if there exists a path - a sequence of one or more edges, 

(Pi, I%>, (Pa, Pb), (Pb, Pd . . . (PZ, Pi>, beginning at pi, PerhaPs Passing through 
intermediate linking points, pa, pb, pC, . . . . pZ, and ending at pj. A path that 
begins and ends at the same point is called a CJK&Y. In Figure 1, the path 

(p2, PA kk PA b+, In,> is a cycle. 
When every point is reachable from any other point the graph is called 

connected. The graph shown in Figure 1, for example, is connected. 
Associated with each path is a distance equal to the number of edges in 

that path, The shortest paths linking a given pair of points are called geo- 
desics. Figure 1 shows exactly two paths from point p1 to point ps; one 
through points p2, p3 and p4, and one through points p2 and p4. Since the 
first of these paths has a distance of 4 and the second a distance of 3, the 
second path is a geodesic. Points falling on the only geodesic or on all geo- 
desics linking a given pair of points are said to stand between the end points. 

Any communication network can be represented by a graph. Each posi- 
tion in the network corresponds to a point in the graph and each symmetri- 
cal comrnuni~ation link corresponds to an edge or line that connects a pair 
of points. 

Point ten trality 

Although it has never been explicitly stated, one general intuitive theme 
seems to have run through all the earlier thinking about point centrality in 
social networks: the point at the center of a star or the hub of a wheel, 
like that shown in Figure 2, is the most central possible position. A person 
located in the center of a star is universally assumed to be structurally more 
central than any other person in any other position in any other network of 
similar size. 

On the face of it, this intuition seems to be natural enough. The center of 
a star does appear to be in some sort of special position with respect to the 
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overall structure. The problem is, however, to determine the way or ways in 
which such a position is structurally unique. 

Previous attempts to grapple with this problem have come up with three 
distinct structural properties that are uniquely possessed by the center of a 
star. That position has the maximum possible degree; it falls on the geo- 
desics between the largest possible number of other points and, since it is 
located at the minimum distance from all other points, it is maximally close 
to them. 

Figure 2. A star or wheel with five points. 
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Since these are all structural properties of the center of a star, they com- 
pete as the defining property of centrality. All measures have been based 
more or less directly on one or another of them. Moreover, each measure 
is associated with some sort of intuitive basis or rationale for its own par- 
ticular structural property. These are based, variously, on the psychology, 
politics or economy of human communication. 

The simplest and perhaps the most intuitively obvious conception is that 
point centrality is some function of the degree of a point. The degree of a 
point, pi, is simply the count of the number of other points, pi (i f i), that 
are adjacent to it and with which it is, therefore, in direct contact. The 
central point, p3, in Figure 2, is adjacent to four other points; its degree is 
four. In a five-point graph, any point can be adjacent only to the four 
remaining points, so the maximum degree of any point is four. Thus, p3 is 
an example of a point of maximum degree in a five-point graph. 

Shaw ( 1954) introduced the idea of using degree as an index of point 
centrality, and along with other writers (Faucheux and Moscovici 1960; 
Mackenzie 1964, 1966a; Czepiel 1974; Nieminen 1973, 1974; Rogers 1974) 
who conceived of point centrality in this way, he apparently found it so in- 
tuitively appealing that he did not bother to discuss or elaborate its con- 
ceptual foundations at all. For these writers, centrality means degree. 

With respect to communication, a point with relatively high degree is 
somehow “in the thick of things”. We can speculate, therefore, that writers 
who have defined point centrality in terms of degree are responding to the 
visibility or the potential for activity in communication of such points. 

As the process of communication goes on in a social network, a person 
who is in a position that permits direct contact with many others should 
begin to see himself and be seen by those others as a major channel of infor- 
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mation. In some sense he is a focal point of communication, at least with 
respect to the others with whom he is in contact, and he is likely to develop 
a sense of being in the mainstream of information flow in the network. 

At the opposite extreme is a point of low degree. The occupant of such a 
position is likely to come to see himself and to be seen by others as peri- 
pheral. His position isolates him from direct involvement with most of the 
others in the network and cuts him off from active participation in the on- 
going communication process. 

Measures of point centrality based entirely or in part on the degree or 
adjacency of a point have been developed by Shaw (1954), Faucheux and 
Moscovici (1960), Garrison (1960), Mackenzie (1966a), Pitts (196.5), Rogers 
(1974), Czepiel (1974), Nieminen (1973, 1974) and Kajitani and Maruyama 
(1976). Unfortunately, these degree-based measures are often unnecessarily 
complicated. 

The measure introduced by Shaw (19.54), for example, was apparently 
based on empirical curve fitting; it is absolutely unintelligible from any 
theoretical perspective whatever. Those developed by Garrison ( 1960) and 
Pitts (1965) embody a potentially interesting generalization of the degree 
notion. They use the idea of the degree of a point at distances greater than 
one. Thus, they begin to get at the idea of the depth to which a point is 
woven into the total web of communication. Both, however, are confounded 
by the fact that they are functions not only of graph size, but of the longest 
geodesic in the graph over which they are calculated. In consequence, neither 
provides a direct index of point centrality that can be used to compare 
points in graphs of differing sizes or possessing differing longest geodesics. 

Both Faucheux and Moscovici (1960) and Mackenzie (1966a) began with 
degree as the underlying structural concept for constructing their measures, 
but both switched to a concern with statistical distributions of frequencies 
of activity. Both, therefore, end up with an index based on something other 
than structural properties. 

The measure proposed by Rogers (1974) is simple but it is designed for 
special applications where opportunities for adjacency are restricted. 
Czepiel’s (1974) is a simple relative measure but it is restricted to a par- 
ticular kind of nonsymmetrical dependency relation. That introduced by 
Kajitani and Maruyama (1976) is constructed as an inverse of degree for 
consistency in their derivation; it is reasonable mathematically but awkward 
for computation. Only Nieminen (1974) has introduced a simple, natural 
and perfectly general measure of centrality based upon degree. 

Nieminen’s (1974) measure is the count of the degree or number of 
adjacencies for a point, pk: 

C,(P,) = E 4Pi, Pk) 

where 

i= 1 

U(pi, pk) = 1 if and only if pi and pk are connected by a line 
0 otherwise 



As such it is a straightfo~ard index of the extent to which pk is a focus Of 
activity. Cn(p,) is large if point pk is adjacent to, or in direct contact with, a 
large number of other points, and small if pk tends to be cut off from such 
direct contact. Cn(p~) = 0 for a point that is totally isolated from contact 
with any other point. 

The magnitude of Cn(pk) is partly a function of the size of the network 
on which it is calculated. For some applications this is irrelevant. As a 
measure of the sheer amount of activity of a point such an absolute count of 
degree is useful. But for other applications it might be desirable to have a 
measure that is independent of network size. To compare the relative 
centrality of points from different graphs, for example, we need a measure 
from which the effect of network size has been removed. 

A given point, pk> can at most be adjacent to n -- X other points in a 
graph. The maximum of Cn(plc_), therefore, is pa - I. Then 

is the propo~~un of other points that are adjacent to pk. It may be used 
whenever a degree-based relative measure of point centrality makes sense in 
the context of an application. 

cnfpk) and Cb(pk), then, are Structural measures Of point Centrality based 
on the degree of point pk. The degree of a point is viewed as important as 
an index of its potential co~~~~u~~~~~~u~ aciivit~. 

The second view of point centrality is based upon the frequency with 
which a point falls between pairs of other points on the shortest or geodesic 
paths connecting them. This idea may be illustrated by referring back to 
Figure 2 where the center, p 3r shows maximum betweenness. The ten geo- 
desics in Figure 2 are shown in Figure 3. Four of them show distances of 
one; these connect p3 with each of the other points. The other six all show 
lengths of two and at1 involve p3 as a mid-point between the others. Thus, 
p3 falls between other points on six of the ten geodesics in this graph. Since 
four geodesics must be ‘“used up” in connecting the central point with each 
of the others, six is the max~um betweenness count possible in a five- 
point graph. 

Both Bavelas (1948) and Shaw (1954) suggested that when a person is 
strategically located on the communication paths linking pairs of others, that 
person is central. A person in such a position can influence the group by 
withholding or distorting information in transmission. Shimbel ( 1953) 
stressed the responsibility Of persons occupying such positions for the main- 
tenance of communications and Cohn and Marriott (1958) emphasized their 
potential as coordinators of group processes. 

Regardless of emphasis, a point that falls on the communication paths 
between other points exhibits a potential for control of their comnlunication_ 
It is this potential for control that defines the centrality of these points. 
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Figure 3. The ten geodesics from the graph of Figure 2. 
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Although Shaw (1954) included betweenness counts in a complex empiri- 
cally based measure of centrality, he did not develop a measure of between- 
ness. Direct measures were developed independently by Anthonisse (197 1) 
and Freeman (1977). 

Determining betweenness is simple and straightforward when only one 
geodesic connects each pair of points, as in the example above. There, the 
central point can more or less completely control communication between 
pairs of others. But when there are several geodesics connecting a pair of 
points, the situation becomes more complicated. A point that falls on some 
but not all of the geodesics connecting a pair of others has a more limited 
potential for control. 

In the graph of Figure 4, there are two geodesics linking pi with p3, 
one EJ~U p2 and one via p4. Thus, neither p2 nor p4 is strictly between p, and 
p3 and neither can control their communication. Both, however, have some 
potential for control. 
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Figure 4. A graph with four points and five edges. 
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This sort of partial betweenness can be defined in terms of probabilities, 
If we assume two points pi and pi are indifferent with respect to which 
of several alternative geodesics carries their communications, the proba- 
bility of using any one is 

1 

gij 

where gij is the number of geodesics linking pi and pi. The potential of point 
pk for control of information passing between pi and pi then may be defined 
as the probability that pk falls on a randomly selected geodesic connecting 
pi and pi. If 

gii(pk) = the number of geodesics linking pi and pi that contain pk 

then 

bij(Pk) = i X gij(Pk> 

= gij(Pk> 

gij 

is the probability we seek; it is the probability that point pk falls on a ran- 
domly selected geodesic linking pi with pi. 

To determine the overall centrality of a point pk, we sum its partial 
betweenness values for all unordered pairs of points where i # j # k: 

CB (Pk) = 5 i bij(Pk> 
i<i 

where y1 is the number of points in the graph. 
The sum cB(pk) is an index of the Overall partial betweenness of point pk. 

Whenever pk falls on the only geodesic connecting a pair of points, ca(pk) 
is increased by 1. When there are alternative geodesics cn(pk) grows in pro- 
portion to the frequency of occurrence of pk among those alternatives. 

Locating geodesics and counting become difficult with large networks. 
Matrix methods for both of these tasks, however, are detailed by Harary 
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ct ul. (1965: 134- 141). and these methods permit the development of a 
simple computer program to calculate C,(p,). 

Like C,(p,), CB(pk) is dependent on the size of the network over which it 
is calculated. And again, for some applications, a measure without this 
limitation would be useful. What is needed is a measure that is relative to its 
maximum value in terms of the number of points in its network. 

Freeman (1977) proved that the maximum value taken by C~(pk) is 
achieved only by the central point in a star. It is 

112 - 3r1 + 2 

2 

Therefore, the relative centrality of any point in a graph may be expressed 
as a ratio, 

Values of C’(pk) may be compared between graphs. A star or wheel, for 
example, of any size will have a center point with Cb(pk) = 1; all other 
points will yield Ci(p,) = 0. 

Both C,(p,) and Ch(pk) may be determined for any symmetric graph 
whether connected or not. They are measures of point centrality based on 
the structural attribute of the betwecrrness of point pk. Betweenness is 
useful as an index of the potential of a point for cmtrol of communication. 

The third intuitive conception of point centrality is based upon the degree 
to which a point is close to all other points in the graph. In Figure 2, for 
example, point p3 is at a distance of one from each of the four other points. 
Each of the others, however, is at a distance of one only from p3, and at a 
distance of two from each of the remaining points. Point pj, therefore, is 
closest to all other points. As a matter of fact, since the minimum distance 
between a pair of points is one, p3 is as close to its four neighbors as any 
point could be in any five-point graph. 

This third view of point centrality is also related to control of communica- 
tion but in a somewhat different way. Here, a point is viewed as central to 
the extent that it can avoid the control potential of others. According to 
Bavelas (1950), a non-central position is one that “must relay messages 
through . . . others”. Thus, as Leavitt (195 1) suggested, a central position is 
one that is not dependent upon others as intermediaries or “relayers” of 
messages. In fact, this idea was so much a part of Leavitt’s thinking that he 
tended to use the words centrality and independence interchangeably. 

The independence of a point is determined by its closeness to all other 
points in the graph. In Figure 1, for example, point p2 is in direct touch with 
three other points, pl, p3 and p4. He must pass messages through p4, how- 
ever, in order to reach ps. Thus, pz depends upon only one relayer to com- 
municate with everyone in the network. On the other hand, p1 needs p2 to 
communicate with p3 or p4 and both p2 and p4 to reach ps. To reach every- 
one, then, p, must depend upon p2 three times and p4 once - four acts of 
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relaying in all. Thus, because p2 is closer than p1 to all other points, it has 
greater centrality in the sense of being independent of others. 

In his earliest paper, Bavelas (1948) also suggested an alternative rationale 
for a closeness-based conception of point centrality. He proposed that a 
message originating in the most central position in a network would spread 
throughout the entire network in minimum time. Beauchamp (1965) carried 
this idea further when he talked about using closeness to design organization 
with “optimum . . . efficiency” in communication. Hakimi (1965) and 
Sabidussi (1966) made it completely general when they defined the most 
central point in a network as that with the minimum cost or time for com- 
municating with all other points. With respect to time or cost efficiency, 
then, a point is central to the degree that the distances associated with all its 
geodesics are minimum. Short distances mean fewer message transmissions, 
shorter times and lower costs. 

Closeness-based measures of point centrality have been developed by 
Bavelas (1950), Beauchamp (1965), Sabidussi (1966), Moxley and Moxley 
(1974) and Rogers (1974). The simplest and most natural of these measures 
is Sabidussi’s (1966). He proposed that the centrality of a point be measured 
by summing the geodesic distances from that point to all other points in the 
graph. Actually, this is a measure of point decentrality or inverse centrality 
since it grows as points are far apart, and centrality in this context means 
closeness. 

If we let 

d(pi, pk) = the number of edges in the geodesic linking pi and pk 

then Sabidussi’s measure of the decentrality of a point pk is 

Cc(P,)-’ = i: d(Pi, Pk) 

Co(pk)-l grows with increasing distance between pk and other points; it is 
an inverse of centrality for point pk. Nevertheless, it is a simple measure and, 
since it is a sum distance, c&p,)-’ has a natural interpretation. It is, of 
course, only meaningful for a connected graph. In an unconnected graph 
every point is at an infinite distance from at least one other point so 

$ d(pi, Pk) = O” 
i= 1 

for all pk. 
All of the other distance-based measures are functions of this sum and are, 

therefore, subject to this same restriction. Moreover, they tend to add un- 
necessary and confusing complications that make them difficult to interpret. 
Sabidussi’s measure is recommended by its simplicity and the directness of 
its interpretation. 

The calculation of co(pk)-’ is simple and straightforward. Some of the 
same matrix methods that are used to calculate CB(pk) may be used here. 
They are described in detail by Harary et al. ( 1965 : 134- 138). 
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As was the case for the measure described above, this measure is depen- 
dent upon the number of points in the network from which it is calculated. 
We cannot, therefore, compare values of &(pk)-’ for points drawn from 
graphs of different sizes. So again it would be useful to have a measure from 
which the impact of graph size was removed. 

Beauchamp (1965) has already solved this problem. He suggested that the 
relative point centrality of a point pk be defined as 

I1 ~ 1 
= 

i d(Pi, Pk) 
i= 1 

Since the sum in this expression is based on the distances from pk to the 
y? - 1 other points, C’b(pk) may be understood as the inverse of the average 
distance between pk and the other points. But since II ~~~ 1 is also the 
minimum sum of distances - for a point that is adjacent to all other points - 
Cb(pk) may also be interpreted as the inverse of the ratio by which pk 
exceeds its minimum distance. Thus, Cb(pk) is a direct measure of distance- 
based point centrality. It takes a value of unity when pk is maximally close 
to all other points and shrinks as the average distance between pk and other 
points grows. 

The measures Cc(pk)-’ and C’c(pk) are both closeness-based indexes of 
point centrality. Either may be used when measures based upon indepw- 
derrcc or c~,fficicnc_t~ are desired. 

Thus, the centrality of a point may be determined by reference to any of 
three different structural attributes of that point: its degree, its betweenness, 
or its closeness. The choice of a particular structural attribute and its asso- 
ciated measure depends upon the context of the substantive application 
intended. Concern with communication activity suggests a degree-based 
measure. Interest in control of communication requires a measure based 
upon betweenness. And concern with either independence or efficiency 
leads to the choice of a measured based upon closeness. In any case, the 
center of the star shown in Figure 2 is the most central point in all three of 
these respects. 

Graph ten trali ty 

For the past twenty-five years there has been a running controversy 
regarding the meaning of the term centrality when it is applied to whole 
social networks. One view stems more or less directly from graph theory. 
It has been expressed in one form or another by Bavelas (1950), Flament 
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(1963), Beauchamp (1965) and Sabidussi (1966). The term centrality as 
applied to whole graphs is not explicitly defined within graph theory. How- 
ever, it seems - at least in the minds of these writers - to be related to the 
compactness of graphs. A graph is compact to the degree that the distances 
between pairs of its points are short. Thus, for those who define point 
centrality in terms of closeness, the graph-theoretic conception of compact- 
ness seems to be a natural extension of the centrality idea. 

The four writers cited above seem to have reasoned just this way. All 
four have suggested that the graph-theoretic conception of compactness 
should be extended to the study of social networks and simply renamed 
“graph centrality”. Their measures are all based upon distances between 
points, and all define graphs as centralized to the degree that their points 
are all close together. They are all based on the inverse of the sums or 
averages of inter-point distances. 

The alternative view emerged from substantive research on communica- 
tion in social networks. It is reflected in the papers by Leavitt (1951), 
Faucheux and Moscovici (1960), Mackenzie (1966a), Nieminen (1974) 
and Freeman (1977). From this perspective, the centrality of an entire 
network should index the tendency of a single point to be more central 
than all other points in the network. Measures of a graph centrality of this 
type are based on differences between the centrality of the most central 
point and that of all others. Thus, they are indexes of the centralization 
of the network. 

Leavitt (195 1) provided both an intuitive rationale and an empirical 
demonstration of the utility of a conception of graph centralization based on 
point dominance. He argued that the speed and efficiency of a network in 
solving problems as well as the satisfaction of participants and their percep- 
tion of a leadership structure should be related to the tendency of a single 
point to be outstandingly central. Moreover, he showed that these relation- 
ships did, in fact, obtain for the networks he studied. 

It seems clear, therefore, that for the study of social networks we need 
measures of graph centralization based on differences in point centralities. 
In this section, three measures will be defined. Each corresponds to one of 
the three properties used above to define the centrality of points. 

It was shown above that three distinct structural properties have been 
specified as bases for developing measures of point centrality. In the present 
section, therefore, we shall consider three different graph centralization 
indexes, each corresponding to one of the point centrality measures. 

Ideally, all indexes of graph centralization, regardless of the point-base 
upon which they are built, should have certain features in common: (1) they 
should index the degree to which the centrality of the most central point 
exceeds the centrality of all other points, and (2) they should each be 
expressed as a ratio of that excess to its maximum possible value for a 
graph containing the observed number of points. Thus, if 

y1 = number of points 



Cx(pi) = one of the point centralities defined above 

Cx(p*) = largest value of Cx(pi) for any point in the network 

and 

max Z [CX(P*) - Cx(pi)l = the maximum possible sum of differences in 
i= 1 point centrality for a graph of M points 

then 

cx = 

iil [Cx (P,“) - Cx (P,i)l 

n 

nxix C [CX (p*> - CX (pi)1 
i= 1 

is an acceptable index. The index, Cx, will determine the degree to which 
Cx(p*) exceeds the centrality of all of the other points and, since Cx is 
a ratio of an observed sum of differences to its maximum value, it will vary 
between 0 and 1. 

Cx = 0 if and only if all Cx(p,) are equal, and Cx = 1 if and only if one 
point, p*, completely dominates the network with respect to centrality. 

We turn now to a consideration of the three different point centralities 
that may be used to construct an index of graph centralization. We shall 
begin with a measure based on the degrees of points. 

Degree-based measures of graph centrality that reflect the relative domi- 
nance of a single point have been introduced by Faucheux and Moscovici 
(1960), Mackenzie (1966a) and Nieminen (1973, 1974). Roth Faucheux 
and Moscovici’s and Mackenzie’s measures are designed for application to 
data on statistical distributions and are not, therefore, the strictly structural 
measures under review here. Moreover, Faucheux and Moscovici’s measure 
may be applied only for a special kind of non-sy~nnletrical data. Mackenzie’s 
measure is hideously complex and, since it yields a constant whenever the 
number of points is equal to the number of edges -- regardless of the arrange- 
ment of edges ~ it is seriously flawed. Nieminen’s (1973) first measure used 
a weighting factor which resulted in a measure that was unduly complicated 
and hard to interpret. His second (Nieminen 1974) measure, however, comes 
quite close to what we want. It is based on differences between the point of 
highest degree and all others, and it is rigorously derived from an explicit 
set of axioms. 

As stated, however, Nieminen’s measure is unacceptable in the present 
context. The model for a measure of graph centrality defined above requires 
that the simple difference in centrality between two points be used in 
building a measure of graph centrality. These differences may be defined in 
terms of a simple counting operation. In contrast, Nieminen requires that 
each difference be weighted in proportion to the square of its magnitude. 
The result is an arbitrary and uninterpretable index. 
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The more natural measure, then, is of the form proposed above, In this 
case, 

jl [cD(P*> - cD(Pi)] 

CD = ~ --- 

mm i [cD(P*> - cD(Pi)l 
i= 1 

is the measure we seek. 
The maximum sum of differences in the denominator is simple to deter- 

mine. We have already established that the maximum value of Cn(p*) is 
y1 - 1 for a point that is adjacent to all of its neighbors. If the graph is a 
star or wheel each of the other points will have Cu(pi) = 1 and the differences 
will be 

(n-I)-l=n-2 

for each of the y1 - 1 comparisons. Thus, the difference sum will be 

(n - 2)(n - 1) = ?zz - 3n 

for the star or wheel. 
We cannot add a line to 

tion, it is already adjacent 
other pair of points, each 
yield a difference, 

(n-l)-2=n-3 

+2 

the center of the star or wheel since, by defini- 
to all the other points. If we add a line to any 
of them when compared with the center will 

that is smaller than their previous contribution. 
On the other hand, if we subtract a line, it must be taken from the center 

since, in a star or wheel, all lines are connected to the center. In that case, 
the center will be connected to y1 - 2 other points and one point will have 
Cn(pi) = 0; it will be entirely unconnected. The unconnected point, pi, 
will still yield a difference of 

(n-2)-O=n-2 

but all the other differences will be reduced: 

(n - 2) -- 1 = YE - 3 

If a line is switched, it must be removed from the center. In that case, the 
center will have a degree equal to n - 2 and all the differences will be 
reduced. Thus, from the perspective of degree, the star or wheel is the most 
centralized graph. It yields the largest difference sum, 

.* -3n+2 
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We can now substitute in the expression above: 

CD is a general formuht for determining the centrality of a network in terms 
of degree. 

Next, we shall consider the problem of graph centrahty based on between- 
ness. The only betw~e~lness-based measure of overah centrality was intro- 
duced by Freeman (1977). It was defined as the average difference between 
the relative centrality of the most central point, Cb(p*), and that of all 
other points. This expression, however, can be shown to be a form of cen- 
trality measure specified in the model above: 

12 

!i [cB(P*) -- cB(pi)l 

Freeman proved that this measure takes its ma~~~nurn value for the star or 
wheel. Thus, CB provides a general measure of graph centrality based on 
be tweenness. 

Finally, let us consider the problem of measuring the centrality of graphs 
in terms of closeness. Leavitt’s ( 195 1) index was designed for this purpose, 
but iike many of the early measures, it is nearly impossible to interpret, 
Flament (1963:51-53), who ~nis~de~t~~ed it as the Bavelas measure, con- 
jectured that Leavitt’s index was a measure of homogeneity of degree. 
Sabidussi (1966) showed that this conjecture was wrong, but did not provide 
an alternative interpretation. All that can be said is that as a complicated 
sum of inverse proportionate distances, this measure is some sort of index 
of homogeneity of distance_ 

An interpretable measure may be constructed by using a sfight variation 
on the model suggested above. Since C&$-l, the raw point centrality 
measure, is a measure of distance -* an inverse of closeness ~~- this measure is 
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based upon C;l(pj), the direct measure of closeness. Thus, the numerator of 
the desired index is 

$ [ck(P*c) - Ck(Pi)l 
i= 1 

The maximum possible closeness occurs when a point is at a distance of 
one from all other points; its closeness sum is 1. All other points are at 
distance one from the center and at distance two from each other. Therefore, 
the closeness sum for each is 

n-1 n-1 

1 + (2)(n - 2) = 2n - 3 

and yields a difference of 

n-1 n-2 
l_----=_ 

2n - 3 2n - 3 

There are n - 1 such differences, so the maximum possible difference is 

n-2 -3n+2 
2n-3(n - 1) = EtYn7 

and the measure of graph centrality is 

i [c;l(P*) - Ck(Pi)l 
i= 1 

c, = 
(n2 - 3n + 2)/(2n--3, 

We can show that the star yields the maximum differences sum by con- 
sidering the alternatives. If we add a line it must be added to a point other 
than the center since the center is already directly connected to all other 
points. Adding a line to any pair of non-central points will reduce the dis- 
tance between them; therefore it will increase each of their closeness sums. 
But since the distance sum from the center point will not be changed, the 
sum of differences will simply be reduced. 

We cannot remove a line and maintain connectivity, but we can switch a 
line from the center to some other point. Again this will increase the close- 
ness sums of two non-central points and at the same time it will reduce the 
closeness sum for the central point. Thus, as was the case for the other 
measures, the star or wheel is the most central graph. 

As we did in the case of point centrality we end up with three measures 
of graph centrality, each based on a distinct structural attribute. And again, 
choice should be made in terms of the empirical problem under examination. 

All of these measures agree in assigning the highest centrality index to 
the star or wheel. And all agree that the lowest index is assigned to the com- 
plete graph (where all possible edges are present) since all points in that 
graph are homogeneous in all respects. But, beyond those extreme cases, 
agreement breaks down. It is there, among the intermediate structural forms, 
that a careful choice among these measures is important. 



232 Linton C. Freeman 

As an illustration, all nine measures have been calculated for all possible 
graphs of five points. There are 34 distinguishable graphs containing five 
points (Uhlenbeck and Ford 1962). These are shown in Table 1 along with 
their point and graph centralities. The Table illustrates a number of factors 

Table 1. Centrality measures for all distinguishable graphs of five points 

Graph 

1. . 0 0 0 0 0 0 * 

. l 0 0 0 0 
0 0 0 0 
0 0 0 0 . * 
0 0 0 0 

null or empty 

2s .25 o * / m.z5~ .25 o I ; 

0 0 0 0 
0 . 0 0 0 0 

3. .5 2 .5 .16 1 .16 * 

f . . 1 1 0 0 .25 .25 0 0 0 0 0 0 0 0 0 0 

.25 0 0 0 * 

-25 0 0 
.25 0 0 

1 .25 0 0 
0 0 0 0 

5. .75 3 .75 .5 3 .5 * 

h l 1 1 0 1 .25 -25 .25 0 0 0 0 0 0 0 0 0 

6. .33 2 

:55 .25 .25 .25 

.17 1 .17 h 

ii 1 1 1 1 0 0 0 0 0 0 0 0 
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Graph % C,(P,) QPi) cg cg (Pi> ++P,) cchp-l c;lPI) 

7. .33 2 .5 0 0 0 * 

v? . 2 2 0 .5 .5 0 0 0 0 0 0 0 
0 0 0 0 

8. .33 2 .5 .25 2 .33 * 

0 : ::5 0 2 .33 0 

I . 1 0 .25 0 0 0 0 0 

9. 1 4 1 1 6 1 14 1 
1 .25 0 0 7 -57 
1 .25 0 0 7 .57 
1 .25 0 0 7 .57 
1 .25 0 0 7 .57 

star or wheel 

10. .58 3 .75 .71 5 .83 .63 5 .8 
2 .5 2 .5 6 .67 
I .25 0 0 a .5 
1 .25 0 0 8 .5 
1 ,25 0 0 9 -44 

Y or fork 

11. 

C .I7 2 1 2 2 .5 .5 .5 .25 .41 4 3 0 3 .67 .5 .5 0 .43 10 6 7 7 .47 .5? .5J .4 
1 .25 0 0 10 .4 

chain 

12. .58 3 .75 .33 2 ‘33 * r 1 2 2 .5 .5 .25 
0 0 

0 0 
0 0 
0 0 
0 0 

(Continued overleaf) 
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Table 1 (continued) 

C 
D 

C,(P,) C;I(Pi) CB CB (Pi) c;(Pi) cc Cc(Pi-U CL (Pi) 

14. .17 2 r 

:; 

.O2 .5 .08 * 

2 .5 .08 
2 .5 .5 .08 
2 .5 .5 .08 
0 0 0 0 

15. -83 4 1 .83 5 .33 .89 4 1 i ‘5 0 0 6 .67 
2 .5 0 0 6 .67 
1 25 0 0 7 .57 
1 :25 0 0 7 .57 

16. .42 3 .75 .38 3 .5 .43 5 .8 

A 3 2 1 1 -75 .25 .5 .25 3 0 0 0 .5 0 0 0 8 5 6 8 .8 .67 .5 .5 

17. .42 3 .75 .56 4 .67 .55 5 .s 

e 2 2 2 1 .5 .5 .5 .25 3 0 0 0 .5 0 0 0 6 7 7 9 .67 .57 -44 .57 

18. .42 3 .75 .48 3.5 .58 .46 5 .8 
2 .5 1 .3.7 6 .67 
2 *5 1 .17 6 .67 
2 .s .5 .08 7 .57 
1 .25 0 0 8 .5 

19. .42 3 -75 .06 .5 .08 * 

.08 

e 

3 .75 .5 

2 2 0 -5 .5 0 0 0 0 0 0 0 

20. 0 2 .5 0 1 .17 0 6 .67 

n 2 2 2 -5 .5 .5 1 1 1 .17 .17 .17 6 6 6 .67 -67 .67 
2 .5 1 .17 6 .67 

circle 
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Table 1 (continued) 

cD C,(P,) QP,) CB C,(PQ QP,) cc Cc(Pibl c;(P,) 

21. 

VP 

.67 4 1 .67 4 .67 .77 4 1 

2 2 2 .5 .5 .5 0 0 0 0 0 0 6 6 6 .67 .67 .67 
2 .5 0 0 6 .67 

22. .25 3 .75 .14 1.5 .25 .23 5 .a 
3 .75 1.5 .25 5 .a 
2 .5 .33 .06 6 .67 
2 .5 .33 .06 6 .67 
2 .5 .33 .06 6 .67 

23. 

el 

.67 4 1 .56 3.5 .5a .75 4 1 

3 2 2 .75 .5 .5 .5 0 0 .oa 0 0 5 6 6 .a .67 .67 
1 .25 0 0 7 .57 

24. .25 3 .75 .14 1.5 .25 .23 5 .a 
3 .75 1.5 .25 5 .a 
2 .5 .5 .oa 6 .67 
2 .5 .5 .oa 6 .67 
2 .5 0 0 6 .67 

25. .25 3 .75 .41 3 .5 .31 5 .a 

@ 3 3 2 1 .75 .75 .5 .25 1 1 0 0 .17 .17 0 0 a 5 5 7 .5 .a .a .57 

26. .25 3 .75 0 0 0 * 

3 .75 0 0 
3 .75 0 0 
3 .75 0 0 
0 0 0 0 

27. .5 4 1 .29 2 .33 .62 4 1 
3 .75 .5 .oa 5 .a 
3 .75 .5 .oa 5 .a 
2 .5 0 0 6 .67 
2 .5 0 0 6 .67 

(Continued over-leaf) 
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Table 1 (continued) 

Graph 
cD CD(Pk) c;(P,) CB CB (PiI C;I(Pi) c c Cc(Pibl C)Pi) 

28. .5 4 1 .19 1.5 .25 .5a 4 1 
@I 4 2 2 .5 .5 1 1.5 0 0 .25 0 0 4 6 6 .67 .67 1 

2 .5 0 0 6 .67 

29. .38 3 .75 .08 1 .17 .08 5 .8 
3 .75 1 .17 5 .s 
3 .75 .33 .06 5 .8 
3 .75 .33 06 
2 .5 .33 :06 

5 .s 
6 .67 

30. .5 4 1 .5 3 .5 .60 4 1 
3 .75 0 0 5 .8 
3 .75 0 0 5 .8 
3 .75 0 0 5 .8 
1 .25 0 0 7 .57 

31. .33 4 1 .05 .67 .ll .47 4 1 
3 .75 .33 .06 5 .8 
3 .75 .33 .06 5 .8 
3 .75 33 .06 5 .8 
3 .75 :33 .06 5 .8 

32. .33 4 1 .12 1 .17 .43 4 1 
&I 4 3 3 .75 .75 1 1 0 0 .17 0 0 4 5 5 .a .8 1 

2 .5 0 0 6 .67 

33. .17 4 1 .03 .33 .06 .23 3 1 
4 1 .33 .06 4 1 
4 1 .33 .06 4 1 
3 .75 0 0 5 .8 
3 .75 0 0 5 .3 

0 0 0 0 4 1 
0 0 4 1 
0 0 4 1 
0 0 4 1 
0 0 4 1 

*c c cannot be determined for unconnected graphs. 
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that may be useful in gaining a “sense” of these several measures: 
(1) None of the measures based on distance can be calculated for any of 

the 13 unconnected graphs. 
(2) All three measures of graph centrality agree in assigning graph number 

9, the star or wheel, the maximum centrality score. 
(3) All three measures agree in assigning graph numbers 20 and 34, the 

circle and complete graphs, the minimum centrality score. 
(4) Between these extremes, the three measures of graph centrality differ 

noticeably in their rankings of these graphs, 
(5) The range of variation in scores, both for point centrality and graph 

centrality, is greatest for the indexes based on betweenness; they are “finer 
grained” measures than the others. 

(6) The range of variation in both kinds of scores is smallest for the 
degree-based measures; they are “coarser grained”. 

Summary and conclusions 

This essay has been concerned with structural centrality. The intuitive 
bases for the concepts of point and graph centrality in social networks have 
been reviewed. Existing measures of centrality, both of points and of entire 
networks, have been examined in the light of their intuitive foundations. For 
the most part they have not stood up to this examination. 

Where existing measures have survived the review process, they have 
been reintroduced in the context of a common set of symbols and intuitive 
perspectives. Where gaps exist owing to the failure of old measures to stand 
the test, new measures have been introduced. 

All in all, this process resulted in the specification of nine centrality 
measures based on three conceptual foundations. Three are based on the 
degrees of points and are indexes of communication activity. Three are 
based on the betweenness of points and are indexes of potential for control 
of communication. And three are based on closeness and are indexes either 
of independence or efficiency. 

Each set of three measures includes two indexes of point centrality - 
one based on counts and one on proportions - and one index of overall 
network or graph centralization. Together, these nine measures seem to 
cover the intuitive range of the concept of centrality. They specify three 
important structural characteristics of communication networks. 

The three measures of overall network centrality agree on, assignment of 
extremes. They all assign the star or wheel the maximum centrality score and 
the circle and the complete graph the minimum score. Between these 
extremes, however, agreement breaks down; they differ in their relative 
ranking of intermediate forms. Thus, after examining the concept of cen- 
trality in the previous sections we are faced with an embarrassment of intel- 
lectual riches. We have not one, but three conceptions of centrality, and we 
have a family of measures for each. 
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In effect, these three kinds of centrality imply three competing “theories” 
of how centrality might affect group processes. If it is proposed that per- 
ceived leadership, for example, depends on centrality, we are now obligated 
to specify whether we mean centrality as control, centrality as independence, 
or centrality as activity. Any one or any combination of these three kinds of 
centrality might be appropriate in a given application. It remains to be seen 
how well each of them will stand up in the light of further empirical work in 
this area. 
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