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Abstract. Power-law distributions occur in many situations of scientific interest and have significant
consequences for our understanding of natural and man-made phenomena. Unfortunately,
the detection and characterization of power laws is complicated by the large fluctuations
that occur in the tail of the distribution—the part of the distribution representing large
but rare events—and by the difficulty of identifying the range over which power-law behav-
ior holds. Commonly used methods for analyzing power-law data, such as least-squares
fitting, can produce substantially inaccurate estimates of parameters for power-law dis-
tributions, and even in cases where such methods return accurate answers they are still
unsatisfactory because they give no indication of whether the data obey a power law at
all. Here we present a principled statistical framework for discerning and quantifying
power-law behavior in empirical data. Our approach combines maximum-likelihood fitting
methods with goodness-of-fit tests based on the Kolmogorov–Smirnov (KS) statistic and
likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic
data and give critical comparisons to previous approaches. We also apply the proposed
methods to twenty-four real-world data sets from a range of different disciplines, each of
which has been conjectured to follow a power-law distribution. In some cases we find these
conjectures to be consistent with the data, while in others the power law is ruled out.
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1. Introduction. Many empirical quantities cluster around a typical value. The
speeds of cars on a highway, the weights of apples in a store, air pressure, sea level,
the temperature in New York at noon on a midsummer’s day: all of these things vary
somewhat, but their distributions place a negligible amount of probability far from
the typical value, making the typical value representative of most observations. For
instance, it is a useful statement to say that an adult male American is about 180cm
tall because no one deviates very far from this height. Even the largest deviations,
which are exceptionally rare, are still only about a factor of two from the mean in
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either direction and hence the distribution can be well characterized by quoting just
its mean and standard deviation.

Not all distributions fit this pattern, however, and while those that do not are
often considered problematic or defective for just that reason, they are at the same
time some of the most interesting of all scientific observations. The fact that they
cannot be characterized as simply as other measurements is often a sign of complex
underlying processes that merit further study.

Among such distributions, the power law has attracted particular attention over
the years for its mathematical properties, which sometimes lead to surprising physi-
cal consequences, and for its appearance in a diverse range of natural and man-made
phenomena. The populations of cities, the intensities of earthquakes, and the sizes of
power outages, for example, are all thought to follow power-law distributions. Quan-
tities such as these are not well characterized by their typical or average values. For
instance, according to the 2000 U.S. Census, the average population of a city, town,
or village in the United States is 8226. But this statement is not a useful one for most
purposes because a significant fraction of the total population lives in cities (New
York, Los Angeles, etc.) whose populations are larger by several orders of magnitude.
Extensive discussions of this and other properties of power laws can be found in the
reviews by Mitzenmacher [40], Newman [43], and Sornette [55], and references therein.

Mathematically, a quantity x obeys a power law if it is drawn from a probability
distribution

(1.1) p(x) ∝ x−α,

where α is a constant parameter of the distribution known as the exponent or scaling
parameter. The scaling parameter typically lies in the range 2 < α < 3, although
there are occasional exceptions.

In practice, few empirical phenomena obey power laws for all values of x. More
often the power law applies only for values greater than some minimum xmin. In such
cases we say that the tail of the distribution follows a power law.

In this article we address a recurring issue in the scientific literature, the question
of how to recognize a power law when we see one. In practice, we can rarely, if ever,
be certain that an observed quantity is drawn from a power-law distribution. The
most we can say is that our observations are consistent with the hypothesis that x is
drawn from a distribution of the form of (1.1). In some cases we may also be able
to rule out some other competing hypotheses. In this paper we describe in detail a
set of statistical techniques that allow one to reach conclusions like these, as well as
methods for calculating the parameters of power laws when we find them. Many of the
methods we describe have been discussed previously; our goal here is to bring them
together to create a complete procedure for the analysis of power-law data. A short
description summarizing this procedure is given in Box 1. Software implementing it
is also available online.1

Practicing what we preach, we also apply our methods to a large number of data
sets describing observations of real-world phenomena that have at one time or another
been claimed to follow power laws. In the process, we demonstrate that several of them
cannot reasonably be considered to follow power laws, while for others the power-law
hypothesis appears to be a good one, or at least is not firmly ruled out.

1See http://www.santafe.edu/˜aaronc/powerlaws/.

http://www.santafe.edu/~aaronc/powerlaws/
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Box 1: Recipe for analyzing power-law distributed data
This paper contains much technical detail. In broad outline, however, the recipe we
propose for the analysis of power-law data is straightforward and goes as follows.

1. Estimate the parameters xmin and α of the power-law model using the methods
described in section 3.

2. Calculate the goodness-of-fit between the data and the power law using the
method described in section 4. If the resulting p-value is greater than 0.1, the
power law is a plausible hypothesis for the data, otherwise it is rejected.

3. Compare the power law with alternative hypotheses via a likelihood ratio test,
as described in section 5. For each alternative, if the calculated likelihood ratio
is significantly different from zero, then its sign indicates whether or not the
alternative is favored over the power-law model.

Step 3, the likelihood ratio test for alternative hypotheses, could in principle be replaced
with any of several other established and statistically principled approaches for model
comparison, such as a fully Bayesian approach [31], a cross-validation approach [58], or
a minimum description length approach [20], although these methods are not described
here.

2. Definitions. We begin our discussion of the analysis of power-law distributed
data with some brief definitions of the basic quantities involved.

Power-law distributions come in two basic flavors: continuous distributions gov-
erning continuous real numbers and discrete distributions where the quantity of in-
terest can take only a discrete set of values, typically positive integers.

Let x represent the quantity in whose distribution we are interested. A continuous
power-law distribution is one described by a probability density p(x) such that

(2.1) p(x) dx = Pr(x ≤ X < x + dx) = Cx−α dx ,

where X is the observed value and C is a normalization constant. Clearly this density
diverges as x → 0 so (2.1) cannot hold for all x ≥ 0; there must be some lower bound
to the power-law behavior. We will denote this bound by xmin. Then, provided α > 1,
it is straightforward to calculate the normalizing constant and we find that

(2.2) p(x) =
α − 1
xmin

(

x

xmin

)−α

.

In the discrete case, x can take only a discrete set of values. In this paper we
consider only the case of integer values with a probability distribution of the form

(2.3) p(x) = Pr(X = x) = Cx−α .

Again this distribution diverges at zero, so there must be a lower bound xmin > 0 on
the power-law behavior. Calculating the normalizing constant, we then find that

(2.4) p(x) =
x−α

ζ(α, xmin)
,
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Table 1 Definition of the power-law distribution and several other common statistical distribu-
tions. For each distribution we give the basic functional form f(x) and the appropri-
ate normalization constant C such that

∫ ∞
xmin

Cf(x) dx = 1 for the continuous case or
∑∞

x=xmin
Cf(x) = 1 for the discrete case.

Name
Distribution p(x) = Cf(x)

f(x) C

C
on

ti
n
u
ou

s

Power law x−α (α − 1)xα−1
min

Power law
with cutoff

x−αe−λx λ1−α

Γ(1−α,λxmin)

Exponential e−λx λeλxmin

Stretched
exponential xβ−1e−λxβ

βλeλxβ
min

Log-normal 1
x exp

[

− (lnx−µ)2

2σ2

] √

2
πσ2

[

erfc
(

lnxmin−µ√
2σ

)]−1

D
is

cr
et

e

Power law x−α 1/ζ(α, xmin)

Yule
distribution

Γ(x)
Γ(x+α) (α − 1)Γ(xmin+α−1)

Γ(xmin)

Exponential e−λx (1 − e−λ) eλxmin

Poisson µx/x!
[

eµ −
∑xmin−1

k=0
µk

k!

]−1

where

(2.5) ζ(α, xmin) =
∞
∑

n=0

(n + xmin)−α

is the generalized or Hurwitz zeta function. Table 1 summarizes the basic functional
forms and normalization constants for these and several other distributions that will
be useful.

In many cases it is useful to consider also the complementary cumulative distri-
bution function or CDF of a power-law distributed variable, which we denote P (x)
and which for both continuous and discrete cases is defined to be P (x) = Pr(X ≥ x).
For instance, in the continuous case,

(2.6) P (x) =
∫ ∞

x
p(x′) dx′ =

(

x

xmin

)−α+1

.

In the discrete case,

(2.7) P (x) =
ζ(α, x)

ζ(α, xmin)
.

Because formulas for continuous distributions, such as (2.2), tend to be simpler
than those for discrete distributions, it is common to approximate discrete power-law
behavior with its continuous counterpart for the sake of mathematical convenience.
But a word of caution is in order: there are several different ways to approximate
a discrete power law by a continuous one and though some of them give reasonable
results, others do not. One relatively reliable method is to treat an integer power
law as if the values of x were generated from a continuous power law then rounded
to the nearest integer. This approach gives quite accurate results in many applica-
tions. Other approximations, however, such as truncating (rounding down) or simply
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assuming that the probabilities of generation of integer values in the discrete and
continuous cases are proportional, give poor results and should be avoided.

Where appropriate we will discuss the use of continuous approximations for the
discrete power law in the sections that follow, particularly in section 3 on the esti-
mation of best-fit values for the scaling parameter from observational data and in
Appendix D on the generation of power-law distributed random numbers.

3. Fitting Power Laws to Empirical Data. We turn now to the first of the main
goals of this paper, the correct fitting of power-law forms to empirical distributions.
Studies of empirical distributions that follow power laws usually give some estimate
of the scaling parameter α and occasionally also of the lower bound on the scaling
region xmin. The tool most often used for this task is the simple histogram. Taking the
logarithm of both sides of (1.1), we see that the power-law distribution obeys lnp(x) =
α lnx+constant, implying that it follows a straight line on a doubly logarithmic plot.
A common way to probe for power-law behavior, therefore, is to measure the quantity
of interest x, construct a histogram representing its frequency distribution, and plot
that histogram on doubly logarithmic axes. If in so doing one discovers a distribution
that falls approximately on a straight line, then one can, if feeling particularly bold,
assert that the distribution follows a power law, with a scaling parameter α given by
the absolute slope of the straight line. Typically this slope is extracted by performing
a least-squares linear regression on the logarithm of the histogram. This procedure
dates back to Pareto’s work on the distribution of wealth at the close of the 19th
century [6].

Unfortunately, this method and other variations on the same theme generate
significant systematic errors under relatively common conditions, as discussed in Ap-
pendix A, and as a consequence the results they give cannot be trusted. In this
section we describe a generally accurate method for estimating the parameters of a
power-law distribution. In section 4 we study the equally important question of how
to determine whether a given data set really does follow a power law at all.

3.1. Estimating the Scaling Parameter. First, let us consider the estimation of
the scaling parameter α. Estimating α correctly requires, as we will see, a value for
the lower bound xmin of power-law behavior in the data. For the moment, let us
assume that this value is known. In cases where it is unknown, we can estimate it
from the data as well, and we will consider methods for doing this in section 3.3.

The method of choice for fitting parametrized models such as power-law distri-
butions to observed data is the method of maximum likelihood, which provably gives
accurate parameter estimates in the limit of large sample size [63, 7]. Assuming that
our data are drawn from a distribution that follows a power law exactly for x ≥ xmin,
we can derive maximum likelihood estimators (MLEs) of the scaling parameter for
both the discrete and continuous cases. Details of the derivations are given in Ap-
pendix B; here our focus is on their use.

The MLE for the continuous case is [42]

(3.1) α̂ = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

,

where xi, i = 1, . . . , n, are the observed values of x such that xi ≥ xmin. Here and
elsewhere we use “hatted” symbols such as α̂ to denote estimates derived from data;
hatless symbols denote the true values, which are often unknown in practice.
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Equation (3.1) is equivalent to the well-known Hill estimator [24], which is known
to be asymptotically normal [22] and consistent [37] (i.e., α̂ → α in the limit of
large n). The standard error on α̂, which is derived from the width of the likelihood
maximum, is

(3.2) σ =
α̂ − 1√

n
+ O(1/n) ,

where the higher-order correction is positive; see Appendix B of this paper or any of
the references [42], [43], or [66].

(We assume in these calculations that α > 1, since distributions with α ≤ 1 are
not normalizable and hence cannot occur in nature. It is possible for a probability
distribution to go as x−α with α ≤ 1 if the range of x is bounded above by some
cutoff, but different MLEs are needed to fit such a distribution.)

The MLE for the case where x is a discrete integer variable is less straightforward.
Reference [51] and more recently [19] treated the special case xmin = 1, showing that
the appropriate estimator for α is given by the solution to the transcendental equation

(3.3)
ζ′(α̂)
ζ(α̂)

= − 1
n

n
∑

i=1

lnxi .

When xmin > 1, a similar equation holds, but with the zeta functions replaced by
generalized zetas [6, 8, 11],

(3.4)
ζ′(α̂, xmin)
ζ(α̂, xmin)

= − 1
n

n
∑

i=1

lnxi ,

where the prime denotes differentiation with respect to the first argument. In practice,
evaluation of α̂ requires us to solve this equation numerically. Alternatively, one
can estimate α by direct numerical maximization of the likelihood function itself, or
equivalently of its logarithm (which is usually simpler):

L(α) = −n ln ζ(α, xmin) − α
n

∑

i=1

lnxi .(3.5)

To find an estimate for the standard error on α̂ in the discrete case, we make a
quadratic approximation to the log-likelihood at its maximum and take the standard
deviation of the resulting Gaussian form for the likelihood as our error estimate (an
approach justified by general theorems on the large-sample-size behavior of maximum
likelihood estimates—see, for example, Theorem B.3 of Appendix B). The result is

(3.6) σ =
1

√

n

[

ζ′′(α̂, xmin)
ζ(α̂, xmin)

−
(

ζ′(α̂, xmin)
ζ(α̂, xmin)

)2]
,

which is straightforward to evaluate once we have α̂. Alternatively, (3.2) yields roughly
similar results for reasonably large n and xmin.

Although there is no exact closed-form expression for α̂ in the discrete case, an
approximate expression can be derived using the approach mentioned in section 2
in which true power-law distributed integers are approximated as continuous reals
rounded to the nearest integer. The details of the derivation are given in Appendix B.
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The result is

(3.7) α̂ ' 1 + n

[

n
∑

i=1

ln
xi

xmin − 1
2

]−1

.

This expression is considerably easier to evaluate than the exact discrete MLE and can
be useful in cases where high accuracy is not needed. The size of the bias introduced
by the approximation is discussed in Appendix B. In practice, this estimator gives
quite good results; in our own experiments we have found it to give results accurate
to about 1% or better provided xmin ! 6. An estimate of the statistical error on α̂
(which is quite separate from the systematic error introduced by the approximation)
can be calculated by employing (3.2) again.

Another approach taken by some authors is simply to pretend that discrete data
are in fact continuous and then use the MLE for continuous data, (3.1), to calculate α̂.
This approach, however, gives significantly less accurate values of α̂ than (3.7) and,
given that it is no easier to implement, we see no reason to use it in any circumstances.2

3.2. Performance of Scaling Parameter Estimators. To demonstrate the work-
ing of the estimators described above, we now test their ability to extract the known
scaling parameters of synthetic power-law data. Note that in practical situations we
usually do not know a priori, as we do in the calculations of this section, that our
data are power-law distributed. In that case, our MLEs will give us no warning that
our fits are wrong: they tell us only the best fit to the power-law form, not whether
the power law is in fact a good model for the data. Other methods are needed to
address the latter question, and are discussed in sections 4 and 5.

Using methods described in Appendix D, we have generated two sets of power-
law distributed data, one continuous and one discrete, with α = 2.5, xmin = 1,
and n = 10 000 in each case. Applying our MLEs to these data we calculate that
α̂ = 2.50(2) for the continuous case and α̂ = 2.49(2) for the discrete case. (Values in
parentheses indicate the uncertainty in the final digit, calculated from (3.2) and (3.6).)
These estimates agree well with the known true scaling parameter from which the data
were generated. Figure 1 shows the distributions of the two data sets along with fits
using the estimated parameters. (In this and all subsequent such plots, we show not
the probability density function (PDF), but the complementary CDF P (x). Generally,
the visual form of the CDF is more robust than that of the PDF against fluctuations
due to finite sample sizes, particularly in the tail of the distribution.)

In Table 2 we compare the results given by the MLEs to estimates of the scal-
ing parameter made using several alternative methods based on linear regression: a
straight-line fit to the slope of a log-transformed histogram, a fit to the slope of a
histogram with “logarithmic bins” (bins whose width increases in proportion to x,
thereby reducing fluctuations in the tail of the histogram), a fit to the slope of the
CDF calculated with constant width bins, and a fit to the slope of the CDF calculated
without any bins (also called a “rank-frequency plot”—see [43]). As the table shows,
the MLEs give the best results, while the regression methods all give significantly
biased values, except perhaps for the fits to the CDF, which produce biased estimates
in the discrete case but do reasonably well in the continuous case. Moreover, in each

2The error involved can be shown to decay as O
(

x−1
min

)

, while the error on (3.7) decays much

faster, as O
(

x−2
min

)

. In our own experiments we have found that for typical values of α we need
xmin ! 100 before (3.1) becomes accurate to about 1%, as compared to xmin ! 6 for (3.7).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

668 A. CLAUSET, C. R. SHALIZI, AND M. E. J. NEWMAN

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

P
(x

)

 

 

Discrete data

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

(a)

(b)

x

P
(x

)

 

 

Continuous data

Fig. 1 Points represent the CDFs P (x) for synthetic data sets distributed according to (a) a discrete
power law and (b) a continuous power law, both with α = 2.5 and xmin = 1. Solid lines
represent best fits to the data using the methods described in the text.

Table 2 Estimates of the scaling parameter α using various estimators for discrete and continu-
ous synthetic data with α = 2.5, xmin = 1, and n = 10 000 data points. LS denotes a
least-squares fit to the logarithm of the probability. For the continuous data, the PDF
was computed in two different ways, using bins of constant width 0.1 and using up to 500
bins of exponentially increasing width (so-called “logarithmic binning”). The CDF was
also calculated in two ways, as the cumulation of the fixed-width histogram and as a stan-
dard rank-frequency function. In applying the discrete MLE to the continuous data, the
noninteger part of each measurement was discarded. Accurate estimates are shown in bold.

est. α est. α
Method Notes (Discrete) (Continuous)
LS + PDF const. width 1.5(1) 1.39(5)
LS + CDF const. width 2.37(2) 2.480(4)
LS + PDF log. width 1.5(1) 1.19(2)
LS + CDF rank-freq. 2.570(6) 2.4869(3)
cont. MLE – 4.46(3) 2.50(2)
disc. MLE – 2.49(2) 2.19(1)

case where the estimate is biased, the corresponding error estimate gives no warning of
the bias: there is nothing to alert unwary experimenters to the fact that their results
are substantially incorrect. Figure 2 extends these results graphically by showing how
the estimators fare as a function of the true α for a large selection of synthetic data
sets with n = 10 000 observations each.

Finally, we note that the MLEs are only guaranteed to be unbiased in the asymp-
totic limit of large sample size, n → ∞. For finite data sets, biases are present
but decay as O(n−1) for any choice of xmin (see Appendix B and Figure 10). For
very small data sets, such biases can be significant but in most practical situations
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Fig. 2 Values of the scaling parameter estimated using four of the methods of Table 2 (we omit the
methods based on logarithmic bins for the PDF and constant width bins for the CDF) for
n = 10 000 observations drawn from (a) discrete and (b) continuous power-law distributions
with xmin = 1. We omit error bars where they are smaller than the symbol size. Clearly,
only the discrete MLE is accurate for discrete data, and the continuous MLE for continuous
data.

they can be ignored because they are much smaller than the statistical error of the
estimator, which decays as O(n−1/2). Our experience suggests that n ! 50 is a rea-
sonable rule of thumb for extracting reliable parameter estimates. For the examples
shown in Figure 10 this gives estimates of α accurate to about 1%. Data sets smaller
than this should be treated with caution. Note, however, that there are more im-
portant reasons to treat small data sets with caution. Namely, it is difficult to rule
out alternative fits to such data, even when they are truly power-law distributed,
and conversely the power-law form may appear to be a good fit even when the data
are drawn from a non-power-law distribution. We address these issues in sections 4
and 5.

3.3. Estimating the Lower Bound on Power-Law Behavior. As we have said
above it is normally the case that empirical data, if they follow a power-law distribu-
tion at all, do so only for values of x above some lower bound xmin. Before calculating
our estimate of the scaling parameter α, therefore, we need to first discard all samples
below this point so that we are left with only those for which the power-law model is
valid. Thus, if we wish our estimate of α to be accurate, we will also need an accurate
method for estimating xmin. If we choose too low a value for xmin, we will get a biased
estimate of the scaling parameter since we will be attempting to fit a power-law model
to non-power-law data. On the other hand, if we choose too high a value for xmin, we
are effectively throwing away legitimate data points xi < x̂min, which increases both
the statistical error on the scaling parameter and the bias from finite size effects.
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Fig. 3 Mean of the MLE for the scaling parameter for 5000 samples drawn from the test distribution,
(3.10), with α = 2.5, xmin = 100, and n = 2500, plotted as a function of the value assumed
for xmin. Statistical errors are smaller than the data points in all cases.

The importance of using the correct value for xmin is demonstrated in Figure 3,
which shows the maximum likelihood value α̂ of the scaling parameter averaged over
5000 data sets of n = 2500 samples, each drawn from the continuous form of (3.10)
with α = 2.5, as a function of the assumed value of xmin, where the true value
is 100. As the figure shows, the MLE gives accurate answers when xmin is chosen
exactly equal to the true value, but deviates rapidly below this point (because the
distribution deviates from power law) and more slowly above (because of dwindling
sample size). It would probably be acceptable in this case for xmin to err a little on
the high side (though not too much), but estimates that are too low could have severe
consequences.

The most common ways of choosing x̂min are either to estimate visually the point
beyond which the PDF or CDF of the distribution becomes roughly straight on a log-
log plot, or to plot α̂ (or a related quantity) as a function of x̂min and identify a point
beyond which the value appears relatively stable. But these approaches are clearly
subjective and can be sensitive to noise or fluctuations in the tail of the distribution—
see [57] and references therein. A more objective and principled approach is desirable.
Here we review two such methods, one that is specific to discrete data and is based on
a so-called marginal likelihood, and one that works for either discrete or continuous
data and is based on minimizing the “distance” between the power-law model and
the empirical data.

The first approach, put forward by Handcock and Jones [23], uses a generalized
model to represent all of the observed data, both above and below x̂min. Above x̂min

the data are modeled by the standard discrete power-law distribution of (2.4); be-
low x̂min each of the x̂min−1 discrete values of x are modeled by a separate probability
pk = Pr(X = k) for 1 ≤ k < x̂min (or whatever range is appropriate for the problem at
hand). The MLE for pk is simply the fraction of observations with value k. The task
then is to find the value for x̂min such that this model best fits the observed data. One
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cannot, however, fit such a model to the data directly within the maximum likelihood
framework because the number of model parameters is not fixed: it is equal to xmin.3
In this kind of situation, one can always achieve a higher likelihood by increasing
the number of parameters, thus making the model more flexible, so the maximum
likelihood is always achieved for xmin → ∞. A standard (Bayesian) approach in such
cases is instead to maximize the marginal likelihood (also called the evidence) [29, 34],
i.e., the likelihood of the data given the number of model parameters, integrated over
the parameters’ possible values. Unfortunately, the integral cannot usually be per-
formed analytically, but one can employ a Laplace or steepest-descent approximation
in which the log-likelihood is expanded to leading (i.e., quadratic) order about its
maximum and the resulting Gaussian integral is carried out to yield an expression
in terms of the value at the maximum and the determinant of the appropriate Hes-
sian matrix [60]. Schwarz [50] showed that the terms involving the Hessian can be
simplified for large n yielding an approximation to the log marginal likelihood of the
form

(3.8) ln Pr(x|xmin) ' L− 1
2xmin lnn ,

where L is the value of the conventional log-likelihood at its maximum. This type of
approximation is known as a Bayesian information criterion or BIC. The maximum
of the BIC with respect to xmin then gives the estimated value x̂min.4

This method works well under some circumstances, but can also present difficul-
ties. In particular, the assumption that xmin − 1 parameters are needed to model the
data below xmin may be excessive: in many cases the distribution below xmin, while
not following a power law, can nonetheless be represented well by a model with a
much smaller number of parameters. In this case, the BIC tends to underestimate
the value of xmin and this could result in biases on the subsequently calculated value
of the scaling parameter. More importantly, it is also unclear how the BIC (and
similar methods) can be generalized to the case of continuous data, for which there
is no obvious choice for how many parameters are needed to represent the empirical
distribution below xmin.

Our second approach for estimating xmin, proposed by Clauset, Young, and Gled-
itsch [11], can be applied to both discrete and continuous data. The fundamental idea
behind this method is simple: we choose the value of x̂min that makes the probability
distributions of the measured data and the best-fit power-law model as similar as
possible above x̂min. In general, if we choose x̂min higher than the true value xmin,
then we are effectively reducing the size of our data set, which will make the prob-
ability distributions a poorer match because of statistical fluctuation. Conversely, if
we choose x̂min smaller than the true xmin, the distributions will differ because of the
fundamental difference between the data and model by which we are describing it. In
between lies our best estimate.

There are a variety of measures for quantifying the distance between two probabil-
ity distributions, but for nonnormal data the commonest is the Kolmogorov–Smirnov
or KS statistic [46], which is simply the maximum distance between the CDFs of the

3There is one parameter for each of the pk plus the scaling parameter of the power law. The
normalization constant does not count as a parameter because it is fixed once the values of the
other parameters are chosen, and xmin does not count as a parameter because we know its value
automatically once we are given a list of the other parameters—it is just the length of that list.

4The same procedure of reducing the likelihood by 1
2 ln n times the number of model parameters

to avoid overfitting can also be justified on non-Bayesian grounds for many model selection problems.
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data and the fitted model:

(3.9) D = max
x≥xmin

|S(x) − P (x)| .

Here S(x) is the CDF of the data for the observations with value at least xmin, and
P (x) is the CDF for the power-law model that best fits the data in the region x ≥ xmin.
Our estimate x̂min is then the value of xmin that minimizes D.5

There is good reason to expect this method to produce reasonable results. Note
in particular that for right-skewed data of the kind we consider here the method
is especially sensitive to slight deviations of the data from the power-law model
around xmin because most of the data, and hence most of the dynamic range of
the CDF, lie in this region. In practice, as we show in the following section, the
method appears to give excellent results and generally performs better than the BIC
approach.

3.4. Tests of Estimates for the Lower Bound. As with our MLEs for the scaling
parameter, we test our two methods for estimating xmin by generating synthetic data
and examining the methods’ ability to recover the known value of xmin. For the tests
presented here we use synthetic data drawn from a distribution with the form

(3.10) p(x) =

{

C(x/xmin)−α for x ≥ xmin ,

Ce−α(x/xmin−1) for x < xmin ,

with α = 2.5. This distribution follows a power law at xmin and above but an
exponential below. Furthermore, it has a continuous slope at xmin and thus deviates
only gently from the power law as we pass below this point, making for a challenging
test. Figure 4a shows a family of curves from this distribution for different values
of xmin.

In Figure 4b we show the results of the application of both the BIC and KS
methods for estimating xmin to a large collection of data sets drawn from (3.10). The
plot shows the average estimated value x̂min as a function of the true xmin for the
discrete case. The KS method appears to give good estimates of xmin in this case
and performance is similar for continuous data also (not shown), although the results
tend to be slightly more conservative (i.e., to yield slightly larger estimates x̂min). The
BIC method also performs reasonably, but, as the figure shows, the method displays
a tendency to underestimate xmin, as we might expect given the arguments of the
previous section. Based on these observations, we recommend the KS method for
estimating xmin for general applications.

These tests used synthetic data sets of n = 50 000 observations, but good es-
timates of xmin can be extracted from significantly smaller data sets using the KS
method; results are sensitive principally to the number ntail of observations in the
power-law part of the distribution. For both the continuous and discrete cases we
find that good results can be achieved provided we have about 1000 or more obser-
vations in this part of the distribution. This figure does depend on the particular
form of the non-power-law part of the distribution. In the present test, the distribu-
tion was designed specifically to make the determination of xmin challenging. Had we
chosen a form that makes a more pronounced departure from the power law below

5We note in passing that this approach can easily be generalized to the problem of estimating a
lower cut-off for data following other (non-power-law) types of distributions.
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Fig. 4 (a) Examples of the test distribution, (3.10), used in the calculations described in the text,
with power-law behavior for x above xmin but non-power-law behavior below. (b) The value
of xmin estimated using the BIC and KS approaches as described in the text, plotted as
a function of the true value for discrete data with n = 50 000. Results are similar for
continuous data.

xmin, then the task of estimating x̂min, would have been easier and presumably fewer
observations would have been needed to achieve results of similar quality.

For some possible distributions there is, in a sense, no true value of xmin. The
distribution p(x) = C(x + k)−α follows a power law in the limit of large x, but
there is no value of xmin above which it follows a power law exactly. Nonetheless, in
cases such as this, we would like our method to return an x̂min such that when we
subsequently calculate a best-fit value for α we get an accurate estimate of the true
scaling parameter. In tests with such distributions we find that the KS method yields
estimates of α that appear to be asymptotically consistent, meaning that α̂ → α as
n → ∞. Thus again the method appears to work well, although it remains an open
question whether one can derive rigorous performance guarantees.

Variations on the KS method are possible that use some other goodness-of-fit
measure that may perform better than the KS statistic under certain circumstances.
The KS statistic is, for instance, known to be relatively insensitive to differences
between distributions at the extreme limits of the range of x because in these limits
the CDFs necessarily tend to zero and one. It can be reweighted to avoid this problem
and be uniformly sensitive across the range [46]; the appropriate reweighting is

(3.11) D∗ = max
x≥x̂min

|S(x) − P (x)|
√

P (x)(1 − P (x))
.

In addition, a number of other goodness-of-fit statistics have been proposed and are
in common use, such as the Kuiper and Anderson–Darling statistics [13]. We have
performed tests with each of these alternative statistics and find that results for the
reweighted KS and Kuiper statistics are very similar to those for the standard KS
statistic. The Anderson–Darling statistic, on the other hand, we find to be highly
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conservative in this application, giving estimates x̂min that are too large by an order
of magnitude or more. When there are many samples in the tail of the distribu-
tion, this degree of conservatism may be acceptable, but in most cases the reduc-
tion in the number of tail observations greatly increases the statistical error on our
MLE for the scaling parameter and also reduces our ability to validate the power-law
model.

Finally, as with our estimate of the scaling parameter, we would like to quantify
the uncertainty in our estimate for xmin. One way to do this is to make use of a
nonparametric “bootstrap” method [16]. Given our n measurements, we generate
a synthetic data set with a similar distribution to the original by drawing a new
sequence of points xi, i = 1, . . . , n, uniformly at random from the original data (with
replacement). Using either method described above, we then estimate xmin and α
for this surrogate data set. By taking the standard deviation of these estimates over
a large number of repetitions of this process (say, 1000), we can derive principled
estimates of our uncertainty in the original estimated parameters.

3.5. Other Techniques. We would be remiss should we fail to mention some of
the other techniques in use for the analysis of power-law distributions, particularly
those developed within the statistics and finance communities, where the study of
these distributions has, perhaps, the longest history. We give only a brief summary
of this material here; readers interested in pursuing the topic further are encouraged
to consult the books by Adler, Feldman, and Taqqu [4] and Resnick [48] for a more
thorough explanation.6

In the statistical literature, researchers often consider a family of distributions of
the form

p(x) ∝ L(x)x−α ,(3.12)

where L(x) is some slowly varying function, so that, in the limit of large x, L(cx)/L(x)
→ 1 for any c > 0. An important issue in this case—as in the calculations presented in
this paper—is finding the point xmin at which the x−α can be considered to dominate
over the nonasymptotic behavior of the function L(x), a task that can be tricky if the
data span only a limited dynamic range or if the non-power-law behavior |L(x)−L(∞)|
decays only a little faster than x−α. In such cases, a visual approach—plotting an
estimate α̂ of the scaling parameter as a function of xmin (called a Hill plot) and
choosing for x̂min the value beyond which α̂ appears stable—is a common technique.
Plotting other statistics, however, can often yield better results—see, for example,
[33] and [57]. An alternative approach, quite common in the quantitative finance
literature, is simply to limit the analysis to the largest observed samples only, such
as the largest

√
n or 1

10n observations [17].
The methods described in section 3.3, however, offer several advantages over these

techniques. In particular, the KS method of section 3.3 gives estimates of xmin as
least as good while being simple to implement and having low enough computational
costs that it can be effectively used as a foundation for further analyses such as the
calculation of p-values in section 4. And, perhaps more importantly, because the KS
method removes the non-power-law portion of the data entirely from the estimation

6Another related area of study is “extreme value theory,” which concerns itself with the distribu-
tion of the largest or smallest values generated by probability distributions, values that assume some
importance in studies of, for instance, earthquakes, other natural disasters, and the risks thereof;
see [14].
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of the scaling parameter, the fit to the remaining data has a simple functional form
that allows us to easily test the level of agreement between the data and the best-fit
model, as discussed in section 5.

4. Testing the Power-Law Hypothesis. The tools described in the previous sec-
tions allow us to fit a power-law distribution to a given data set and provide estimates
of the parameters α and xmin. They tell us nothing, however, about whether the power
law is a plausible fit to the data. Regardless of the true distribution from which our
data were drawn, we can always fit a power law. We need some way to tell whether
the fit is a good match to the data.

Most previous empirical studies of ostensibly power-law distributed data have not
attempted to test the power-law hypothesis quantitatively. Instead, they typically
rely on qualitative appraisals of the data, based, for instance, on visualizations. But
these can be deceptive and can lead to claims of power-law behavior that do not
hold up under closer scrutiny. Consider Figure 5a, which shows the CDFs of three
small data sets (n = 100) drawn from a power-law distribution with α = 2.5, a log-
normal distribution with µ = 0.3 and σ = 2.0, and an exponential distribution with
exponential parameter λ = 0.125. In each case the distributions have a lower bound
of xmin = 15. Because each of these distributions looks roughly straight on the log-log
plot used in the figure, one might, upon cursory inspection, judge all three to follow
power laws, albeit with different scaling parameters. This judgment would, however,
be wrong—being roughly straight on a log-log plot is a necessary but not sufficient
condition for power-law behavior.

Unfortunately, it is not straightforward to say with certainty whether a particular
data set has a power-law distribution. Even if data are drawn from a power law their
observed distribution is extremely unlikely to exactly follow the power-law form; there
will always be some small deviations because of the random nature of the sampling
process. The challenge is to distinguish deviations of this type from those that arise
because the data are drawn from a non-power-law distribution.

The basic approach, as we describe in this section, is to sample many synthetic
data sets from a true power-law distribution, measure how far they fluctuate from the
power-law form, and compare the results with similar measurements on the empirical
data. If the empirical data set is much further from the power-law form than the
typical synthetic one, then the power law is not a plausible fit to the data. Two notes
of caution are worth sounding. First, the effectiveness of this approach depends on
how we measure the distance between distributions. Here, we use the KS statistic,
which typically gives good results, but in principle another goodness-of-fit measure
could be used in its place. Second, it is of course always possible that a non-power-law
process will, as a result again of sampling fluctuations, happen to generate a data set
with a distribution close to a power law, in which case our test will fail. The odds
of this happening, however, dwindle with increasing n, which is the primary reason
why one prefers large statistical samples when attempting to verify hypotheses such
as these.

4.1. Goodness-of-Fit Tests. Given an observed data set and a hypothesized
power-law distribution from which the data are drawn, we would like to know whether
our hypothesis is a plausible one, given the data.

A standard approach to answering this kind of question is to use a goodness-
of-fit test, which generates a p-value that quantifies the plausibility of the hypoth-
esis. Such tests are based on measurement of the “distance” between the distri-
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Fig. 5 (a) The CDFs of three small samples (n = 100) drawn from different continuous distribu-
tions: a log-normal with µ = 0.3 and σ = 2, a power law with α = 2.5, and an exponential
with λ = 0.125, all with xmin = 15. (Definitions of the parameters are as in Table 1.) Visu-
ally, each of the CDFs appears roughly straight on the logarithmic scales used, but only one
is a true power law. (b) The average p-value for the maximum likelihood power-law model for
samples from the same three distributions, as a function of the number of observations n. As
n increases, only the p-value for power-law distributed data remains above our rule-of-thumb
threshold p = 0.1, with the others falling off toward zero, indicating that p does correctly
identify the true power-law behavior in this case. (c) The average number of observations n
required to reject the power-law hypothesis (i.e., to make p < 0.1) for data drawn from the
log-normal and exponential distributions, as a function of xmin.

bution of the empirical data and the hypothesized model. This distance is com-
pared with distance measurements for comparable synthetic data sets drawn from
the same model, and the p-value is defined to be the fraction of the synthetic dis-
tances that are larger than the empirical distance. If p is large (close to 1), then
the difference between the empirical data and the model can be attributed to sta-
tistical fluctuations alone; if it is small, the model is not a plausible fit to the
data.
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As we have seen in sections 3.3 and 3.4 there are a variety of measures for quan-
tifying the distance between two distributions. In our calculations we use the KS
statistic, which we encountered in section 3.3.7 In detail, our procedure is as follows.

First, we fit our empirical data to the power-law model using the methods of
section 3 and calculate the KS statistic for this fit. Next, we generate a large num-
ber of power-law distributed synthetic data sets with scaling parameter α and lower
bound xmin equal to those of the distribution that best fits the observed data. We fit
each synthetic data set individually to its own power-law model and calculate the KS
statistic for each one relative to its own model. Then we simply count the fraction
of the time that the resulting statistic is larger than the value for the empirical data.
This fraction is our p-value.

Note that for each synthetic data set we compute the KS statistic relative to
the best-fit power law for that data set, not relative to the original distribution from
which the data set was drawn. In this way we ensure that we are performing for each
synthetic data set the same calculation that we performed for the real data set, a
crucial requirement if we wish to get an unbiased estimate of the p-value.

The generation of the synthetic data involves some subtleties. To obtain accurate
estimates of p we need synthetic data that have a distribution similar to the empirical
data below xmin but that follow the fitted power law above xmin. To generate such
data we make use of a semiparametric approach. Suppose that our observed data set
has ntail observations x ≥ xmin and n observations in total. We generate a new data
set with n observations as follows. With probability ntail/n we generate a random
number xi drawn from a power law with scaling parameter α̂ and x ≥ xmin. Otherwise,
with probability 1− ntail/n, we select one element uniformly at random from among
the elements of the observed data set that have x < xmin and set xi equal to that
element. Repeating the process for all i = 1, . . . , n we generate a complete synthetic
data set that indeed follows a power law above xmin but has the same (non-power-law)
distribution as the observed data below.

We also need to decide how many synthetic data sets to generate. Based on an
analysis of the expected worst-case performance of the test, a good rule of thumb turns
out to be the following: if we wish our p-values to be accurate to within about ε of the
true value, then we should generate at least 1

4 ε−2 synthetic data sets. Thus, if we wish
our p-value to be accurate to about 2 decimal digits, we should choose ε = 0.01, which
implies we should generate about 2500 synthetic sets. For the example calculations
described in section 6 we used numbers of this order, ranging from 1000 to 10 000
depending on the particular application.

Once we have calculated our p-value, we need to make a decision about whether
it is small enough to rule out the power-law hypothesis or whether, conversely, the
hypothesis is a plausible one for the data in question. In our calculations we have
made the relatively conservative choice that the power law is ruled out if p ≤ 0.1;
that is, it is ruled out if there is a probability of 1 in 10 or less that we would merely
by chance get data that agree as poorly with the model as the data we have. (In
other contexts, many authors use the more lenient rule p ≤ 0.05, but we feel this
would let through some candidate distributions that have only a very small chance of

7One of the nice features of the KS statistic is that its distribution is known for data sets truly
drawn from any given distribution. This allows one to write down an explicit expression in the limit
of large n for the p-value; see, for example, [46]. Unfortunately, this expression is only correct so
long as the underlying distribution is fixed. If, as in our case, the underlying distribution is itself
determined by fitting to the data and hence varies from one data set to the next, we cannot use this
approach, which is why we recommend the Monte Carlo procedure described here instead.
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really following a power law. Of course, in practice, the particular rule adopted must
depend on the judgment of the investigator and the circumstances at hand.8)

It is important to appreciate that a large p-value does not necessarily mean the
power law is the correct distribution for the data. There are (at least) two reasons for
this. First, there may be other distributions that match the data equally well or better
over the range of x observed. Other tests are needed to rule out such alternatives,
which we discuss in section 5.

Second, as mentioned above, it is possible for small values of n that the empirical
distribution will follow a power law closely, and hence that the p-value will be large,
even when the power law is the wrong model for the data. This is not a deficiency
of the method; it reflects the fact that it is genuinely harder to rule out the power
law if we have very little data. For this reason, high p-values should be treated with
caution when n is small.

4.2. Performance of the Goodness-of-Fit Test. To demonstrate the utility of
this approach, and to show that it can correctly distinguish power-law from non-
power-law behavior, we consider data of the type shown in Figure 5a, drawn from
continuous power-law, log-normal, and exponential distributions. In Figure 5b we
show the average p-value, calculated as above, for data sets drawn from these three
distributions, as a function of the number of samples n. When n is small, meaning
n " 100 in this case, the p-values for all three distributions are above our threshold
of 0.1, meaning that the power-law hypothesis is not ruled out by our test—for samples
this small we cannot accurately distinguish the data sets because there is simply not
enough data to go on. As the sizes of the samples become larger, however, the p-values
for the two non-power-law distributions fall off and it becomes possible to say that
the power-law model is a poor fit for these data sets, while remaining a good fit for
the true power-law data set.

It is important to note, however, that, since we fit the power-law form to only the
part of the distribution above xmin, the value of xmin effectively controls the number
of data points we have to work with. If xmin is large, then only a small fraction of
the data set falls above it and thus the larger the value of xmin, the larger the total
value of n needed to reject the power law. This phenomenon is depicted in Figure 5c,
which shows the value of n needed to cross below the threshold value of p = 0.1 for
the log-normal and exponential distributions as a function of xmin.

5. Alternative Distributions. The method described in section 4 provides a re-
liable way to test whether a given data set is plausibly drawn from a power-law
distribution. However, the results of such tests don’t tell the whole story. Even if our
data are well fit by a power law, it is still possible that another distribution, such as an
exponential or a log-normal, might give a fit as good or better. We can eliminate this
possibility by using a goodness-of-fit test again—we can simply calculate a p-value for
a fit to the competing distribution and compare it to the p-value for the power law.

Suppose, for instance, that we believe our data might follow either a power-law
or an exponential distribution. If we discover that the p-value for the power law is
reasonably large (say, p > 0.1), then the power law is not ruled out. To strengthen

8Some readers will be familiar with the use of p-values to confirm (rather than rule out) hy-
potheses for experimental data. In the latter context, one quotes a p-value for a “null” model, a
model other than the model the experiment is attempting to verify. Normally one then considers low
values of p to be good, since they indicate that the null hypothesis is unlikely to be correct. Here, by
contrast, we use the p-value as a measure of the hypothesis we are trying to verify, and hence high
values, not low, are “good.” For a general discussion of the interpretation of p-values, see [39].
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our case for the power law we would like to rule out the competing exponential dis-
tribution, if possible. To do this, we would find the best-fit exponential distribution,
using the equivalent for exponentials of the methods of section 3, and the correspond-
ing KS statistic, then repeat the calculation for a large number of synthetic data sets
and hence calculate a p-value. If the p-value is sufficiently small, we can rule out the
exponential as a model for our data.

By combining p-value calculations with respect to the power law and several
plausible competing distributions, we can in this way make a good case for or against
the power-law form for our data. In particular, if the p-value for the power law is
high, while those for competing distributions are small, then the competition is ruled
out and, although we cannot say absolutely that the power law is correct, the case in
its favor is strengthened.

We cannot of course compare the power-law fit of our data with fits to every
competing distribution, of which there is an infinite number. Indeed, as is usually the
case with data fitting, it will almost always be possible to find a class of distributions
that fits the data better than the power law if we define a family of curves with
a sufficiently large number of parameters. Fitting the statistical distribution of data
should therefore be approached using a combination of statistical techniques like those
described here and prior knowledge about what constitutes a reasonable model for
the data. Statistical tests can be used to rule out specific hypotheses, but it is up to
the researcher to decide what a reasonable hypothesis is in the first place.

5.1. Direct Comparison of Models. The methods of the previous section can
tell us whether either or both of two candidate distributions—usually the power-law
distribution and some alternative—can be ruled out as a fit to our data or, if neither
is ruled out, which is the better fit. In many practical situations, however, we only
want to know the latter—which distribution is the better fit. This is because we will
normally have already performed a goodness-of-fit test for the first distribution, the
power law. If that test fails and the power law is rejected, then our work is done and
we can move on to other things. If it passes, on the other hand, then our principal
concern is whether another distribution might provide a better fit.

In such cases, methods exist which can directly compare two distributions against
each other and which are considerably easier to implement than the KS test. In this
section we describe one such method, the likelihood ratio test.9

The basic idea behind the likelihood ratio test is to compute the likelihood of
the data under two competing distributions. The one with the higher likelihood is
then the better fit. Alternatively, one can calculate the ratio of the two likelihoods,
or equivalently the logarithm R of the ratio, which is positive or negative depending
on which distribution is better, or zero in the event of a tie.

The sign of the log-likelihood ratio alone, however, will not definitively indicate
which model is the better fit because, like other quantities, it is subject to statistical
fluctuation. If its true value, meaning its expected value over many independent data
sets drawn from the same distribution, is close to zero, then the fluctuations could
change the sign of the ratio and hence the results of the test cannot be trusted. In
order to make a firm choice between distributions we need a log-likelihood ratio that
is sufficiently positive or negative that it could not plausibly be the result of a chance
fluctuation from a true result that is close to zero.

9The likelihood ratio test is not the only possible approach. Others include fully Bayesian
approaches [31], cross-validation [58], or minimum description length (MDL) [20].
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To make a quantitative judgment about whether the observed value of R is suffi-
ciently far from zero, we need to know the size of the expected fluctuations; that is, we
need to know the standard deviation σ on R. This we can estimate from our data
using a method proposed by Vuong [62]. This method gives a p-value that tells us
whether the observed sign of R is statistically significant. If this p-value is small (say,
p < 0.1), then it is unlikely that the observed sign is a chance result of fluctuations
and the sign is a reliable indicator of which model is the better fit to the data. If p
is large, on the other hand, the sign is not reliable and the test does not favor either
model over the other. It is one of the advantages of this approach that it can tell us
not only which of two hypotheses is favored, but also when the data are insufficient to
favor either of them.10 The simple goodness-of-fit test of the previous section provides
no equivalent indication when the data are insufficient.11 The technical details of the
likelihood ratio test are described in Appendix C.

5.2. Nested Hypotheses. In some cases the distributions we wish to compare
may be nested, meaning that one family of distributions is a subset of the other. The
power law and the power law with exponential cutoff in Table 1 provide an example
of such nested distributions. When distributions are nested it is always the case that
the larger family of distributions will provide a fit at least as good as the smaller,
since every member of the smaller family is also a member of the larger. In this case,
a slightly modified likelihood ratio test is needed to properly distinguish between such
models, as described in Appendix C.

5.3. Performance of the Likelihood Ratio Test. As with the other methods
discussed here, we can quantify the performance of the likelihood ratio test by applying
it to synthetic data. For our tests, we generated data from two distributions: a
continuous power law with α = 2.5 and xmin = 1, and a log-normal distribution
with µ = 0.3 and σ = 2 constrained to only produce positive values of x. (These
are the same parameter values we used in section 4.2.) In each case we drew n
independent values from each distribution and estimated the value of xmin for each
set of values, then calculated the likelihood ratio for the data above xmin and the
corresponding p-value. This procedure was repeated 1000 times to assess sampling
fluctuations. Following Vuong [62] we calculated the normalized log-likelihood ratio
n−1/2R/σ, where σ is the estimated standard deviation on R. The normalized figure
is in many ways more convenient than the raw one since the p-value can be calculated
directly from it using eq. (C.6). (In a sense this makes it unnecessary to actually
calculate p since the normalized log-likelihood ratio contains the same information,
but it is convenient when making judgments about particular cases to have the actual
p-value at hand, so we give both in our results.)

10In cases where we are unable to distinguish between two hypothesized distributions, one could
claim that there is really no difference between them: if both are good fits to the data, then it makes
no difference which one we use. This may be true in some cases, but it is certainly not true in general.
In particular, if we wish to extrapolate a fitted distribution far into its tail, to predict, for example,
the frequencies of large but rare events like major earthquakes or meteor impacts, then conclusions
based on different fitted forms can differ enormously even if the forms are indistinguishable in the
domain covered by the actual data. Thus the ability to say whether the data clearly favor one
hypothesis over another can have substantial practical consequences.

11One alternative method for choosing between distributions, the Bayesian approach described
in [59], is essentially equivalent to the likelihood ratio test, but without the p-value to tell us when
the results are significant. The Bayesian estimation used is equivalent to a smoothing, which to some
extent buffers the results against the effects of fluctuations [52], but the method itself is not capable
of determining whether the results could be due to chance [38, 64].
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Fig. 6 Behavior of the normalized log-likelihood ratio n−1/2R/σ for synthetic data sets of n points
drawn from either (a) a continuous power law with α = 2.5 and xmin = 1 or (b) a log-normal
with µ = 0.3 and σ = 2. Results are averaged over 1000 replications at each sample size,
and the range covered by the 1st to 3rd quartiles is shown in gray.

Figure 6 shows the behavior of the normalized log-likelihood ratio as a function
of n. As the figure shows, it becomes increasing positive as n grows for data drawn
from a true power law, but increasingly negative for data drawn from a log-normal.

If we ignore the p-value and simply classify each of our synthetic data sets as
power-law or log-normal according to the raw sign of the log-likelihood ratio R, then,
as we have said, we will sometimes reach the wrong conclusion if R is close to zero
and we are unlucky with the sampling fluctuations. Figure 7a shows the fraction
of data sets misclassified in this way in our tests as a function of n, and though
the numbers decrease with sample size n, they are uncomfortably large for moderate
values. If we take the p-value into account, however, using its value to perform a more
nuanced classification as power-law, log-normal, or undecided, as described above, the
fraction of misclassifications is far better, falling to a few parts per thousand, even
for quite modest sample sizes—see Figure 7b. These results indicate that the p-
value is effective at identifying cases in which the data are insufficient to make a firm
distinction between hypotheses.

6. Applications to Real-World Data. In this section, as a demonstration of the
utility of the methods described in this paper, we apply them to a variety of real-
world data sets representing measurements of quantities whose distributions have
been conjectured to follow power laws. As we will see, the results indicate that some
of the data sets are indeed consistent with a power-law hypothesis, but others are
not, and some are marginal cases for which the power law is a possible candidate
distribution, but is not strongly supported by the data.

The 24 data sets we study are drawn from a broad variety of different branches
of human endeavor, including physics, earth sciences, biology, ecology, paleontology,
computer and information sciences, engineering, and the social sciences. They are as
follows:
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Fig. 7 Rates of misclassification of distributions by the likelihood ratio test if (a) the p-value is
ignored and classification is based only on the sign of the log-likelihood ratio, and (b) if the
p-value is taken into account and we count only misclassifications where the log-likelihood
ratio has the wrong sign and the p-value is less than 0.05. Results are for the same synthetic
data as Figure 6. The black line shows the rate of misclassification (over 1000 repetitions)
of power-law samples as log-normals (95% confidence interval shown in gray), while the
(dashed) line shows the rate of misclassification of log-normals as power laws (95% confidence
interval is smaller than the width of the line).

(a) The frequency of occurrence of unique words in the novel Moby Dick by
Herman Melville [43].

(b) The degrees (i.e., numbers of distinct interaction partners) of proteins in
the partially known protein-interaction network of the yeast Saccharomyces
cerevisiae [28].

(c) The degrees of metabolites in the metabolic network of the bacterium Es-
cherichia coli [26].

(d) The degrees of nodes in the partially known network representation of the In-
ternet at the level of autonomous systems for May 2006 [25]. (An autonomous
system is a group of IP addresses on the Internet among which routing is han-
dled internally or “autonomously,” rather than using the Internet’s large-scale
border gateway protocol routing mechanism.)

(e) The number of calls received by customers of AT&T’s long distance telephone
service in the United States during a single day [1, 5].

(f) The intensity of wars from 1816–1980 measured as the number of battle deaths
per 10 000 of the combined populations of the warring nations [53, 49].

(g) The severity of terrorist attacks worldwide from February 1968 to June 2006,
measured as the number of deaths directly resulting [11].

(h) The number of bytes of data received as the result of individual web (HTTP)
requests from computer users at a large research laboratory during a 24-hour
period in June 1996 [68]. Roughly speaking, this distribution represents the
size distribution of web files transmitted over the Internet.

(i) The number of species per genus of mammals. This data set, compiled by
Smith et al. [54], is composed primarily of species alive today but also includes
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some recently extinct species, where “recent” in this context means the last
few tens of thousands of years.

(j) The numbers of sightings of birds of different species in the North American
Breeding Bird Survey for 2003.

(k) The numbers of customers affected in electrical blackouts in the United States
between 1984 and 2002 [43].

(l) The numbers of copies of bestselling books sold in the United States during
the period 1895 to 1965 [21].

(m) The human populations of U.S. cities in the 2000 U.S. Census.
(n) The sizes of email address books of computer users at a large university [44].
(o) The sizes in acres of wildfires occurring on U.S. federal land between 1986

and 1996 [43].
(p) Peak gamma-ray intensity of solar flares between 1980 and 1989 [43].
(q) The intensities of earthquakes occurring in California between 1910 and 1992,

measured as the maximum amplitude of motion during the quake [43].
(r) The numbers of adherents of religious denominations, bodies, and sects, as

compiled and published on the web site adherents.com.
(s) The frequencies of occurrence of U.S. family names in the 1990 U.S. Census.
(t) The aggregate net worth in U.S. dollars of the richest individuals in the United

States in October 2003 [43].
(u) The number of citations received between publication and June 1997 by sci-

entific papers published in 1981 and listed in the Science Citation Index [47].
(v) The number of academic papers authored or coauthored by mathematicians

listed in the American Mathematical Society’s MathSciNet database. (Data
compiled by J. Grossman.)

(w) The number of “hits” received by web sites from customers of the America
Online Internet service in a single day [3].

(x) The number of links to web sites found in a 1997 web crawl of about 200
million web pages [10].

Many of these data sets are only subsets of much larger entities (such as the web
sites, which are only a small fraction of the entire web). In some cases it is known that
the sampling procedure used to obtain these subsets may be biased, as, for example,
in the protein interactions [56], citations and authorships [9], and the Internet [2, 15].
We have not attempted to correct any biases in our analysis.

In Table 3 we show results from the fitting of a power-law form to each of these
data sets using the methods described in section 3, along with a variety of generic
statistics for the data such as mean, standard deviation, and maximum value. In the
last column of the table we give the p-value for the power-law model, estimated as
in section 4, which gives a measure of how plausible the power law is as a fit to the
data. Figures 8 and 9 show these data graphically, along with the estimated power-law
distributions.

As an indication of the importance of accurate methods for fitting power-law data,
we note that many of our values for the scaling parameters differ considerably from
those derived from the same data by previous authors using ad hoc methods. For
instance, the scaling parameter for the protein interaction network of [28] has been
reported to take a value of 2.44 [69], which is quite different from, and incompatible
with, the value we find of 3.1 ± 0.3. Similarly, the citation distribution data of [47]
have been reported to have a scaling parameter of either 2.9 [61] or 2.5 [32], neither
of which are compatible with our maximum likelihood figure of 3.16 ± 0.06.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

684 A. CLAUSET, C. R. SHALIZI, AND M. E. J. NEWMAN

Ta
bl

e
3

B
a
si

c
pa

ra
m

et
er

s
o
f
th

e
d
a
ta

se
ts

d
es

cr
ib

ed
in

se
ct

io
n

6,
a
lo

n
g

w
it
h

th
ei

r
po

w
er

-l
a
w

fi
ts

a
n
d

th
e

co
rr

es
po

n
d
in

g
p
-v

a
lu

es
(s

ta
ti
st

ic
a
ll
y

si
gn

ifi
ca

n
t
va

lu
es

a
re

d
en

o
te

d
in

bo
ld

).

Q
u
an

ti
ty

n
〈x

〉
σ

x
m

a
x

x̂
m

in
α̂

n
ta

il
p

co
u
n
t

of
w

or
d

u
se

18
85

5
11

.1
4

14
8.

33
14

08
6

7
±

2
1.

95
(2

)
29

58
±

98
7

0
.4

9
p
ro

te
in

in
te

ra
ct

io
n

d
eg

re
e

18
46

2.
34

3.
05

56
5
±

2
3.

1(
3)

20
4
±

26
3

0
.3

1
m

et
ab

ol
ic

d
eg

re
e

16
41

5.
68

17
.8

1
46

8
4
±

1
2.

8(
1)

74
8
±

13
6

0.
00

In
te

rn
et

d
eg

re
e

22
68

8
5.

63
37

.8
3

25
83

21
±

9
2.

12
(9

)
77

0
±

11
24

0
.2

9
te

le
p
h
on

e
ca

ll
s

re
ce

iv
ed

51
36

0
42

3
3.

88
17

9.
09

37
5

74
6

12
0
±

49
2.

09
(1

)
10

2
59

2
±

21
0
14

7
0
.6

3
in

te
n
si

ty
of

w
ar

s
11

5
15

.7
0

49
.9

7
38

2
2.

1
±

3.
5

1.
7(

2)
70

±
14

0
.2

0
te

rr
or

is
t

at
ta

ck
se

ve
ri

ty
91

01
4.

35
31

.5
8

27
49

12
±

4
2.

4(
2)

54
7
±

16
63

0
.6

8
H

T
T

P
si

ze
(k

il
ob

y
te

s)
22

6
38

6
7.

36
57

.9
4

10
97

1
36

.2
5
±

22
.7

4
2.

48
(5

)
67

94
±

22
32

0.
00

sp
ec

ie
s

p
er

ge
n
u
s

50
9

5.
59

6.
94

56
4
±

2
2.

4(
2)

23
3
±

13
8

0
.1

0
b
ir

d
sp

ec
ie

s
si

gh
ti

n
gs

59
1

33
84

.3
6

10
95

2.
34

13
8

70
5

66
79

±
24

63
2.

1(
2)

66
±

41
0
.5

5
b
la

ck
ou

ts
(×

10
3
)

21
1

25
3.

87
61

0.
31

75
00

23
0
±

90
2.

3(
3)

59
±

35
0
.6

2
sa

le
s

of
b
o
ok

s
(×

10
3
)

63
3

19
86

.6
7

13
96

.6
0

19
07

7
24

00
±

43
0

3.
7(

3)
13

9
±

11
5

0
.6

6

p
op

u
la

ti
on

of
ci

ti
es

(×
10

3
)

19
44

7
9.

00
77

.8
3

8
00

9
52

.4
6
±

11
.8

8
2.

37
(8

)
58

0
±

17
7

0
.7

6
em

ai
l
ad

d
re

ss
b
o
ok

s
si

ze
45

81
12

.4
5

21
.4

9
33

3
57

±
21

3.
5(

6)
19

6
±

44
9

0
.1

6
fo

re
st

fi
re

si
ze

(a
cr

es
)

20
3

78
5

0.
90

20
.9

9
41

21
63

24
±

34
87

2.
2(

3)
52

1
±

68
01

0.
05

so
la

r
fl
ar

e
in

te
n
si

ty
12

77
3

68
9.

41
65

20
.5

9
23

1
30

0
32

3
±

89
1.

79
(2

)
17

11
±

38
4

1
.0

0
q
u
ak

e
in

te
n
si

ty
(×

10
3
)

19
30

2
24

.5
4

56
3.

83
63

09
6

0.
79

4
±

80
.1

98
1.

64
(4

)
11

69
7
±

21
59

0.
00

re
li
gi

ou
s

fo
ll
ow

er
s

(×
10

6
)

10
3

27
.3

6
13

6.
64

10
50

3.
85

±
1.

60
1.

8(
1)

39
±

26
0
.4

2
fr

eq
.
of

su
rn

am
es

(×
10

3
)

27
53

50
.5

9
11

3.
99

25
02

11
1.

92
±

40
.6

7
2.

5(
2)

23
9
±

21
5

0
.2

0
n
et

w
or

th
(m

il
.
U

S
D

)
40

0
23

88
.6

9
4
16

7.
35

46
00

0
90

0
±

36
4

2.
3(

1)
30

2
±

77
0.

00
ci

ta
ti

on
s

to
p
ap

er
s

41
5

22
9

16
.1

7
44

.0
2

89
04

16
0
±

35
3.

16
(6

)
34

55
±

18
59

0
.2

0
p
ap

er
s

au
th

or
ed

40
1

44
5

7.
21

16
.5

2
14

16
13

3
±

13
4.

3(
1)

98
8
±

37
7

0
.9

0
h
it

s
to

w
eb

si
te

s
11

9
72

4
9.

83
39

2.
52

12
9

64
1

2
±

13
1.

81
(8

)
50

98
1
±

16
89

8
0.

00
li
n
k
s

to
w

eb
si

te
s

24
1
42

8
85

3
9.

15
10

6
87

1.
65

1
19

9
46

6
36

84
±

15
1

2.
33

6(
9)

28
98

6
±

15
60

0.
00



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POWER-LAW DISTRIBUTIONS IN EMPIRICAL DATA 685

10
0

10
2

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(x

)

 

 
(a)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

 

 
(b)

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

 

 
(c)

metabolic

10
0

10
2

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(x

)

 

 
(d)

Internet

10
0

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

 

 
(e)

calls

words proteins

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

 

 
(f)

wars

10
0

10
2

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(x

)

 

 
(g)

terrorism

10
2

10
4

10
6

10
8

10
−6

10
−4

10
−2

10
0

 

 
(h)

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 

 
(i)

species

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

x

P
(x

)

 

 
(j)

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

x

 

 
(k)

10
6

10
7

10
−3

10
−2

10
−1

10
0

x

 

 
(l)

HTTP

birds blackouts book sales

Fig. 8 The CDFs P (x) and their maximum likelihood power-law fits for the first 12 of our 24
empirical data sets. (a) The frequency of occurrence of unique words in the novel Moby
Dick by Herman Melville. (b) The degree distribution of proteins in the protein interaction
network of the yeast S. cerevisiae. (c) The degree distribution of metabolites in the metabolic
network of the bacterium E. coli. (d) The degree distribution of autonomous systems (groups
of computers under single administrative control) on the Internet. (e) The number of calls
received by U.S. customers of the long-distance telephone carrier AT&T. (f) The intensity
of wars from 1816–1980 measured as the number of battle deaths per 10 000 of the combined
populations of the warring nations. (g) The severity of terrorist attacks worldwide from
February 1968 to June 2006, measured by number of deaths. (h) The number of bytes of data
received in response to HTTP (web) requests from computers at a large research laboratory.
(i) The number of species per genus of mammals during the late Quaternary period. (j) The
frequency of sightings of bird species in the United States. (k) The number of customers
affected by electrical blackouts in the United States. (l) The sales volume of bestselling books
in the United States.

The p-values in Table 3 indicate that 17 of the 24 data sets are consistent with a
power-law distribution. The remaining seven data sets all have p-values small enough
that the power-law model can be firmly ruled out. In particular, the distributions
for the HTTP connections, earthquakes, web links, fires, wealth, web hits, and the
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Fig. 9 The CDFs P (x) and their maximum likelihood power-law fits for the second 12 of our 24
empirical data sets. (m) The populations of cities in the United States. (n) The sizes of
email address books at a university. (o) The number of acres burned in California forest fires.
(p) The intensities of solar flares. (q) The intensities of earthquakes. (r) The numbers of
adherents of religious sects. (s) The frequencies of surnames in the United States. (t) The
net worth in U.S. dollars of the richest people in the United States. (u) The numbers of
citations received by published academic papers. (v) The numbers of papers authored by
mathematicians. (w) The numbers of hits on web sites from AOL users. (x) The numbers
of hyperlinks to web sites.

metabolic network cannot plausibly be considered to follow a power law; the prob-
ability of getting by chance a fit as poor as the one observed is very small in each
of these cases and one would have to be unreasonably optimistic to see power-law
behavior in any of these data sets. (For two data sets—the HTTP connections and
wealth distribution—the power law, while not a good fit, is nonetheless better than
the alternatives we tested using the likelihood ratio test, implying that these data sets
are not well characterized by any of the functional forms considered here.)

Tables 4 and 5 show the results of likelihood ratio tests comparing the best-fit
power laws for each of our data sets to the alternative distributions given in Table 1.
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For reference, the first column repeats the p-values given in Table 3. Based on the
results of our tests, we summarize in the final column of the table how convincing the
power-law model is as a fit to each data set.

There is only one case—the distribution of the frequencies of occurrence of words
in English text—in which the power law appears to be truly convincing, in the sense
that it is an excellent fit to the data and none of the alternatives carries any weight.

Among the remaining data sets we can rule out the exponential distribution as a
possible fit in all cases save three. The three exceptions are the blackouts, religions,
and email address books, for which the power law is favored over the exponential but
the accompanying p-value is large enough that the results cannot be trusted. For the
discrete data sets (Table 5) we can also rule out the Poisson distribution in every case.

The results for the log-normal and stretched exponential distributions are more
ambiguous; in most cases the p-values for the log-likelihood ratio tests are sufficiently
large that the results of the tests are inconclusive. In particular, the distributions
for birds, books, cities, religions, wars, citations, papers, proteins, and terrorism are
plausible power laws, but they are also plausible log-normals and stretched expo-
nentials. In cases such as these, it is important to look at physical motivating or
theoretical factors to make a sensible judgment about which distributional form is
more reasonable—we must consider whether there is a mechanistic or other non-
statistical argument favoring one distribution or another. The specific problem of the
indistinguishability of power laws and stretched exponentials has also been discussed
by Malevergne, Pisarenko, and Sornette [35].

In some other cases the likelihood ratio tests do give conclusive answers. For
instance, the stretched exponential is ruled out for the book sales, telephone calls,
and citation counts, but is strongly favored over the power law for the forest fires and
earthquakes. The log-normal, on the other hand, is not ruled out for any of our data
sets except the HTTP connections. In general, we find that it is extremely difficult to
tell the difference between log-normal and power-law behavior. Indeed, over realistic
ranges of x the two distributions are very close, so it appears unlikely that any test
would be able to tell them apart unless we had an extremely large data set. (See the
results on synthetic data reported in section 5.)

Finally, for almost a dozen data sets—the forest fires, solar flares, earthquakes,
web hits, web links, telephone calls, Internet, email address books, and mammal
species—the power law with a cut-off is clearly favored over the pure power law. For
surnames the cut-off form is also favored but only weakly, as the p-value is very close
to our threshold. For the remaining data sets, the large p-values indicate that there
is no statistical reason to prefer the cut-off form over the pure form.

7. Conclusions. The study of power laws spans many disciplines, including phy-
sics, biology, engineering, computer science, the earth sciences, economics, political
science, sociology, and statistics. Unfortunately, well-founded methods for analyzing
power-law data have not yet taken root in all, or even most, of these areas and in
many cases hypothesized distributions are not tested rigorously against the data. This
leaves open the possibility that conjectured power-law behavior is, in some cases at
least, the result of wishful thinking.

In this paper we have argued that the common practice of identifying and quan-
tifying power-law distributions by the approximately straight-line behavior of a his-
togram on a doubly logarithmic plot should not be trusted: such straight-line behavior
is a necessary but by no means sufficient condition for true power-law behavior. In-
stead, we have presented a statistically principled set of techniques that allow for the
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validation and quantification of power laws. Properly applied, these techniques can
provide objective evidence for or against the claim that a particular distribution fol-
lows a power law. In principle, they could also be extended to other, non-power-law
distributions as well, although we have not given such an extension here.

We have applied the methods we describe to a large number of data sets from
various fields. For many of these the power-law hypothesis turns out to be, statistically
speaking, a reasonable description of the data. That is, the data are compatible with
the hypothesis that they are drawn from a power-law distribution, although they are
often compatible with other distributions as well, such as log-normal or stretched
exponential distributions. In the remaining cases the power-law hypothesis is found
to be incompatible with the observed data. In some instances, such as the distribution
of earthquakes, the power law is plausible only if one assumes an exponential cut-off
that modifies the extreme tail of the distribution.

For some measured quantities, the answers to questions of scientific interest may
not rest upon the distribution following a power law perfectly. It may be enough, for
example, that a quantity merely have a heavy-tailed distribution. In studies of the
Internet, for instance, the distributions of many quantities, such as file sizes, HTTP
connections, node degrees, and so forth, have heavy tails and appear visually to follow
a power law, but upon more careful analysis it proves impossible to make a strong
case for the power-law hypothesis; typically the power-law distribution is not ruled
out but competing distributions may offer a better fit to the data. Whether this
constitutes a problem for the researcher depends largely on his or her scientific goals.
For network engineers, simply quantifying the heavy tail may be enough to allow
them to address questions concerning, for instance, future infrastructure needs or the
risk of overload from large but rare events. Thus in some cases power-law behavior
may not be fundamentally more interesting than any other heavy-tailed distribution.
(In such cases, nonparametric estimates of the distribution may be useful, though
making such estimates for heavy-tailed data presents special difficulties [36].) If, on
the other hand, the goal is, say, to infer plausible mechanisms that might underlie the
formation and evolution of Internet structure or traffic patterns, then it may matter
greatly whether the observed quantity follows a power law or some other form.

In closing, we echo comments made by Ijiri and Simon [27] more than thirty years
ago and similar thoughts expressed more recently by Mitzenmacher [41]. They argue
that the characterization of empirical distributions is only a part of the challenge
that faces us in explaining the causes and roles of power laws in the sciences. In
addition, we also need methods to validate the models that have been proposed to
explain those power laws. They also urge that, wherever possible, we consider to
what practical purposes these robust and interesting behaviors can be put. We hope
that the methods given here will prove useful in all of these endeavors, and that these
long-held hopes will at last be fulfilled.

Appendix A. Linear Regression and Power Laws. The most common approach
for testing empirical data against a hypothesized power-law distribution is to observe
that the power law p(x) ∼ x−α implies the linear form

(A.1) log p(x) = α log x + c.

The probability density p(x) can be estimated by constructing a histogram of the
data (or alternatively one can construct the CDF by a simple rank ordering of the
data) and the resulting function can then be fitted to the linear form by least-squares
linear regression. The slope of the fit is interpreted as the estimate α̂ of the scaling
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parameter. Many standard packages exist that can perform this kind of fitting, provide
estimates and standard errors for the slope, and calculate the fraction r2 of variance
accounted for by the fitted line, which is taken as an indicator of the quality of the fit.

Although this procedure appears frequently in the literature, there are several
problems with it. As we saw in section 3, the estimates of the slope are subject to
systematic and potentially large errors (see Table 2 and Figure 2), but there are a
number of other serious problems as well. First, errors are hard to estimate because
they are not well described by the usual regression formulas, which are based on
assumptions that do not apply in this case. For continuous data, this problem can
be exacerbated by the choice of binning scheme used to construct the histogram,
which introduces an additional set of free parameters. Second, a fit to a power-law
distribution can account for a large fraction of the variance even when the fitted data
do not follow a power law, and hence high values of r2 cannot be taken as evidence in
favor of the power-law form. Third, the fits extracted by regression methods usually
do not satisfy basic requirements on probability distributions, such as normalization,
and hence cannot be correct.

Let us look at each of these objections in a little more detail.

A.1. Calculation of Standard Errors. The ordinary formula for the calculation
of the standard error on the slope of a regression line is correct when the assumptions
of linear regression hold, which include independent, Gaussian noise in the dependent
variable at each value of the independent variable. When fitting to the logarithm of
a histogram as in the analysis of power-law data, however, the noise, though inde-
pendent, is not Gaussian. The noise in the frequency estimates p(x) themselves is
Gaussian (actually Poissonian), but the noise in their logarithms is not. (For lnp(x)
to have Gaussian fluctuations, p(x) would have to have log-normal fluctuations, which
would violate the central limit theorem.) Thus the formula for the error is inapplicable
in this case.

For fits to the CDF the noise in the individual values P (x) is Gaussian (since it
is the sum of independent Gaussian variables), but again the noise in the logarithm
is not. Furthermore, the assumption of independence now fails, because P (x) =
P (x + 1) + p(x) and hence adjacent values of the CDF are strongly correlated. Fits
to the CDF are, as we showed in section 3, empirically more accurate as a method for
determining the scaling parameter α, but this is not because the assumptions of the
fit are any more valid. The improvement arises because the statistical fluctuations in
the CDF are typically much smaller than those in the PDF. The error on the scaling
parameter is thus smaller, but this does not mean that the estimate of the error is
any better. (In fact, it is typically a gross underestimate because of the failure to
account for the correlations.)

A.2. Validation. If our data are truly drawn from a power-law distribution and
n is large, then the probability of getting a low r2 in a straight-line fit is small, so
a low value of r2 can be used to reject the power-law hypothesis. Unfortunately, as
we saw in section 4, distributions that are nothing like a power law can appear to
follow a power law for small samples and some, like the log-normal, can approximate
a power law closely over many orders of magnitude, resulting in high values of r2.
And even when the fitted distribution approximates a power law quite poorly, it can
still account for a significant fraction of the variance, although less than the true
power law. Thus, though a low r2 is informative, in practice we rarely see a low r2,
regardless of the actual form of the distribution, so that the value of r2 tells us little.
In the terminology of statistical theory, the value of r2 has very little power as a
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hypothesis test because the probability of successfully detecting a violation of the
power-law assumption is low.

A.3. Regression Lines Are Not Valid Distributions. The CDF must take the
value 1 at xmin if the probability distribution above xmin is properly normalized.
Ordinary linear regression, however, does not incorporate such constraints and hence,
in general, the regression line does not respect them. Similar considerations apply
for the PDF, which must integrate to 1 over the range from xmin to ∞. Standard
methods exist to incorporate constraints like these into the regression analysis [65],
but they are not used to any significant extent in the literature on power laws.

Appendix B. Maximum Likelihood Estimators for the Power Law. In this
appendix we give derivations of the maximum likelihood estimators (MLEs) for the
scaling parameter of a power law.

B.1. Continuous Data. In the case of continuous data the MLE for the scal-
ing parameter, first derived (to our knowledge) by Muniruzzaman in 1957 [42], is
equivalent to the well-known Hill estimator [24]. Consider the continuous power-law
distribution

p(x) =
α − 1
xmin

(

x

xmin

)−α

,(B.1)

where α is the scaling parameter and xmin is the minimum value at which power-law
behavior holds. Given a data set containing n observations xi ≥ xmin, we would like
to know the value of α for the power-law model that is most likely to have generated
our data. The probability that the data were drawn from the model is proportional
to

p(x |α) =
n

∏

i=1

α − 1
xmin

(

xi

xmin

)−α

.(B.2)

This probability is called the likelihood of the data given the model. The data are most
likely to have been generated by the model with scaling parameter α that maximizes
this function. Commonly we actually work with the logarithm L of the likelihood,
which has its maximum in the same place:

L = ln p(x |α) = ln
n

∏

i=1

α − 1
xmin

(

xi

xmin

)−α

=
n

∑

i=1

[

ln(α − 1) − lnxmin − α ln
xi

xmin

]

= n ln(α − 1) − n lnxmin − α
n

∑

i=1

ln
xi

xmin
.(B.3)

Setting ∂L/∂α = 0 and solving for α, we obtain the following MLE for the scaling
parameter:

α̂ = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

.(B.4)
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B.2. Formal Results. There are a number of formal results in mathematical
statistics that motivate and support the use of the MLE.

Theorem B.1. Under mild regularity conditions, if the data are independent,
identically-distributed draws from a distribution with parameter α, then as the sample
size n → ∞, α̂ → α almost surely.

Proof. See, for instance, [45].
Proposition B.2 (see [42]). The MLE α̂ of the continuous power law converges

almost surely on the true α.
Proof. It is easily verified that ln(x/xmin) has an exponential distribution with

rate α − 1. By the strong law of large numbers, therefore, 1
n

∑n
i=1 ln xi

xmin
converges

almost surely on the expectation value of ln(x/xmin), which is (α − 1)−1.
Theorem B.3. If the MLE is consistent and there exists an interval (α−ε,α+ε)

around the true parameter value α where, for any α1,α2 in that interval,

(B.5)
∂3L(α1)/∂α3

∂2L(α2)/∂α2

is bounded for all x, then asymptotically α̂ has a Gaussian distribution centered on α,
whose variance is 1/nI(α), where

(B.6) I(α) = −E
[

∂2 log p(X |α)
∂α2

]

,

which is called the Fisher information at α. Moreover, ∂2L(α̂)/∂α2 → I(α).
Proof. For the quoted version of this result, see [7, Chapter 3]. The first version

of a proof of the asymptotic Gaussian distribution of the MLE and its relation to the
Fisher information may be found in [18].

Proposition B.4 (see [42]). The MLE of the continuous power law is asymp-
totically Gaussian, with variance (α − 1)2/n.

Proof. The proof follows by application of the preceding theorem. Simple calcula-
tion shows that ∂2 logL(α)/∂α2 = −n(α − 1)−2 and ∂3 logL(α)/∂α3 = 2n(α − 1)−3,
so that the ratio in question is 2(α2 − 1)2/(α1 − 1)3. Since α > 1, this ratio is bounded
on any sufficiently small interval around any α and the hypotheses of the theorem are
satisfied.

A further standard result, the Cramér–Rao inequality, asserts that for any unbi-
ased estimator of α, the variance is at least 1/nI(α). (See [12, section 32.3] or, for
an elementary proof, [45].) The MLE is said to be asymptotically efficient, since it
attains this lower bound.

Proposition B.4 yields approximate standard errors and Gaussian confidence in-
tervals for α̂, becoming exact as n becomes large. Corrections depend on how xmin

is estimated and on the resulting coupling between that estimate and α̂. As the
corrections are O(1/n), however, while the leading terms are O(1/

√
n), we have ne-

glected them in the main text. The corrections can be deduced from the “sampling
distribution” of α̂, i.e., the distribution of deviations from α due to finite-sample fluc-
tuations. (See [12] or [63] for introductions to sampling distributions.) In general,
the sampling distribution is hard to obtain analytically, but it can be found by boot-
strapping [63, 16]. An important exception is when xmin is either known a priori
or simply chosen by fiat (as in the Hill estimator). Starting from the distribution
of lnx, it is then easy to show that (α̂− 1)/n has an inverse gamma distribution with
shape parameter n and scale parameter α − 1. This implies [30] that α̂ has a mean
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Fig. 10 The error on the estimated scaling parameter α̂ from sample size effects for continuous data
(similar results hold for the discrete case) for α = 2, 2.5, and 3 (for 100 repetitions), as
a function of sample size. The average error decays as O(n−1) and becomes smaller than
1% of the value of α when n ! 50.

of (nα− 1)/(n− 1) and a standard deviation of n(α− 1)/(n− 1)
√

n − 2, differing, as
promised, from the large-n values by O(1/n); see Figure 10.

B.3. Discrete Data. We define the power-law distribution over an integer vari-
able by

p(x) =
x−α

ζ(α, xmin)
,(B.7)

where ζ(α, xmin) is the generalized or Hurwitz zeta function. For the case xmin = 1,
Seal [51] and, more recently, Goldstein, Morris, and Yen [19] derived the MLE. One
can also derive an estimator for the more general case as follows.

Following an argument similar to the one we gave for the continuous power law,
we can write down the log-likelihood function

(B.8) L = ln
n

∏

i=1

x−α
i

ζ(α, xmin)
= −n ln ζ(α, xmin) − α

n
∑

i=1

lnxi.

Setting ∂L/∂α = 0 we then find

(B.9)
−n

ζ(α, xmin)
∂

∂α
ζ(α, xmin) −

n
∑

i=1

lnxi = 0.

Thus, the MLE α̂ for the scaling parameter is the solution of

ζ′(α̂, xmin)
ζ(α̂, xmin)

= − 1
n

n
∑

i=1

lnxi.(B.10)
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This equation can be solved numerically in a straightforward manner. Alternatively,
one can directly maximize the log-likelihood function itself, (B.8).

The consistency and asymptotic efficiency of the MLE for the discrete power law
can be proved by applying Theorems B.1 and B.3. As the calculations involved are
long and messy, however, we omit them here. Brave readers can consult [6] for the
details.

Equation (B.10) is somewhat cumbersome. If xmin is moderately large, then a
reasonable figure for α can be estimated using the much more convenient approximate
formula derived in the next section.

B.4. Approximate Estimator for the Scaling Parameter of the Discrete Power
Law. Given a differentiable function f(x), with indefinite integral F (x) such that
F ′(x) = f(x),

∫ x+ 1
2

x− 1
2

f(t) dt = F
(

x + 1
2

)

− F
(

x − 1
2

)

=
[

F (x) + 1
2F ′(x) + 1

8F ′′(x) + 1
48F ′′′(x)

]

−
[

F (x) − 1
2F ′(x) + 1

8F ′′(x) − 1
48F ′′′(x)

]

+ · · ·
= f(x) + 1

24f ′′(x) + · · · .(B.11)

Summing over integer x, we then get
∫ ∞

xmin− 1
2

f(t) dt =
∞
∑

x=xmin

f(x) +
1
24

∞
∑

x=xmin

f ′′(x) + · · · .(B.12)

For instance, if f(x) = x−α for some constant α, then we have

∫ ∞

xmin− 1
2

t−α dt =
(

xmin − 1
2

)−α+1

α − 1

=
∞
∑

x=xmin

x−α +
α(α + 1)

24

∞
∑

x=xmin

x−α−2 + · · ·

= ζ(α, xmin)
[

1 + O
(

x−2
min

)]

,(B.13)

where we have made use of the fact that x−2 ≤ x−2
min for all terms in the second sum.

Thus,

(B.14) ζ(α, xmin) =
(

xmin − 1
2

)−α+1

α − 1
[

1 + O
(

x−2
min

)]

.

Differentiating this expression with respect to α, we also have

(B.15) ζ′(α, xmin) = −
(

xmin − 1
2

)−α+1

α− 1

[

1
α − 1

+ ln
(

xmin − 1
2

)

]

[

1 + O
(

x−2
min

)]

.

We can use these expressions to derive an approximation to the MLE for the
scaling parameter α of the discrete power law, (B.10), valid when xmin is large. The
ratio of zeta functions in (B.10) becomes

(B.16)
ζ′(α̂, xmin)
ζ(α̂, xmin)

= −
[

1
α̂ − 1

+ ln
(

xmin − 1
2

)

]

[

1 + O
(

x−2
min

)]

,
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Fig. 11 The error on the estimated scaling parameter α̂ that arises from using the approximate
MLE for discrete data, (3.7), for α = 2, 2.5, and 3 (for 1000 repetitions), as a function
of xmin. The average error decays as O(x−2

min) and becomes smaller than 1% of the value
of α when xmin ! 6.

and, neglecting quantities of order x−2
min by comparison with quantities of order 1, we

have

(B.17) α̂ ' 1 + n

[

n
∑

i=1

ln
xi

xmin − 1
2

]−1

,

which is in fact identical to the MLE for the continuous case except for the − 1
2 in the

denominator.
Numerical comparisons of (B.17) to the exact discrete MLE, (B.10), show that

(B.17) is a good approximation when xmin ! 6—see Figure 11.

Appendix C. Likelihood Ratio Tests. Consider two different candidate distribu-
tions with PDFs p1(x) and p2(x). The likelihoods of a given data set within the two
distributions are

(C.1) L1 =
n

∏

i=1

p1(xi), L2 =
n

∏

i=1

p2(xi),

and the ratio of the likelihoods is

(C.2) R =
L1

L2
=

n
∏

i=1

p1(xi)
p2(xi)

.

Taking logs, the log-likelihood ratio is

(C.3) R =
n

∑

i=1

[

ln p1(xi) − ln p2(xi)
]

=
n

∑

i=1

[

'(1)i − '(2)i

]

,
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where '(j)i = ln pj(xi) can be thought of as the log-likelihood for a single measure-
ment xi within distribution j.

But since, by hypothesis, the xi are independent, so are the differences '(1)i − '(2)i ,
and hence, by the central limit theorem, their sum R becomes normally distributed
as n becomes large, with expected variance nσ2 where σ2 is the expected variance of
a single term. In practice, we don’t know the expected variance of a single term, but
we can approximate it in the usual way by the variance of the data:

(C.4) σ2 =
1
n

n
∑

i=1

[

(

'(1)i − '(2)i

)

−
(

'̄(1) − '̄(2)
)

]2
,

with

(C.5) '̄(1) =
1
n

n
∑

i=1

'(1)i , '̄(2) =
1
n

n
∑

i=1

'(2)i .

Now suppose we are worried that the true expectation value of the log-likelihood
ratio is in fact zero, so that the observed sign of R is purely a product of the fluc-
tuations and cannot be trusted as an indicator of which model is preferred. The
probability that the measured log-likelihood ratio has a magnitude as large as or
larger than the observed value |R| is given by

p =
1√

2πnσ2

[
∫ −|R|

−∞
e−t2/2nσ2

dt +
∫ ∞

|R|
e−t2/2nσ2

dt

]

= erfc(|R|/
√

2nσ),(C.6)

where σ is given by (C.4) and

(C.7) erfc(z) = 1 − erf(z) =
2√
π

∫ ∞

z
e−t2 dt

is the complementary Gaussian error function (a function widely available in scientific
computing libraries and numerical analysis programs).

This p-value gives us an estimate of the probability that we measured a given
value of R when the true value of R is close to zero (and hence is unreliable as a
guide to which model is favored). If p is small (say, p < 0.1), then our value for R
is unlikely to be a chance result and hence its sign can probably be trusted as an
indicator of which model is the better fit to the data. (It does not, however, mean
that the model is a good fit, only that it is better than the alternative.) If, on the
other hand, p is large, then the likelihood ratio test is inadequate to discriminate
between the distributions in question.12

The rigorous proof of these results involves some subtleties that we have glossed
over in our description. In particular, the distributions that we are dealing with are
in our case fixed by fitting to the same data that are the basis for the likelihood ratio
test and this introduces correlations between the data and the log-likelihoods that
must be treated with care. However, Vuong [62] has shown that the results above

12Note that, if we are interested in confirming or denying the power-law hypothesis, then a small
p-value is “good” in the likelihood ratio test—it tells us whether the test’s results are trustworthy—
whereas it is “bad” in the case of the KS test, where it tells us that our model is a poor fit to the
data.
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do hold even in this case, provided p1 and p2 come from distinct, nonnested families
of distributions and the estimation is done by maximizing the likelihood within each
family. (There are also some additional technical conditions on the models, but they
hold for all the models considered here.)

C.1. Nested Hypotheses. When the families of distributions considered are
nested, as described in section 5.2, and the true distribution lies in the smaller family,
the best fits to both families converge to the true distribution as n becomes large.
This means that the individual differences '(1)i −'(2)i in (C.3) each converge to zero, as
does their variance σ2. Consequently, the ratio |R|/σ appearing in the expression for
the p-value tends to 0/0, and its distribution does not obey the simple central limit
theorem argument given above. A more refined analysis, using a kind of probabilistic
version of L’Hôpital’s rule, shows that in fact R adopts a chi-squared distribution as
n becomes large [67]. One can use this result to calculate a correct p-value giving the
probability that the log-likelihood ratio takes the observed value or worse, if the true
distribution falls in the smaller family. If this p-value is small, then the smaller family
can be ruled out. If not, then the best we can say is that there is no evidence that the
larger family is needed to fit to the data, although neither can it be ruled out. For a
more detailed discussion of this special case, see, for instance, [62].

Appendix D. Generating Power-Law Distributed Random Numbers. It is
often the case in statistical studies of probability distributions that we wish to generate
random numbers with a given distribution. For instance, in this paper we have used
independent random numbers drawn from power-law distributions to test how well
our fitting procedures can estimate parameters such as α and xmin. How should we
generate such numbers? There are a variety of possible methods, but perhaps the
simplest and most elegant is the transformation method [46]. The method can be
applied to both continuous and discrete distributions; we describe both variants in
turn in this section.

Suppose p(x) is a continuous probability density from which we wish to draw
random reals x ≥ xmin. Typically we will have a source of random reals r uniformly
distributed in the interval 0 ≤ r < 1, generated by any of a large variety of standard
pseudo-random number generators. The probability densities p(x) and p(r) are related
by

(D.1) p(x) = p(r)
dr

dx
=

dr

dx
,

where the second equality follows because p(r) = 1 over the interval from 0 to 1.
Integrating both sides with respect to x, we then get

(D.2) P (x) =
∫ ∞

x
p(x′) dx′ =

∫ 1

r
dr′ = 1 − r

or, equivalently,

(D.3) x = P−1(1 − r),

where P−1 indicates the functional inverse of the CDF P . For the case of the power
law, P (x) is given by (2.6) and we find that

(D.4) x = xmin(1 − r)−1/(α−1),
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Table 6 Formulas for generating random numbers x drawn from continuous distributions, given a
source of uniform random numbers r in the range 0 ≤ r < 1. For the case of the log-
normal, there is no simple closed-form expression for generating a single random number,
but the expressions given will generate two independent log-normally distributed random
numbers x1, x2, given two uniform numbers r1, r2 as input. For the case of the power law
with cut-off there is also no closed-form expression, but one can generate an exponentially
distributed random number using the formula above and then accept or reject it with proba-
bility p or 1−p, respectively, where p = (x/xmin)−α. Repeating the process until a number
is accepted then gives an x with the appropriate distribution.

Name Random numbers

Power law x = xmin(1 − r)−1/(α−1)

Exponential x = xmin − 1
λ ln(1 − r)

Stretched
exponential x =

[

xβ
min − 1

λ ln(1 − r)
]1/β

Log-normal
ρ=

√
−2σ2 ln(1−r1), θ=2πr2

x1=exp(ρ sin θ), x2=exp(ρ cos θ)

Power law
with cut-off

see caption

which can be implemented in straightforward fashion in most computer languages.
The transformation method can also be used to generate random numbers from

many other distributions, though not all, since in some cases there is no closed form for
the functional inverse of the CDF. Table 6 lists the equivalent of (D.4) for a number
of the distributions considered in this paper.

For a discrete power law, the equivalent of (D.2) is

(D.5) P (x) =
∞
∑

x′=x

p(x′) = 1 − r.

Unfortunately, P (x) is given by (2.7), which cannot be inverted in closed form, so we
cannot write a direct expression equivalent to (D.4) for the discrete case. Instead,
we typically solve (D.5) numerically by a combination of “doubling up” and binary
search [46]. That is, for a given random number r, we first bracket a solution x to
the equation by the following steps:

x2 ← xmin

repeat
x1 ← x2

x2 ← 2x1

until P (x2) < 1 − r,

where ← indicates assignment. In plain English, this code snippet tests whether
r ∈ [x, 2x), starting with x = xmin and doubling repeatedly until the condition is met.
The end result is a range of x in which r is known to fall. We then pinpoint the solution
within that range by binary search. We need only continue the binary search until
the value of x is narrowed down to k ≤ x < k + 1 for some integer k; then we discard
the noninteger part and the result is a power-law distributed random integer. The
generalized zeta functions needed to evaluate P (x) from (2.7) are typically calculated
using special functions from standard scientific libraries. These functions can be
slow, however, so for cases where speed is important, such as cases where we wish
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Table 7 CDFs of discrete and continuous power-law distributions with xmin = 5 and α = 2.5. The
second and fourth columns show the theoretical values of the CDFs for the two distributions,
while the third and fifth columns show the CDFs for sets of 100 000 random numbers
generated from the same distributions using the transformation technique described in the
text. The final column shows the CDF for 100 000 numbers generated using the continuous
approximation to the discrete distribution, (D.6).

Continuous Discrete
x Theory Generated Theory Generated Approx.
5 1.000 1.000 1.000 1.000 1.000
6 0.761 0.761 0.742 0.740 0.738
7 0.604 0.603 0.578 0.578 0.573
8 0.494 0.493 0.467 0.466 0.463
9 0.414 0.413 0.387 0.385 0.384
10 0.354 0.352 0.328 0.325 0.325
15 0.192 0.192 0.174 0.172 0.173
20 0.125 0.124 0.112 0.110 0.110
50 0.032 0.032 0.028 0.027 0.027
100 0.011 0.011 0.010 0.010 0.009

to generate very many random numbers, it may be worthwhile to store the first few
thousand values of the zeta function in an array ahead of time to avoid recalculating
them frequently. Only the values for smaller x are worth precalculating in this fashion,
however, since those in the tail are needed only rarely.

If great accuracy is not needed, it is also possible to approximate the discrete
power law by a continuous one. The approximation has to be done in the right way,
however, if we are to get good results. Specifically, to generate integers x ≥ xmin

with an approximate power-law distribution, we first generate continuous power-law
distributed reals y ≥ xmin − 1

2 and then round off to the nearest integer x =
⌊

y + 1
2

⌋

.
Employing (D.4), this then gives

(D.6) x =
⌊

(

xmin − 1
2

)(

1 − r
)−1/(α−1) + 1

2

⌋

.

The approximation involved in this approach is largest for the smallest value of x,
which is by definition xmin. For this value the difference between the true power-law
distribution, (2.4), and the approximation is given by

(D.7) ∆p = 1 −
(

xmin + 1
2

xmin − 1
2

)−α+1

− xmin

ζ(α, xmin)
.

For instance, when α = 2.5, this difference corresponds to an error of more than 8% on
the probability p(x) for xmin = 1, but the error diminishes quickly to less than 1% for
xmin = 5, and to less than 0.2% for xmin = 10. Thus the approximation is in practice
a reasonably good one for quite modest values of xmin. (Almost all of the data sets
considered in section 6, for example, have xmin > 5.) For very small values of xmin the
true discrete generator should still be used unless large errors can be tolerated. Other
approximate approaches for generating integers, such as rounding down (truncating)
the value of y, give substantially poorer results and should not be used.

As an example of these techniques, consider continuous and discrete power laws
having α = 2.5 and xmin = 5. Table 7 gives the CDFs for these two distributions,
evaluated at integer values of x, along with the corresponding CDFs for three sets of
100 000 random numbers generated using the methods described here. As the table
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shows, the agreement between the exact and generated CDFs is good in each case,
although there are small differences because of statistical fluctuations. For numbers
generated using the continuous approximation to the discrete distribution the errors
are somewhat larger than for the exact generators, but still small enough for many
practical applications.

Acknowledgments. The authors thank Sandra Chapman, Allen Downey, Doyne
Farmer, Jake Hofman, Luwen Huang, Kristina Klinkner, Joshua Ladau, Michael
Mitzenmacher, Cristopher Moore, Sidney Resnick, Stilian Stoev, Nick Watkins,
Michael Wheatland, Christopher Wiggins, and Maxwell Young for helpful conversa-
tions and comments, and Lada Adamic, Alison Boyer, Andrei Broder, Allen Downey,
Petter Holme, Mikael Huss, Joshua Karlin, Sidney Redner, Janet Wiener, and Walter
Willinger for kindly sharing data.

REFERENCES

[1] J. Abello, A. L. Buchsbaum, and J. Westbrook, A functional approach to external graph
algorithms, Algorithmica, 32 (2002), pp. 437–458.

[2] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of traceroute sampling:
or, power-law degree distributions in regular graphs, J. ACM, 56 (4) (2009), article 21.

[3] L. A. Adamic and B. A. Huberman, The nature of markets in the World Wide Web, Quart.
J. Electronic Commerce, 1 (2000), pp. 5–12.

[4] R. J. Adler, R. E. Feldman, and M. S. Taqqu, eds., A Practical Guide to Heavy Tails:
Statistical Techniques and Applications, Birkhäuser, Boston, 1998.
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