
CENG3420 Homework 2

Due: Mar. 02, 2019

Please submit PDF or WORD document directly onto blackboard.
DO NOT SUBMIT COMPRESSED ZIP or TARBALL.

Solutions
Q1 (15%) The basic single-cycle MIPS implementation in Figure 1 can only implement some

instructions. New instructions can be added to an existing Instruction Set Architecture.
Following questions refer to the new instruction:

Instruction lwi Rt, Rd(Rs)

Interpretation Reg[Rt] = Mem[Rd + Reg[Rs]]

Figure 1: The basic implementation of the MIPS subset, including the necessary multiplexors
and control lines.

1. Which existing blocks (if any) can be used for this instruction?
2. Which new functional blocks (if any) do we need for this instruction?
3. What new signals dowe need (if any) from the control unit to support this instruction?

A1 1. Instruction memory, one register read ports, the path that passed the immediate to the
ALU, and the register write port.

2. We need to extend the existing ALU to also do shifts (SLL, to extend the offset to
32bit value).

1

https://blackboard.cuhk.edu.hk/

3. We need to change the ALU operation control signals to support the SLL operation
in the ALU.

Q2 (15%) Following problems assume that logic blocks needed to implement a processor’s
datapath have the following latencies (Table 1):

Table 1: Question 2

Item I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2
Latency (ps) 750 200 50 250 300 500 100 0

1. If the only thing we need to do in a processor is fetch consecutive instructions
(Figure 2), what would the cycle time be?

Figure 2: A portion of the datapath used for fetching instructions and incrementing the program
counter.

2. Consider a datapath similar to the one in Figure 3, but for a processor that only has
one type of instruction: unconditional PC-relative branch. What would the cycle
time be for this datapath?

2

Figure 3: The simple datapath for the core MIPS architecture combines the elements required
by different instruction classes.

3. Repeat 2, but this time we need to support only conditional PC-relative branches.

A2 1. 750ps.
2. Critical path include: Instruction memory, Sign-extend, Shift left 2, Add and Mux.

The cycle time will be

CycleT ime = 750 + 100 + 0 + 200 + 50 = 1100ps. (1)

3. For the PC-relative conditional branch, there are two sub-datapath to finish the
instruction before entering the final MUX. (1) IM→Sign-ext→ Shift left 2→ ADD
and (2) IM→Register File→MUX→ALU. Then,

Path1 = 750 + 100 + 0 + 200 = 1050ps (2)
Path2 = 750 + 300 + 50 + 250 = 1350ps > Path1. (3)

Thus, the cycle time is determined by the longest path,

CycleT ime = Path2 +MUX = 1400ps. (4)

Q3 (15%) Given the following specs of the datapath latencies:

Stages IF ID EX MEM WB
Latencies (ps) 200 170 220 210 150

1. What is the clock cycle time in a pipelined and non-pipelined processor?
2. What is the total latency of an LW instruction in a pipelined and non-pipelined

processor?

3

3. If we can split one stage of the pipelined datapath into two new stages, each with
half the latency of the original stage, which stage would you split and what is the
new clock cycle time of the processor?

A3 1. Non-pipelined: 950ps; Pipelined: 220ps.
2. Non-pipelined: 950ps; Pipelined: 1100ps.
3. Split EX stage. New clock cycle will be 210ps.

Q4 (15%) Regarding the following instructions:
I1: lw R1, 40(R2)
I2: add R2, R3, R3
I3: sw R2, 50(R1)

1. Indicate dependencies and their type.
2. Assume there is no forwarding in this pipelined processor. Add nop instructions to

eliminate hazards.
3. Assume there is full forwarding. Indicate hazards and add nop instructions to

eliminate them.

A4 1. RAW: R1 from I1 to I3; R2 from I2 to I3. WAR: R2 from I1 to I2 and I3.
2. Add one nop after I2.
3. No hazard because of the existence of forwarding.

Q5 (10%) Regarding the following MIPS instruction:
sw R16, -100(R6)

1. Which registers need to be read, and which registers are actually read?
2. What does this instruction do in the EX and MEM stages?

A5 1. R6 and R16 need to be read; R6 and R16 are actually read.
2. EX stage: -100 + R6; MEM stage: write value to memory.

Q6 (15%) Given the following loop, assume that perfect branch prediction is used (no stalls due
to control hazards), that there are no delay slots, and that the pipeline has full forwarding
support. Also assume that many iterations of this loop are executed before the loop exits.
loop: add R1, R2, R1

lw R2, 0(R1)
lw R2, 16(R2)
slt R1, R2, R4
beq R1, R9, loop

1. Show a pipeline execution diagram for the third iteration of this loop, from the cycle
in which we fetch the first instruction of that iteration up to (but not including)
the cycle in which we can fetch the first instruction of the next iteration. Show all
instructions that are in the pipeline during these cycles (not just those from the third
iteration).

4

S24 Chapter 4 Solutions

Solution 4.16
4.16.1 For every instruction, the IF/ID register keeps the PC + 4 and the instruc-
tion word itself. The ID/EX register keeps all control signals for the EX, MEM, and
WB stages, PC + 4, the two values read from Registers, the sign-extended lower-
most 16 bits of the instruction word, and Rd and Rt fi elds of the instruction word
(even for instructions whose format does not use these fi elds). The EX/MEM reg-
ister keeps control signals for the MEM and WB stages, the PC + 4 + Offset (where
Offset is the sign-extended lowermost 16 bits of the instructions, even for instruc-
tions that have no offset fi eld), the ALU result and the value of its Zero output, the
value that was read from the second register in the ID stage (even for instructions
that never need this value), and the number of the destination register (even for
instructions that need no register writes; for these instructions the number of the
destination register is simply a “random” choice between Rd or Rt). The MEM/WB
register keeps the WB control signals, the value read from memory (or a “random”
value if there was no memory read), the ALU result, and the number of the destina-
tion register.

4.16.2

Need to be Read Actually Read

a. R6, R16 R6, R16

b. R1, R0 R1, R0

4.16.3

EX MEM

a. −100 + R6 Write value to memory

b. R1 OR RO Nothing

4.16.4

Loop

a. 2: LW R2,16(R2)
2: SLT R1,R2,R4
2: BEQ R1,R9,Loop
3: ADD R1,R2,R1
3: LW R2,0(R1)
3: LW R2,16(R2)
3: SLT R1,R2,R4
3: BEQ R1,R9,Loop

WB
EX MEM WB
ID EX MEM WB
IF ID EX MEM WB
 IF ID EX MEM WB
 IF ID *** EX MEM
 IF *** ID ***
 IF ***

Sol04-9780123747501.indd S24Sol04-9780123747501.indd S24 9/2/11 7:35 PM9/2/11 7:35 PM

Figure 4: Answer of Q6-1

2. How often (as a percentage of all cycles) do we have a cycle in which all five pipeline
stages are doing useful work?

3. At the start of the cycle in which we fetch the first instruction of the third iteration
of this loop, what is stored in the IF/ID register?

A6 1. See the Figure 4 below:
2. Since there is 7 cycles per Loop Iteration, and 1 cycle in which all stages do useful

work, the ration is 1/7 = 14%.
3. The address of that first instruction of the third iteration (PC + 4 for the BEQ

from the previous iteration) and the instruction word of the BEQ from the previous
iteration.

Q7 (15%) Regarding the following instruction sequences:
add R1, R2, R1
lw R2, 0(R1)
lw R1, 4(R1)
or R3, R1, R2

1. Find all data dependences in this instruction sequence.
2. Find all hazards in this instruction sequence for a 5-stage pipeline with and then

without forwarding.
3. To reduce clock cycle time, we are considering a split of the MEM stage into two

stages. Repeat 2 for this 6-stage pipeline.

A7 1. See Figure 5:

S28 Chapter 4 Solutions

 one-cycle stall, and EX to 1st dependences now incur one stall cycle because we
must wait for the instruction to complete the MEM stage to be able to forward
to the next instruction. We compute stall cycles per instructions for each case as
 follows:

EX/MEM MEM/WB Fewer Stall Cycles with

a. 0.2 + 0.05 + 0.1 + 0.1 = 0.45 0.05 + 0.2 + 0.1 = 0.35 MEM/WB

b. 0.1 + 0.15 + 0.1 + 0.05 = 0.4 0.2 + 0.1 + 0.05 = 0.35 MEM/WB

4.19.4 In 4.19.1 and 4.19.2 we have already computed the CPI without forward-
ing and with full forwarding. Now we compute time per instruction by taking into
account the clock cycle time:

Without Forwarding With Forwarding Speedup

a. 1.85 ´ 150ps = 277.5ps 1.20 ´ 150ps = 180ps 1.54

b. 1.95 ´ 300ps = 585ps 1.1 ´ 350ps = 385ps 1.52

4.19.5 We already computed the time per instruction for full forwarding in
4.19.4. Now we compute time per instruction with time-travel forwarding and the
speedup over full forwarding:

With Full Forwarding Time-Travel Forwarding Speedup

a. 1.20 ´ 150ps = 180ps 1 ´ 250ps = 250ps 0.72

b. 1.1 ´ 350ps = 385ps 1 ´ 450ps = 450ps 0.86

4.19.6

EX/MEM MEM/WB Shorter Time per Instruction with

a. 1.45 ´ 150ps = 217.5 1.35 ´ 150ps = 202.5ps MEM/WB

b. 1.4 ´ 330ps = 462 1.35 ´ 320ps = 432ps MEM/WB

Solution 4.20
4.20.1

Instruction Sequence RAW WAR WAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

(R2) I1 to I2
(R1) I1, I2 to I3

(R1) I1 to I3

Sol04-9780123747501.indd S28Sol04-9780123747501.indd S28 9/2/11 7:35 PM9/2/11 7:35 PM

Figure 5: Answer of Q7-1

2. Only RAW dependences can become data hazards. With forwarding, only RAW
dependences from a load to the very next instruction become hazards. Without

5

forwarding, any RAW dependence from an instruction to one of the following 3
instructions becomes a hazard (see Figure 6).

 Chapter 4 Solutions S29

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2
(R1) I2 to I3

(R1) I1 to I2
(R2) I2 to I3
(R1) I3 to I4

(R1) I1 to I2
(R1) I2 to I4

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from a load to the very next instruction become hazards.
Without forwarding, any RAW dependence from an instruction to one of the
 following 3 instructions becomes a hazard:

Instruction Sequence With Forwarding Without Forwarding

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I3 to I4 (R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

Instruction Sequence With Forwarding RAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R2) I2 to I4
(R1) I3 to I4

(R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

Sol04-9780123747501.indd S29Sol04-9780123747501.indd S29 9/2/11 7:35 PM9/2/11 7:35 PM

Figure 6: Answer of Q7-2

3. With forwarding, only RAW dependences from a load to the next two instructions
become hazards because the load produces its data at the end of the second MEM
stage. Without forwarding, any RAW dependence from an instruction to one of the
following 4 instructions becomes a hazard (see Figure 7).

 Chapter 4 Solutions S29

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2
(R1) I2 to I3

(R1) I1 to I2
(R2) I2 to I3
(R1) I3 to I4

(R1) I1 to I2
(R1) I2 to I4

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from a load to the very next instruction become hazards.
Without forwarding, any RAW dependence from an instruction to one of the
 following 3 instructions becomes a hazard:

Instruction Sequence With Forwarding Without Forwarding

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I3 to I4 (R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

Instruction Sequence With Forwarding RAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R2) I2 to I4
(R1) I3 to I4

(R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

Sol04-9780123747501.indd S29Sol04-9780123747501.indd S29 9/2/11 7:35 PM9/2/11 7:35 PM

Figure 7: Answer of Q7-3

6

