NP-completeness
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Polynomial-time reductions

What we say
“INDEPENDENT-SET is at least as hard as CLIQUE”
What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then
neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine,
then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the
additional restriction of polynomial-time

Polynomial-time reductions

CLiQue = {(G, k) | Gisagraph havinga clique of k vertices}
INDEPENDENT-SET = {(G, k) | G is a graph having

an independent set of k vertices}

Theorem
If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Polynomial-time reductions

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof
Suppose INDEPENDENT-SET is decided by a poly-time TM A

We want to build a TM S that uses A to solve CLIQUE

accept if G has
aclique of size k

reject otherwise

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine R that turns the question
“Does G have a clique of size k?”
into

“Does G’ have an independent set (IS) of size k'?”

Q @

‘ flipﬂges
9‘9 @
Graph G Graph G’

clique of size k =R IS of size &’

Reducing CLIQUE to INDEPENDENT-SET

Oninput (G, k)

/ . .
gz:;ru_ct G’ by flipping all edges of G (G R (G)

Output (G', k')
Cliquesin G <— Independentsetsin G’

» If G hasaclique of size k
then G’ has an independent set of size k

» If (G does not have a clique of size k
then G’ does not have an independent set of size k

Reduction recap

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is
CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of
CLIQUE into ones of INDEPENDENT-SET

Polynomial-time reductions

Language L polynomial-time reduces to L if

there exists a polynomial-time Turing machine R that takes an instance x
of L into an instance y of L’ such that

z € Lifandonlyify € L'

CLIQUE IS
L r
R
v = (G, k) y= (G F)
€L yel

G has aclique of size k G’ hasan IS of size k

The meaning of reductions

L reduces to L' means L is no harder than L’
If we can solve L', then we can also solve L

Therefore
If L reducesto L' and L' € P,then L € P

x R Y poly-time accept
T™ for L' reject

yel

x €L TM accepts

Direction of reduction

Pay attention to the direction of reduction
“Alis no harder than B” and “Bis no harder than A”

have completely different meanings

It is possible that L reduces to L’ and L’ reduces to L

That means L and L' are as hard as each other
For example, IS and CLIQUE reduce to each other

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs, and
negations, like

Y= (371 \/52) A (:152 V13V :154) A\ (fl)
Task: Assign TRUE/FALSE values to variables so that the formula evaluates
to true
e.g. 1 =F o =F 3 =T T =T

Given a formula, decide whether such an assignment exist

3SAT

SAT = {(p) | s a satisfiable Boolean formula}
3SAT = {(yp) | @is asatisfiable Boolean formula

conjunctive normal form with 3 literals per clause}

literal: T; OrT;
Conjuctive Normal Form (CNF): AND of ORs of literals
3CNF: CNF with 3 literals per clause (repetitions allowed)

(T1 VI \/fg) AN (fg Va3V 374)
literal clause

3SAT isin NP

Y= (l‘l \/52) VAN (ZL‘Q V I3 \/ZL‘4) AN (51)

Finding a solution: Verifying a solution:
Try all possible assignments substitute

FFFF FTFF TFFF TTFF 71 =F 1z =F

FFFT FTFT TFFT TTFT z3=T a4=T

FFTF FTTF TFTF TTTF evaluating the formula

FFTT FTTT TFTT TTTT e=(FVT)A(FVFVT)A(T)
For n variables, there are 2™ can be done in linear time

possible assignments
Takes exponential time

Cook-Levin theorem

Every L € NP reduces to SAT

SAT = {(¢) | ¢is asatisfiable Boolean formula}
eg o= (11 VT2) A (22 VT3V 14) A (T1)

Every problem in NP is no harder than SAT

But SAT itselfis in NP, so SAT must
be the “hardest problem” in NP

If SAT € P,then P = NP

NP-completeness

Alanguage L is NP-hard if:

Forevery N in NP, N reducesto L

Alanguage L is NP-complete if Lisin NP and L is NP-hard

Cook-Levin theorem

SAT is NP-complete

Our picture of NP

A — B: Areducesto B

In practice, most NP problems are either in P (easy) or NP-complete
(probably hard)

Interpretation of Cook-Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe P # NP, it is unlikely that we will ever have a fast
algorithm for SAT

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there are many more
Surprisingly, most computational problems are either in P or NP-complete

By now thousands of problems have been identified as NP-complete

Reducing IS to VC

(G k) (G K)

G hasan|Sofsizek <+— G'hasaVCofsize K’

Example
Independent sets: vertex covers:
Q @
0,{1}, {2} {3}, {4}, ‘ {2,4},{3,4},
{1.2},{1,3} N {1,2,3},{1,2,4},

{1,3,4},{2,3,4},
{1,2,3,4}

Reducing IS to VC

Claim Q @
Sisan ingependent set if and only if ‘
S is a vertex cover G—®
Proof: IS VC
S is an independent set 0 {1,2,3,4}
1 1} {234
no edge has both endpointsin S {2} {1,3,4}
i {3 {1,2,4}
every edge has an endpointin S {4} {1,2,3}
1 1,2} {3.4)

Sis a vertex cover {173} {274}

Reducing IS to VC

R: Oninput (G, k)

Output (G, n — k)
G hasanliSofsizek <+— GhasaVCofsizen — k&

Overall sequence of reductions:

SAT — 3SAT — CLIQUE 5 1S 5 VC

Reducing 3SAT to CLIQUE

3SAT = {¢ | pis a satisfiable Boolean formula in 3CNF}
CLiQueE = {(G, k) | Gisa graph havinga clique of k vertices}

3CNF formula ¢ (G, k)

@issatisfiable <+— G hasaclique of size k

Reducing 3SAT to CLIQUE

Example:
e=(ryVar V) AT VITyVT2) A(T1 Va2V x3)

One vertex for each literal occurrence

One edge for each consistent pair

Reducing 3SAT to CLIQUE

3CNF formula ¢ (G, k)

R: Oninput ¢, where ¢ is a 3CNF formula with m clauses
Construct the following graph G:
G has 3m vertices, divided into m groups
One for each literal occurrence in
If vertices v and v are in different groups and consistent
Add an edge (u, v)
Output (G, m)

Reducing 3SAT to CLIQUE

3CNF formula ¢ (G, k)

@issatisfiable <+— G hasaclique of size m

Y= (:El\/xl\/zg) A (fl V To \/fg) A (fl\/xg\/.Tg)
T T F F T T F F T

Reducing 3SAT to CLIQUE: Summary

3CNF formula ¢ (G, k)

Every satisfying assignment of ¢ gives a clique of size min G

Conversely, every clique of size m in G gives a satisfying assignment of ¢

Overall sequence of reductions:

SAT — 3SAT i) CLIQUE i) IS i) vC

SAT and 3SAT

SAT = {¢ | ¢is a satisfiable Boolean formula}

eg ((z1 Vo) A(x V)V ((z1V (2 Ax3)) AT3)

3SAT = {¢' | ¢’ is a satisfiable 3CNF formula in 3CNF}

eg (m Vo Vo) A(xVirgVIiy) A(wVIsVT;)

Reducing SAT to 3SAT

Example: ¢ = (22 V (21 AT2)) A (1 A (21 V 22))

€I I T2 Il I X2
Tree representation of ¢
Add extra variable to ¢’ for each
wire in the tree

Reducing SAT to 3SAT

Example: ¢ = (22 V (21 AT2)) A (1 A (21 V 22))
Add clauses to ¢’ for each gate

TpX5T7 L7 = T4 N\ T

TTT T
TTF F
TFT F
TFF T
FTT F
FTF T
FFT F
oom T 1 T2 FEE T
Tree representation of ¢
Add extra variable to ¢’ for each Clauses added:
wire in the tree (TaVTs Var) A (ToV 25V T7)

(24 VT5 VT7) A (24 V 25 V T7)

Reducing SAT to 3SAT

Boolean formula ¢ 3CNF formula ¢’

R: Oninput (), where ¢ is a Boolean formula
Construct and output the following 3CNF formula ¢’
¢ has extra variable T, 11, . . ., Tnit
one for each gate G in ¢
For each gate G, construct the forumla ¢;
forcing the output of i to be correct given its inputs

Set = Pny1 A A@ngt A (Tt V Tnges V Tngg)

requires output of ¢ to be TRUE

Reducing SAT to 3SAT

Boolean formula ¢ 3CNF formula ¢’

(satisfiable +— ¢’ satisfiable
Every satisfying assignment of (o extends uniquely to a satisfying
assignment of o’

In the other direction, in every satisfying assignment of ¢/, the z1, ... , 7,
part satisfies ¢

