NP-completeness

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

What we say "INDEPENDENT-SET is at least as hard as CLIQUE" What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the additional restriction of polynomial-time

$$\begin{split} \mathsf{CLique} &= \{\langle G,k\rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \} \\ \texttt{INDEPENDENT-Set} &= \{\langle G,k\rangle \mid G \text{ is a graph having} \\ & \text{ an independent set of } k \text{ vertices} \} \end{split}$$

Theorem

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM ${\cal A}$

We want to build a TM S that uses A to solve CLIQUE

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine R that turns the question

"Does G have a clique of size k?"

into

"Does G' have an independent set (IS) of size k'?"

Reducing CLIQUE to INDEPENDENT-SET

On input $\langle G, k \rangle$ Construct G' by flipping all edges of GSet k' = kOutput $\langle G', k' \rangle$

$$\langle G,k\rangle \xrightarrow{} R \xrightarrow{} \langle G',k'\rangle$$

Cliques in $G \quad \longleftrightarrow$ Independent sets in G'

- If G has a clique of size k
 then G' has an independent set of size k
- If G does not have a clique of size k then G' does not have an independent set of size k

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of CLIQUE into ones of INDEPENDENT-SET

Language L polynomial-time reduces to L' if

there exists a polynomial-time Turing machine R that takes an instance x of L into an instance y of L' such that

 $x \in L$ if and only if $y \in L'$

The meaning of reductions

L reduces to L' means L is no harder than L'If we can solve L', then we can also solve L

Direction of reduction

Pay attention to the direction of reduction "A is no harder than B" and "B is no harder than A" have completely different meanings It is possible that L reduces to L' and L' reduces to LThat means L and L' are as hard as each other For example, IS and CLIQUE reduce to each other

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs, and negations, like

$$\varphi = (x_1 \vee \overline{x}_2) \land (x_2 \vee \overline{x}_3 \vee x_4) \land (\overline{x}_1)$$

Task: Assign TRUE/FALSE values to variables so that the formula evaluates to true

e.g.
$$x_1 = F$$
 $x_2 = F$ $x_3 = T$ $x_4 = T$

Given a formula, decide whether such an assignment exist

literal: x_i or \overline{x}_i Conjuctive Normal Form (CNF):AND of ORs of literals3CNF:CNF with 3 literals per clause (repetitions allowed)

$$\underbrace{(\overline{x}_1}_{\text{literal}} \lor x_2 \lor \overline{x}_2) \land \underbrace{(\overline{x}_2 \lor x_3 \lor x_4)}_{\text{clause}}$$

3SAT is in NP

$$\varphi = (x_1 \vee \overline{x}_2) \land (x_2 \vee \overline{x}_3 \vee x_4) \land (\overline{x}_1)$$

Finding a solution: Try all possible assignments

FFFF	FTFF	TFFF	TTFF	
FFFT	FTFT	TFFT	TTFT	
FFTF	FTTF	TFTF	TTTF	
FFTT	FTTT	TFTT	TTTT	
For n variables, there are 2^n				
possible assignments				
Takes exponential time				

Verifying a solution: substitute

$$x_1 = F$$
 $x_2 = F$

$$x_3 = \mathsf{T} \quad x_4 = \mathsf{T}$$

evaluating the formula $\varphi = (F \lor T) \land (F \lor F \lor T) \land (T)$ can be done in linear time

Cook-Levin theorem

Every $L \in \mathsf{NP}$ reduces to SAT

 $\begin{aligned} \mathsf{SAT} &= \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula} \} \\ \text{e.g. } \varphi &= (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_1) \end{aligned}$

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT must be the "hardest problem" in NP

If SAT \in P, then P = NP

NP-completeness

A language L is NP-hard if:

For every N in NP, N reduces to ${\cal L}$

A language L is NP-complete if L is in NP and L is NP-hard

Cook-Levin theorem

SAT is NP-complete

Our picture of NP

 $A \rightarrow B$: A reduces to B

In practice, most NP problems are either in P (easy) or NP-complete (probably hard)

Interpretation of Cook-Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe $\mathsf{P} \neq \mathsf{NP},$ it is unlikely that we will ever have a fast algorithm for SAT

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there are many more

Surprisingly, most computational problems are either in P or NP-complete

By now thousands of problems have been identified as NP-complete

Reducing IS to VC

$$\langle G, k \rangle \longrightarrow \bigcirc R \longrightarrow \langle G', k' \rangle$$

G has an IS of size $k \longleftrightarrow G'$ has a VC of size k'

Example

Independent sets:

 $\substack{\emptyset,\{1\},\{2\},\{3\},\{4\},\\\{1,2\},\{1,3\} }$

vertex covers:

$$\begin{array}{l} \{2,4\},\{3,4\},\\ \{1,2,3\},\{1,2,4\},\\ \{1,3,4\},\{2,3,4\},\\ \{1,2,3,4\} \end{array}$$

Reducing IS to VC

Claim

S is an independent set if and only if \overline{S} is a vertex cover

Proof: S is an independent set \updownarrow no edge has both endpoints in S \updownarrow every edge has an endpoint in \overline{S} \fbox \overline{S} is a vertex cover

IS	VC
Ø	$\{1, 2, 3, 4\}$
$\{1\}$	$\{2, 3, 4\}$
$\{2\}$	$\{1, 3, 4\}$
$\{3\}$	$\{1, 2, 4\}$
$\{4\}$	$\{1, 2, 3\}$
$\{1, 2\}$	$\{3, 4\}$
$\{1, 3\}$	$\{2,4\}$

Reducing IS to VC

$$\langle G, k \rangle \longrightarrow \bigcirc R \longrightarrow \langle G', k' \rangle$$

R: On input $\langle G, k \rangle$ Output $\langle G, n - k \rangle$

G has an IS of size $k \quad \longleftrightarrow \quad G$ has a VC of size n-k

Overall sequence of reductions:

$$\mathsf{SAT} \to \mathsf{3SAT} \to \mathsf{Clique} \xrightarrow{\checkmark} \mathsf{IS} \xrightarrow{\checkmark} \mathsf{VC}$$

$$\begin{split} \mathbf{3SAT} &= \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula in 3CNF} \} \\ \mathbf{CLIQUE} &= \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \} \end{split}$$

$$\operatorname{3CNF}\operatorname{formula}\varphi \longrightarrow R \longrightarrow \langle G,k\rangle$$

 φ is satisfiable \longleftrightarrow G has a clique of size k

Example: $\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3)$

One vertex for each literal occurrence

One edge for each consistent pair

$$\operatorname{3CNF} \operatorname{formula} \varphi \longrightarrow R \longrightarrow \langle G, k \rangle$$

 $\begin{array}{l} R: \mbox{ On input } \varphi, \mbox{ where } \varphi \mbox{ is a 3CNF formula with } m \mbox{ clauses} \\ \mbox{ Construct the following graph } G: \\ G \mbox{ has } 3m \mbox{ vertices, divided into } m \mbox{ groups} \\ \mbox{ One for each literal occurrence in } \varphi \\ \mbox{ If vertices } u \mbox{ and } v \mbox{ are in different groups and consistent} \\ \mbox{ Add an edge } (u, v) \\ \mbox{ Output } \langle G, m \rangle \end{array}$

$$\operatorname{3CNF}\operatorname{formula}\varphi \longrightarrow R \longrightarrow \langle G,k\rangle$$

 φ is satisfiable \longleftrightarrow G has clique of size m

$$\varphi = (\underbrace{x_1 \lor x_1 \lor x_2}_{\mathsf{F}}) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3)_{\mathsf{F}}$$

Reducing 3SAT to CLIQUE: Summary

$$\mathsf{3CNF}\,\mathsf{formula}\,\varphi \longrightarrow R \longrightarrow \langle G,k\rangle$$

Every satisfying assignment of φ gives a clique of size m in G

Conversely, every clique of size m in G gives a satisfying assignment of φ

Overall sequence of reductions:

SAT
$$\rightarrow$$
 3SAT $\xrightarrow{\checkmark}$ Clique $\xrightarrow{\checkmark}$ IS $\xrightarrow{\checkmark}$ VC

SAT and 3SAT

 $\begin{aligned} \mathsf{SAT} &= \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula} \} \\ \text{e.g.} \ \left((x_1 \lor x_2) \land \overline{(x_1 \lor x_2)} \right) \lor \overline{((x_1 \lor (x_2 \land x_3)) \land \overline{x}_3)} \\ \text{3SAT} &= \{ \varphi' \mid \varphi' \text{ is a satisfiable 3CNF formula in 3CNF} \} \\ \text{e.g.} \ \left(x_1 \lor x_2 \lor x_2 \right) \land \left(x_2 \lor x_3 \lor \overline{x}_4 \right) \land \left(x_2 \lor \overline{x}_3 \lor \overline{x}_5 \right) \end{aligned}$

Example:
$$\varphi = (x_2 \lor (x_1 \land \overline{x}_2)) \land \overline{(\overline{x}_1 \land (x_1 \lor x_2))}$$

Add clauses to φ' for each gate

$x_4 x_5 x_7$	$x_7 = x_4 \wedge x_5$
ТТТ	Т
ΤΤF	F
TFT	F
TFF	Т
FΤΤ	F
FTF	Т
FFT	F
FFF	Т

Clauses added:

 $(\overline{x}_4 \lor \overline{x}_5 \lor x_7) \land (\overline{x}_4 \lor x_5 \lor \overline{x}_7)$ $(x_4 \lor \overline{x}_5 \lor \overline{x}_7) \land (x_4 \lor x_5 \lor \overline{x}_7)$

Boolean formula
$$\varphi
ightarrow R
ightarrow$$
 3CNF formula φ'

R: On input $\langle \varphi \rangle$, where φ is a Boolean formula **Construct** and **output** the following 3CNF formula φ' φ' has extra variable x_{n+1}, \ldots, x_{n+t} one for each gate G_j in φ For each gate G_j , **construct** the forumla φ_j forcing the output of G_j to be correct given its inputs Set $\varphi' = \varphi_{n+1} \land \cdots \land \varphi_{n+t} \land (x_{n+t} \lor x_{n+t} \lor x_{n+t})$

requires output of φ to be TRUE

Boolean formula
$$\varphi
ightarrow R
ightarrow$$
 3CNF formula φ'

 $\varphi \text{ satisfiable} \longleftrightarrow \varphi' \text{ satisfiable}$

Every satisfying assignment of φ extends uniquely to a satisfying assignment of φ'

In the other direction, in every satisfying assignment of φ' , the x_1,\ldots,x_n part satisfies φ