
1/31

Efficient Turing Machines
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

2/31

Undecidability of PCP
(optional)

3/31

Undecidability of PCP

PCP = {〈T〉 | T is a collection of tiles

contains a top-bottommatch}

The language PCP is undecidable

We will show that

If PCP can be decided, so canATM

Wewill only discuss the main idea, omitting details

4/31

Undecidability of PCP

〈M 〉 7−→ T (collection of tiles)
M acceptsw ⇐⇒ T contains a match

Idea: Matches represent accepting history

#q0ab%ab#xq1b%ab#…#xx%xqax#

#q0ab%ab#xq1b%ab#…#xx%xqax#

ε
#q0ab%ab

#q0a
#xq1

b

b

a

a

%

%

a

a

b

b

#

#

xq1%
x%q2

…

5/31

Undecidability of PCP

〈M 〉 7−→ T (collection of tiles)
M acceptsw ⇐⇒ T contains a match

We will assume that the following tile
is forced to be the starting tile:

ε
#q0ab%ab

S

On input 〈M ,w〉, we construct these tiles for PCP

ε
#q0w

x1qix2
x3x4x5

#qix1
�#x2x3

#

�#

x
x

xqa
qa

qax
qa

qa##
#

S

︸ ︷︷ ︸
for each valid window

with state qi in topmiddle

for all x inΓ ∪ {#}︷ ︸︸ ︷

6/31

Undecidability of PCP

tile type purpose

ε
#q0w

S represents initial configuration

x1qix2
x3x4x5

x
x

represents valid transitions between con-
figurations

#qix1
�#x2x3

#

�#

adds blank spaces before # if necessary

xqa
qa

qax
qa

qa##
#

matching completes if computation ac-
cepts

7/31

Undecidability of PCP

Once the accepting state symbol occurs, the last two tiles can “eat up” the
rest of the symbols

#xx%xqax#xx%xqa#…#qa##

#xx%xqax#xx%xqa#…#qa##

x
x

xqa
qa

qax
qa

qa##
#

8/31

Undecidability of PCP

IfM rejects on inputw, then qrej appears on the bottom at some point, but
it cannot be matched on top

IfM loops onw, then matching goes on forever

9/31

Getting rid of the starting tile

We assumed that one tile is marked as the starting tile

a
aba

ba
bb

b
c

cca
a

S

We can simulate this assumption by changing tiles a bit

a
*a*b*a

b*a*
*b*b

b*
*c

c*c*a*
*a

�
*�

“starting tile”
begins with *

“middle tiles” “ending tiles”

10/31

Getting rid of the starting tile

a
aba

ba
bb

b
c

b
c

cca
a

S

a
*a*b*a

b*a*
*b*b

b*
*c

b*
*c

c*c*a*
*a

�
*�

only possible
starting tile

only possible
ending tile

11/31

Polynomial time

12/31

Running time

We don’t want to just solve a problem, we want to solve it quickly

13/31

Efficiency

decidable
•ATM•PCP Undecidable problems:

We cannot find solutions in any
finite amount of time

Decidable problems:
We can solve them, but it may
take a very long time

14/31

Efficiency

efficient

decidable
•ATM•PCP The running time depends on the

input

For longer inputs, we should
allowmore time

Efficiency is measured as a
function of input size

15/31

Running time

The running time of a Turing machineM is the function tM (n):

tM (n) = maximum number of steps thatM takes

on any input of length n

Example: L = {w#w | w ∈ {a, b}∗}

M : On input x , until you reach # O(n) times
Read and cross of first a or b before # }

O(n) stepsRead and cross off first a or b after #
If mismatch, reject

If all symbols except # are crossed off, accept O(n) steps
running time: O(n2)

16/31

Another example

L = {0n
1

n | n > 0}

M : On input x ,
Check that the input is of the form 0

∗
1
∗ O(n) steps

Until everything is crossed off: O(n) times
Cross off the leftmost 0

}
O(n) steps

Cross off the following 1

If everything is crossed off, accept O(n) steps
running time: O(n2)

17/31

A faster way

L = {0n
1

n | n > 0}

M : On input x ,
Check that the input is of the form 0

∗
1
∗ O(n) steps

Until everything is crossed off: O(log n) times
Find parity of number of 0s O(n) stepsFind parity of number of 1s
If the parities don’t match, reject
Cross off every other 0 and every other 1

If everything is crossed off, accept O(n) steps
running time: O(n log n)

18/31

Running time vs model

What if we have a two-tape Turing machine?

L = {0n
1

n | n > 0}

M : On input x ,
Check that the input is of the form 0

∗
1
∗ O(n) steps

Copy 0∗ part of input to second tape O(n) steps
Until� is reached: }

O(n) stepsCross off next 1 from first tape
Cross off next 0 from second tape

If both tapes reach� simultaneously, accept O(n) steps
running time: O(n)

19/31

Running time vs model

How about a Java program? L = {0n
1

n | n > 0}

M(int[] x) {

n = x.len;

if (n % 2 == 0) reject();

for (i = 0; i < n/2; i++) {

if (x[i] != 0) reject();

if (x[n-i+1] != 1) reject();

}

accept();

}

running time: O(n)

Running time can change depending on the model
1-tape TM 2-tape TM Java

O(n log n) O(n) O(n)

20/31

Measuring running time

What does it mean when we say

This algorithm runs in timeT

One “time unit” in

Java

if (x > 0)

y = 5*y + x;

Random access machine

write r3

Turing machine

δ(q3, a) = (q7, b,R)

all mean different things!

21/31

Efficiency and the Church–Turing thesis

Church–Turing thesis says all these have the same computing power…

Turing machine

Java

RAM Multitape TM

…without considering running time

22/31

Cobham–Edmonds thesis

An extension to Church–Turing thesis, stating

For any realistic models of computationM1 andM2

M1 can be simulated onM2 with at most polynomial slowdown

So any task that takes time t(n) onM1 can be done in time (say)O(t3) on
M2

23/31

Efficient simulation

The running time of a program depends on the model of computation

1-tape TM 2-tape TM RAM Java
slow fast

But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently on any
other

24/31

Example of efficient simulation

Recall simulating two tapes on a single tape

M
b a � �…

a b b �…
Γ = {a, b,�}

S # b ȧ # a b b �̇ # � …

Γ = {a, b,�, ȧ, ḃ, �̇, #}

25/31

Running time of simulation

Eachmove of the multitape TMmight require traversing the whole single
tape

1 step of 2-tape TM ⇒ O(s) steps of single tape TM
s = right most cell ever visited

after t steps ⇒ s 6 2t + O(1)
t steps of 2-tape ⇒ O(ts) = O(t2) single tape steps

multi-tape TM single tape TM

quadratic
slowdown

26/31

Simulation slowdown

Java

Random access
machine

2-tape TM

1-tape TM

O(t)

O(t)

O(t2)

O(t)

O(t2)

O(t)

Cobham–Edmonds thesis:

M1 can be simulated onM2 with at most polynomial slowdown

27/31

The class P

regular

context-free
efficient
decidable P is the class of languages that can be

decided on a TMwith polynomial
running time

By Cobham–Edmonds thesis, they
can also be decided by any realistic
model of computation
e.g. Java, RAM, multitape TM

28/31

Examples of languages in P

P is the class of languages that are decidable in polynomial time (in the
input length)

L01 = {0n
1 | n > 0}

LG = {w | CFGG generatesw}
PATH = {〈G, s, t〉 | GraphG has

a path from node s to node t}

context-free

P (efficient)
decidable

•L01•LG

•PATH

29/31

Context-free languages in polynomial time

LetL be a context-free language, andG be a CFG forL in Chomsky Normal
Form

CYK algorithm:

If there is a productionA → xi
PutA in table cellT [i, 1]

For cellsT [i, `]
If there is a productionA → BC

whereB is in cellT [i, j]
andC is in cellT [i + j, `− j]

PutA in cellT [i, `]
b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C
S |A B S |C S |A

On input x of length n, running time isO(n3)

30/31

PATH in polynomial time

PATH = {〈G, s, t〉 | GraphG has

a path from node s to node t}

G has n vertices,m edges

M = On input 〈G, s, t〉
whereG is a graph with nodes s and t
Place a mark on node s
Repeat until no additional nodes are marked: O(n) times

Scan the edges ofG. O(m) steps
If some edge has both marked and unmarked endpoints

Mark the unmarked endpoint
If t is marked, accept

running time: O(mn)

31/31

Hamiltonian paths

A Hamiltonian path inG is a path that visits every node exactly once

HAMPATH = {〈G, s, t〉 | GraphG has a

Hamiltonian path from node s to node t}

s t

We don’t know if HAMPATH is in P, and we believe it is not

