Undecidable Problems for CFGs CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Decidable vs undecidable

ndecidable	
M M accepts w	
M M halts on w	
TM M accepts some input	
M M and M^\prime accept the me inputs	

CFG G generates all inputs? CFG G is ambiguous?

Representing computations

Configurations

A configuration consists of current state, head position, and tape contents

Configuration (abbreviation)

Computation histories

 q_0 abb%abb a q_2 bb%abb abb q_2 %abb abb% q_3 abb abb q_2 %xbb xxx%xxx q_1 xxx%xx q_a x

computation history

Computation histories as strings

If M halts on w, the computation history of (M, w) is the sequence of configurations C_1, \ldots, C_k that M goes through on input w

accepting history: M accepts $w \Leftrightarrow q_{acc}$ appears in hrejecting history: M rejects $w \Leftrightarrow q_{rej}$ appears in h Undecidable problems for CFGs

 $\mathsf{ALL}_{\mathsf{CFG}} = \{ \langle \, G \rangle \mid \, G \text{ is a CFG that generates all strings} \}$

The language ALL_{CFG} is undecidable

We will argue that

If $\mathsf{ALL}_{\mathsf{CFG}}$ can be decided, so can A_{TM}

 $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that rejects or loops on } w \}$

Undecidable problems for CFGs

Proof by contradiction

Suppose some Turing machine A decides $\mathsf{ALL}_{\mathsf{CFG}}$

 $\langle G \rangle \longrightarrow A$ accept if G generates all strings reject otherwise

We want to construct a Turing machine S that decides $\overline{A_{\mathsf{TM}}}$

G generates all strings if M rejects or loops on wG fails to generate some string if M accepts w

Undecidable problems for CFGs

G fails to generate some string $\label{eq:main_string} \label{eq:main_string} \label{eq:main_string} M$ accepts w

The alphabet of G will be $\Gamma \cup Q \cup \{\#\}$

G will generate all strings except accepting computation histories of (M, w)

First we construct a PDA P, then convert it to CFG G

Undecidablility via computation histories

 $#q_0ab%ab#xq_1b%ab#...#xx%xq_ax# \Rightarrow Reject$

P =on input h (try to spot a mistake in h)

- If h is not of the form $w_1 + w_2 + \dots + w_k$, accept
- If $w_1 \neq q_0 w$ or w_k does not contain q_a , accept
- ► If two consecutive blocks w_i#w_{i+1} do not follow from the transitions of M, accept

Otherwise, h must be an accepting history, reject

Computation is local

Changes between configurations always occur around the head

Legal and illegal transitions windows

Implementing P

If two consecutive blocks $w_i # w_{i+1}$ do not follow from the transitions of M, accept

For every position of w_i :

Remember offset from # in w_i on stack

Remember first row of window in state

After reaching the next #:

Pop offset from # from stack as you consume input

Remember second row of window in state

If window is illegal, accept; Otherwise reject

The computation history method

 $\mathsf{ALL}_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates all strings} \}$

If $\mathsf{ALL}_{\mathsf{CFG}}$ can be decided, so can A_{TM}

$$\langle M,w\rangle \longrightarrow \fbox{Convert}_{\mathsf{to}\ G} \xrightarrow{\langle G\rangle}$$

G accepts all strings except accepting computation histories of $({\cal M},w)$

We first construct a PDA $P, {\rm then}$ convert it to CFG ${\cal G}$

Post Correspondence Problem

Input: A fixed set of tiles, each containing a pair of strings

$$\begin{array}{c|c} bab & c & a \\ cc & ab & ab \\ \end{array} \begin{array}{c|c} baa & baa & a \\ ab & a \\ \end{array} \begin{array}{c|c} baa & bab \\ baba \\ \end{array} \begin{array}{c|c} c \\ \end{array} \end{array}$$

Given an infinite supply of tiles from a particular set, can you match top and bottom?

а	baa	bab	с	c	bab	а
ab	а	ε	ab	ab	сс	baba

Top and bottom are both abaababccbaba

Undecidability of PCP

$\mathsf{PCP} = \{ \langle T \rangle \mid T \text{ is a collection of tiles that contains a top-bottom match} \}$

The language PCP is undecidable

 $\mathsf{AMB} = \{ \langle G \rangle \mid G \text{ is an ambiguous CFG} \}$

The language AMB is undecidable

We will argue that

If AMB can be decided, then so can PCP

T (collection of tiles) \longmapsto G (CFG)

If T can be matched, then G is ambiguous If T cannot be matched, then G is unambiguous

First, let's number the tiles

T (collection of tiles) \longmapsto G (CFG)

	Terminals: a, b, c, 1, 2, 3	
	Variables: S , T , B	
	Productions:	
	$S \to T \mid B$	
$T \to babT1$	$T ightarrow { m c}T$ 2	T ightarrow a T 3
$B\to {\rm cc}B{\rm 1}$	$B ightarrow { m ab}B$ 2	$B ightarrow { m ab}B$ 3
$T \to \texttt{bab1}$	$T ightarrow { m c2}$	T ightarrow a3
$B\to \rm cc1$	B ightarrow ab2	B ightarrow ab3

T (collection of tiles) \longmapsto G (CFG)

	Terminals: a, b, c, 1, 2, 3	
	Variables: S , T , B	
	Productions:	
	$S \to T \mid B$	
$T \to babT1$	$T ightarrow { m c}T$ 2	T ightarrow a T 3
$B\to {\rm cc}B{\rm 1}$	$B ightarrow { m ab}B$ 2	$B ightarrow { m ab}B$ 3
$T \to \texttt{bab1}$	$T ightarrow { m c2}$	T ightarrow a3
$B\to \rm cc1$	B ightarrow ab2	B ightarrow ab3

Each sequence of tiles gives a pair of derivations

$$S \Rightarrow T \Rightarrow bab T1 \Rightarrow babc T21 \Rightarrow babcc221$$

 $S \Rightarrow B \Rightarrow ccB1 \Rightarrow ccabB21 \Rightarrow ccabab221$

If the tiles match, these two derive the same string (with different parse trees)

 $T \text{ (collection of tiles)} \quad \longmapsto \quad G \text{ (CFG)}$

If T can be matched, then G is ambiguous \checkmark If T cannot be matched, then G is unambiguous \checkmark

If G is ambiguous, then the two parse trees will look like

Therefore $n_1 n_2 \dots n_i = m_1 m_2 \dots m_j$, and there is a match