Undecidability and Reductions CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Undecidability

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \}$

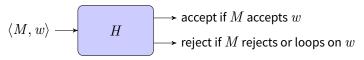
Turing's Theorem

The language A_{TM} is undecidable

Note that a Turing machine M may take as input its own description $\langle M
angle$

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

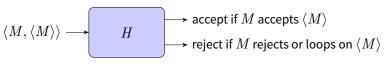


Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

 $\langle M, w \rangle \longrightarrow H \longrightarrow \text{accept if } M \text{ accepts } w \\ \longrightarrow \text{ reject if } M \text{ rejects or loops on } w$

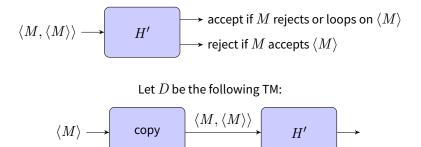
If
$$w = \langle M \rangle_{\mathbb{R}}$$

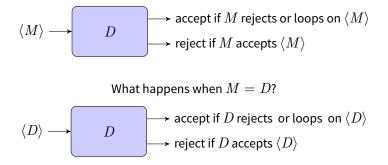


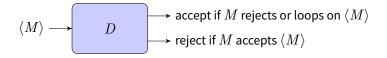
$$\langle M, \langle M \rangle \rangle \longrightarrow H \longrightarrow \text{accept if } M \text{ accepts } \langle M \rangle \\ \longrightarrow \text{ reject if } M \text{ rejects or loops on } \langle M \rangle$$

Let H' be a TM that does the opposite of H accept states in H becomes reject states in H', and vice versa

$$\langle M, \langle M \rangle \rangle \longrightarrow H' \longrightarrow \text{accept if } M \text{ rejects or loops on } \langle M \rangle \\ \longrightarrow \text{ reject if } M \text{ accepts } \langle M \rangle$$







H never loops indefinitely, neither does D

If *D* rejects $\langle D \rangle$, then *D* accepts $\langle D \rangle$ If *D* accepts $\langle D \rangle$, then *D* rejects $\langle D \rangle$

Contradiction! *D* cannot exist! *H* cannot exist!

Proof of Turing's theorem: conclusion

Proof by contradiction

Assume $A_{\rm TM}$ is decidable Then there are TM H, H' and DBut D cannot exist!

Conclusion

The language A_{TM} is undecidable

		all possible inputs w					
		ε	0	1	00		
s	M_1	acc	rej	rej	асс		
ine	M_2	rej	асс	loop	rej		
possible ring machines	M_3	rej	loop	rej	rej		
ssik g m	M_4	acc	rej	acc	loop		
all possible Turing macl			:				
all Tu			•				

Write an infinite table for the pairs (M, w)

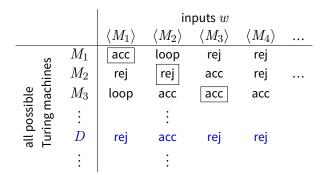
(Entries in this table are all made up for illustration)

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	M_4	acc	acc	loop	acc	
all po Turinį			÷			

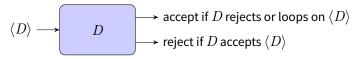
Only look at those *w* that describe Turing machines

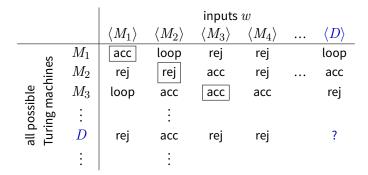
		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	:		÷			
	D	rej	acc	rej	rej	
	÷		÷			

If $A_{\rm TM}$ is decidable, then TM D is in the table



D does the opposite of the diagonal entries D on $\langle M_i \rangle =$ opposite of M_i on $\langle M_i \rangle$





We run into trouble when we look at $(D, \langle D \rangle)$

The language $A_{\rm TM}$ is recognizable but not decidable

How about languages that are not recognizable?

$$\overline{A_{\mathsf{TM}}} = \{ \langle M, w
angle \mid M ext{ is a TM that does not accept } w \}$$

= $\{ \langle M, w
angle \mid M ext{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{\mathrm{TM}}}$ is not recognizable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

 $\label{eq:how} \begin{array}{c} \mbox{We know} \ A_{\rm TM} \mbox{ is recognizable} \\ \mbox{if } \overline{A_{\rm TM}} \mbox{ were also, then } A_{\rm TM} \mbox{ would be decidable} \end{array}$

But Turing's Theorem says A_{TM} is not decidable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \operatorname{TM}$ recognizing $L, M' = \operatorname{TM}$ recognizing \overline{L}

The following Turing machine N decides $L\!\!:$ On input $w\!\!,$

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M' on input w. If M' accepts, N rejects.

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \operatorname{TM}$ recognizing $L, M' = \operatorname{TM}$ recognizing \overline{L}

The following Turing machine N decides $L\!\!:$ On input $w\!\!,$

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = \mathsf{TM}$ recognizing $L, M' = \mathsf{TM}$ recognizing \overline{L}

The following Turing machine N decides L: On input w,

For $t = 0, 1, 2, 3, \ldots$

Simulate first t transitions of M on input w. If M accepts, N accepts. Simulate first t transitions of M' on input w. If M' accepts, N rejects.

Reductions

Another undecidable language

 $\operatorname{HALT}_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$ We'll show:

 $\mathsf{HALT}_\mathsf{TM}$ is an undecidable language

We will argue that If HALT_{TM} is decidable, then so is A_{TM} ...but by Turing's theorem, A_{TM} is not

Undecidability of halting

If HALT_{\rm TM} can be decided, so can $A_{\rm TM}$

Suppose H decides $\operatorname{HALT}_{\mathsf{TM}}$ $\langle M, w \rangle \longrightarrow H \longrightarrow$ accept if M halts on w \to reject if M loops on w

 $\langle M, w \rangle \longrightarrow \ref{eq:main_struct} a \mathsf{TM} \ S \ \mathsf{that} \ \mathsf{decides} \ A_\mathsf{TM} \\ \xrightarrow{} \mathsf{accept} \ \mathsf{if} \ M \ \mathsf{accepts} \ w \\ \xrightarrow{} \mathsf{reject} \ \mathsf{if} \ M \ \mathsf{rejects} \ \mathsf{or} \ \mathsf{loops} \ \mathsf{on} \ w \\ \end{array}$

Undecidability of halting

 $\begin{aligned} \mathsf{HALT}_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \\ A_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \end{aligned}$

 $\begin{array}{l} \text{Suppose HALT}_{\mathsf{TM}} \text{ is decidable} \\ \text{Let } H \text{ be a TM that decides HALT}_{\mathsf{TM}} \\ \text{The following TM } S \text{ decides } A_{\mathsf{TM}} \\ \text{On input } \langle M, w \rangle \text{:} \end{array}$

 $\begin{array}{l} \operatorname{Run} H \text{ on input } \langle M,w\rangle \\ \operatorname{If} H \text{ rejects, reject} \\ \operatorname{If} H \text{ accepts, run } U \text{ on input } \langle M,w\rangle \\ \\ \operatorname{If} U \text{ accepts, accept; else reject} \end{array}$

Steps for showing that a language L is undecidable:

- 1. If some TM R decides L
- 2. Using R , build another TM S that decides $A_{\rm TM}$

But $A_{\rm TM}$ is undecidable, so R cannot exist

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is $A'_{\rm TM}$ decidable? Why?

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is $A'_{\rm TM}$ decidable? Why?

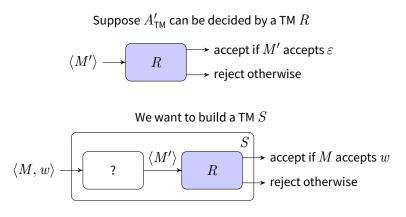
Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M . But then we need to know whether M halts

Let's justify this intuition

Example 1: Figuring out the reduction



M' should be a Turing machine such that M' on input $\varepsilon=M$ on input w

Example 1: Implementing the reduction

$$\langle M, w \rangle \longrightarrow ? \longrightarrow \langle M' \rangle$$

M' should be a Turing machine such that M' on input $\varepsilon=M$ on input w

Description of the machine M': On input z

- 1. Simulate M on input w
- 2. If M accepts w, accept
- 3. If M rejects w, reject

$$\langle M, w \rangle \xrightarrow{} \begin{array}{c} \langle M' \rangle \\ \hline R \\ \hline \end{array} \xrightarrow{} \begin{array}{c} S \\ \hline R \\ \hline \end{array} \xrightarrow{} \begin{array}{c} \text{accept if } M \text{ accepts } w \\ \hline \end{array} \xrightarrow{} \begin{array}{c} reject \text{ otherwise} \end{array}$$

 $\begin{array}{l} {\rm Description \ of \ } S: \\ {\rm On \ input \ } \langle M, w \rangle \ {\rm where \ } M \ {\rm is \ a \ TM \ } \end{array}$

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M'\rangle$ and accept/reject according to R

Example 1: The formal proof

 $\begin{aligned} A'_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \\ A_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \end{aligned}$

Suppose $A'_{\rm TM}$ is decidable by a TM R. Consider the TM S: On input $\langle M,w\rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M'\rangle$ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w So S decides $A_{\rm TM},$ which is impossible

$A_{\rm TM}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$ Is $A_{\rm TM}''$ decidable? Why?

 $A_{\rm TM}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$ Is $A_{\rm TM}''$ decidable? Why?

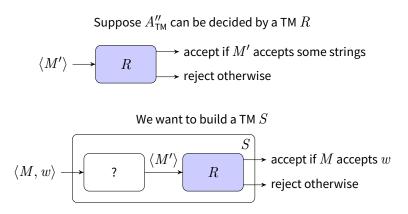
Undecidable!

Intuitive reason:

To know whether M accepts some strings seems to require simulating M . But then we need to know whether M halts

Let's justify this intuition

Eample 2: Figuring out the reduction



 M^\prime should be a Turing machine such that M^\prime accepts some strings if and only if M accepts input w

Implementing the reduction

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w, then M' accepts some input If M does not accept w, then M' accepts no inputs

M' = a TM such that on input z,

- 1. Simulate M on input w
- 2. If ${\cal M}$ accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

 $A_{\mathsf{TM}}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose $A_{\rm TM}''$ is decidable by a TM R. Consider the TM S: On input $\langle M,w\rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M'\rangle$ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w So S decides $A_{\rm TM},$ which is impossible

 $E_{\rm TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is $E_{\rm TM}$ decidable?

 $E_{\rm TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is $E_{\rm TM}$ decidable?

Undecidable! We will show:

If $E_{\rm TM}$ can be decided by some TM R Then $A_{\rm TM}^{\prime\prime}$ can be decided by another TM S

 $A_{\mathsf{TM}}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$

$$\begin{split} E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \\ A_{\mathsf{TM}}'' &= \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \end{split}$$

Note that E_{TM} and A''_{TM} are complement of each other (except ill-formatted strings, which we will ignore)

Suppose $E_{\rm TM}$ can be decided by some TM R Consider the following TM S: On input $\langle M \rangle$ where M is a TM

- 1. Run R on input $\langle M \rangle$
- 2. If R accepts, reject
- 3. If R rejects, accept

Then S decides $A_{\rm TM}^{\prime\prime}$, a contradiction

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ & \quad \mathsf{Is EQ}_{\mathsf{TM}} \text{ decidable?} \end{split}$$

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ & \quad \mathsf{Is EQ}_{\mathsf{TM}} \text{ decidable?} \end{split}$$

 $\label{eq:Undecidable} Undecidable! \\ \mbox{We will show that $EQ_{\rm TM}$ can be decided by some TM R then $E_{\rm TM}$ can be decided by another TM S }$

Example 4: Setting up the reduction

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that If M accepts no input, then M_1 and M_2 accept same set of inputs If M accepts some input, then M_1 and M_2 do not accept same set of inputs

> Idea: Make $M_1 = M$ Make M_2 accept nothing

Example 4: The formal proof

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

 $\begin{array}{l} \mbox{Suppose EQ}_{\rm TM} \mbox{ is decidable and } R \mbox{ decides it } \\ \mbox{ Consider the following TM } S: \\ \mbox{ On input } \langle M \rangle \mbox{ where } M \mbox{ is a TM } \end{array}$

- 1. Construct a TM M_2 that rejects every input z
- 2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M\rangle$ if and only if M accepts no input So S decides $E_{\rm TM}$ which is impossible