Undecidability and Reductions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Undecidability

Ay = {(M, w) | Turing machine M accepts input w}

Turing’s Theorem

The language Aty is undecidable

Note that a Turing machine M may take as input its own description (M)

Proof of Turing’s Theorem

Proof by contradiction:

Suppose Aty is decidable, then some TM H decides Ary:

accept if M accepts w
(M, w) H o
reject if M rejects or loops on w

Proof of Turing’s Theorem

Proof by contradiction:

Suppose Aty is decidable, then some TM H decides Ary:

accept if M accepts w

(M, w) H o
reject if M rejects or loops on w
Ifw = (M),
accept if M accepts (M)
(M, (M)) H

reject if M rejects or loops on (M)

Proof of Turing’s theorem

accept if M accepts (M)

reject if M rejects or loops on (M)

Let H' be a TM that does the opposite of H
accept states in H becomes reject states in H’, and vice versa

(M, (M)) , accept if M rejects or loops on (M)
’ H
reject if M accepts (M)

Proof of Turing’s theorem

(o1, or) accept if M rejects or loops on (M)
) H
reject if M accepts (M)

Let D be the following TM:

Proof of Turing’s theorem

accept if M rejects or loops on (M)

(M) L
reject if M accepts (M)
What happens when M = D?
accept if D rejects or loops on (D)
(D)

reject if D accepts (D)

Proof of Turing’s theorem

accept if M rejects or loops on (M)

(M) o
reject if M accepts (M)
What happens when M = D?
D) accept if D rejects orleeps on (D)

reject if D accepts (D)

H never loops indefinitely, neither does D

If D rejects (D), then D accepts (D)
If D accepts (D), then D rejects (D)

Contradiction! D cannot exist! H cannot exist!

Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume Ay is decidable
Then there are TM H, H' and D
But D cannot exist!

Conclusion

The language Ay is undecidable

Diagonalization

all possible inputs w

€ 0 1 00

w M| acc rej rej acc

(] . .

€ Ms | ref acc loop rej

23 Ms | rej loop rej rej

@ fb My | acc rej acc loop
o c
Q =
= 5
T -

Write an infinite table for the pairs (M, w)

(Entries in this table are all made up for illustration)

Diagonalization

inputs w
(M) (M) (Ms) (My)
0 My | acc loop rej rej
c M rej rej acc rej
v S M- |
29 3 | loop acc acc acc
@a € My | acc acc loop acc
g ¥
o =
= S5
© ~

Only look at those w that describe Turing machines

Diagonalization

inputs w

(My) (Mz) (Ms) (My)

o M, acF loo.p rej reJ:

£ M rej rej acc rej
<

23 Ms | loop acc acc acc
g &

Q = . . .

-5 D rej acc rej rej
© -

If A1y is decidable, then TM D is in the table

Diagonalization

inputs w

(M) (Mz) (Ms) (My)

o M, ac'c loo.p rej rej:

£ M rej rej acc rej
<

= & Ms | loop acc acc acc
gz

=2 D rej acc rej rej

D does the opposite of the diagonal entries
D on (M;) = opposite of M; on (M;)

accept if D rejects or loops on (D)

reject if D accepts (D)

Diagonalization

We run into trouble when we look at (D, (D))

inputs w
(M) (Ma) (Ms) (My) (D)

w M acc loop rej rej loop

[. . .

,E My rej rej acc rej acc
2 & M| loop acc acc acc rej
w E
=5 D rej acc rej rej ?

Unrecognizable languages

The language Aty is recognizable but not decidable

How about languages that are not recognizable?

A = {{M,w) | M isaTM that does not accept w}
= {(M, w) | M rejects or loops on input w}

Claim

The language Aty is not recognizable

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know Aqy is recognizable
if Aty were also, then A1y would be decidable

But Turing’s Theorem says Ary is not decidable

Unrecognizable languages

Theorem

If L and L are both recognizable, then L is decidable

Proof idea:

Let M = TM recognizing L, M’ = TM recognizing L
The following Turing machine N decides L:
Oninput w,
1. Simulate M oninput w. If M accepts, N accepts.
2. Simulate M’ on input w. If M’ accepts, N rejects.

Unrecognizable languages

Theorem

If L and L are both recognizable, then L is decidable

Proof idea:

Let M = TM recognizing L, M’ = TM recognizing L
The following Turing machine N decides L:
Oninput w,
1. Simulate M oninput w. If M accepts, N accepts.
2. Simulate M’ on input w. If M’ accepts, N rejects.

Problem: If M loops on w, we will never go to step 2

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let M = TM recognizing L, M’ = TM recognizing L

The following Turing machine N decides L:
Oninput w,

Fort =0,1,2,3,...
Simulate first ¢ transitions of M on input w.
If M accepts, N accepts.
Simulate first ¢ transitions of M’ on input w.
If M accepts, N rejects.

Reductions

Another undecidable language

HALTry = {(M, w) | M isaTM that halts on input w}
we’ll show:
HALTty is an undecidable language
We will argue that

If HALT 1y is decidable, then so is A1y
...but by Turing’s theorem, Aty is not

Undecidability of halting

If HALT 1y can be decided, so can Ay

Suppose H decides HALT Ty

accept if M halts on w
(M, w) H

reject if M loops on w

We want to construct a TM S that decides Aty

accept if M accepts w
(M, w) 2
reject if M rejects or loops on w

Undecidability of halting

HALTty = {(M, w) | M is a TM that halts on input w}
A = {{(M,w) | MisaTM thatacceptsinput w}

Suppose HALTty is decidable
Let H be a TM that decides HALT 1y
The following TM S decides Aty
Oninput (M, w):

Run H oninput (M, w)

If H rejects, reject

If H accepts, run U oninput (M, w)
If U accepts, accept; else reject

Reductions

Steps for showing that a language L is undecidable:

1. Ifsome TM R decides L
2. Using R, build another TM S that decides Aty

But Aty is undecidable, so R cannot exist

Example 1

'm = {(M) | MisaTM thatacceptsinpute}

Is Af,, decidable? Why?

Example 1

'm = {(M) | MisaTM thatacceptsinpute}
Is Af,, decidable? Why?

Undecidable!

Intuitive reason:
To know whether M accepts € seems to require simulating M
But then we need to know whether M halts

Let’s justify this intuition

Example 1: Figuring out the reduction
Suppose A%, can be decidedbyaTM R
. accept if M’ accepts ¢
(M) R . :
reject otherwise

We wantto buildaTM S

accept if M accepts w

reject otherwise

M’ should be a Turing machine such that
M’ oninpute = M oninput w

Example 1: Implementing the reduction

M’ should be a Turing machine such that
M’ oninpute = M oninput w

Description of the machine M":
Oninput 2z
1. Simulate M oninput w
2. If M accepts w, accept

3. If M rejects w, reject

accept if M accepts w

reject otherwise

Description of S:
Oninput (M, w) where M isaTM

1. Construct the following TM M’:

M’ = aTMsuch that on input z,

Simulate M on input w and accept/reject according to M

2. Run Roninput (M’) and accept/reject according to R

Example 1: The formal proof

Ay = {(M) | MisaTM that acceptsinput &}
Ay = {(M,w) | M isaTM that accepts input w}

Suppose A%y, is decidable by a TM R.
Consider the TM S: On input (M, w) where M isa TM

1. Construct the following TM M':

M’ =aTMsuch that on input z,

Simulate M on input w and accept/reject according to M
2. Run Roninput (M) and accept/reject according to R

Then S accepts (M, w) if and only if M accepts w
So S decides Aty, which isimpossible

Example 2

Ay = {{M) | M isaTM that accepts some input strings }
Is A% decidable? Why?

Example 2

Ay = {{M) | M isaTM that accepts some input strings }
Is A% decidable? Why?

Undecidable!

Intuitive reason:
To know whether M accepts some strings seems to require simulating M
But then we need to know whether M halts

Let’s justify this intuition

Eample 2: Figuring out the reduction

Suppose A%, can be decidedbyaTM R

accept if M’ accepts some strings
(M) R
reject otherwise

We wantto buildaTM S

accept if M accepts w

reject otherwise

M’ should be a Turing machine such that
M’ accepts some strings if and only if M accepts input w

Implementing the reduction

Task: Given (M, w), construct M’ so that
If M accepts w, then M’ accepts some input
If M does not accept w, then M’ accepts no inputs

M’ = aTMsuch thatoninput z,
1. Simulate M oninput w
2. If M accepts, accept

3. Otherwise, reject

Example 2: The formal proof

A%y = {(M) | M isaTM that accepts some input}
Ay = {(M,w) | M isaTM that accepts input w}

Suppose A, is decidable by a T™M R.
Consider the TM S: On input (M, w) where M isa TM

1. Construct the following TM M':

M’ =aTMsuch that on input z,

Simulate M on input w and accept/reject according to M
2. Run Roninput (M) and accept/reject according to R

Then S accepts (M, w) if and only if M accepts w
So S decides Aty, which isimpossible

Example 3

Erv = {(M) | M isaTM that accepts no input}
Is Fry decidable?

Example 3

Erv = {{M) | MisaTM that accepts no input}
Is Fry decidable?
Undecidable! We will show:

If Fry can be decided by some TM R
Then A’ can be decided by another TM .S

Ay = {(M) | M isaTM that accepts some input strings }

Example 3

Erv = {(M) | M isaTM that accepts no input}
Ay = {(M) | MisaTM that accepts some input}

Note that Ery and A%y, are complement of each other
(except ill-formatted strings, which we will ignore)

Suppose Fry can be decided by some TM R
Consider the following TM .S
Oninput (M) where M isaTM

1. Run Roninput (M)
2. If R accepts, reject
3. If Rrejects, accept

Then S decides A%, a contradiction

Example 4

EQmw = {(M1, Ma) | M; and My are TMs such that L(M;) = L(Ms)}
Is EQqy decidable?

Example 4

EQmw = {(M1, Ma) | M; and My are TMs such that L(M;) = L(Ms)}
Is EQqy decidable?

Undecidable!
We will show that EQqy can be decided by some TM R
then Ery can be decided by another TM S

Example 4: Setting up the reduction

EQmw = {(M1, Ma) | M; and My are TMs such that L(M;) = L(Ms)}
Erv = {{M) | MisaTM that accepts no input}

Given (M), we need to construct (M7, Ms) so that
If M accepts no input, then M7 and My accept same set of inputs
If M accepts some input, then M7 and M5 do not accept same set of inputs

Idea: Make M1 = M
Make M> accept nothing

Example 4: The formal proof

EQmw = {(M1, Ma) | My and My are TMs such that L(M;) = L(Ms)}
Ery = {(M) | M isaTM that accepts no input}

Suppose EQqy is decidable and R decides it
Consider the following TM S:
Oninput (M) where M isaTM

1. Construct a TM M, that rejects every input z
2. Run Roninput (M, M) and accept/reject according to R

Then S accepts (M) if and only if M accepts no input
So S decides Ery which is impossible

