
1/26

Turing Machines and Their Variants
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

2/26

Looping

Turing machine may not halt

q0

qacc

qrej

�/�R
0/0R

1/1R

Σ = {0, 1}

input: ε

Inputs can be divided into three types:

qacc
Accept

qrej
Reject Infinite loop

3/26

Halting

We sayM halts on input x if there is a sequence of configurations
C0,C1, . . . ,Ck

C0 is starting Ci yieldsCi+1 Ck is accepting or rejecting

A TMM is a decider if it halts on every input

LanguageL is decidable if it is recognized by a TM that halts on every input

4/26

Programming Turing machines: Are two strings equal?

L1 = {w#w | w ∈ {a, b}∗}

Description of Turing Machine

1 Until you reach #

2 Read and remember entry xbbaa#xbbaa

3 Write x xxbaa#xbbaa

4 Move right past # and past all x’s xxbaa#xbbaa

5 If this entry is different, reject
6 Write x xxbaa#xxbaa

7 Move left past # and to right of first x xxbaa#xxbaa

8 If you see only x’s followed by�, accept

5/26

Programming Turing machines: Are two strings equal?

L1 = {w#w | w ∈ {a, b}∗}

q0 q1 qacc

qa1 qa2

qb1 qb2

q2 q3

qrej
a/x
R

2
3

b/xR
2

3

#/#R 1

x/xR

�/�R

a/aR
b/bR

#/#R 4

x/xR

a/aR
b/bR

#/#R 4

x/xR

a/xL
5

6

b/x
L

5
6

a/aL
b/bL
x/xL

#/#L

a/aL
b/bL

x/xR

7

8

everything else

6/26

Programming Turing machines: Are two strings equal?

q0 q1 qacc

qa1 qa2

qb1 qb2

q2 q3

qrej

a/x
R

2
3

b/xR
2

3

#/#R 1

x/xR

�/�R

a/aR
b/bR

#/#R 4

x/xR

a/aR
b/bR

#/#R 4

x/xR

a/xL
5

6

b/x
L

5
6

a/aL
b/bL
x/xL

#/#L

a/aL
b/bL

x/xR

7

8

everything else

input: aab#aab

configurations:
q0 aab#aab
x qa1 ab#aab

xa qa1 b#aab

xab qa1 #aab

xab# qa2 aab

xab q2 #xab
xa q3 b#xab
x q3 ab#xab
q3 xab#xab
x q0 ab#xab

...

7/26

Programming Turing machines

L2 = {ai
b

j
c

k | ij = k and i, j, k > 0}

High level description of TM: Example:
1 For every a: 1 aabbcccc

2 Cross off the same number of b’s and c’s 2 aabbcccc

3 Uncross the crossed b’s (but not the c’s) 3 aabbcccc

4 Cross off this a 4 aabbcccc

5 If all a’s and c’s are crossed off, accept 5 aabbcccc

2 aabbcccc

3 aabbcccc

Σ = {a, b} Γ = {a, b, c, a, b, c,�}

8/26

Programming Turing machines

L2 = {ai
b

j
c

k | ij = k and i, j, k > 0}

Low-level description of TM:

Scan input from left to right to check it looks like aa∗bb∗cc∗

Move the head to the first symbol of the tape

How?

For every a:
Cross off the same number of b’s and c’s

How?

Restore the crossed off b’s (but not the c’s)
Cross off this a

If all a’s and c’s are crossed off, accept

8/26

Programming Turing machines

L2 = {ai
b

j
c

k | ij = k and i, j, k > 0}

Low-level description of TM:

Scan input from left to right to check it looks like aa∗bb∗cc∗

Move the head to the first symbol of the tape How?
For every a:

Cross off the same number of b’s and c’s How?
Restore the crossed off b’s (but not the c’s)
Cross off this a

If all a’s and c’s are crossed off, accept

9/26

Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:
Put a special marker on top of the first a ȧabbcccc

Cross off the same number of b’s and c’s: ȧabbcccc

Replace b by b ȧabbcccc

Move right until you see a c ȧabbcccc

Replace c by c ȧabbcccc

Move left just past the last b ȧabbcccc

If any uncrossed b’s are left, repeat ȧabbcccc

ȧabbcccc

Σ = {a, b, c} Γ = {a, b, c, a, b, c, ȧ, ȧ,�}

10/26

Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . . #xm | xi ∈ {0, 1}∗ and xi 6= xj for every i 6= j}

Example: #01#0011#1 ∈ L3

High-level description of TM:

On inputw
For every pair of blocks xi and xj inw

Compare the blocks xi and xj
If they are the same, reject

Accept

11/26

Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . . #xm | xi ∈ {0, 1}∗ and xi 6= xj for every i 6= j}

Low-level desrciption:

0. If input is ε, or has exactly one #, accept

1. Mark the leftmost # as #̇ andmove right #̇01#0011#1

2. Mark the next unmarked # #̇01#̇0011#1

12/26

Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . . #xm | xi ∈ {0, 1}∗ and xi 6= xj for every i 6= j}

3. Compare the two strings to the right of #̇ #̇01#̇0011#1

If they are equal, reject

4. Move the right #̇ #̇01#0011#̇1

If not possible, move the left #̇ to the next #
and put the right #̇ on the next #
If not possible, accept

5. Repeat Step 3 #̇01#0011#̇1

#01#̇0011#̇1

#01#̇0011#̇1

13/26

How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams of
Turing Machines

We usually give a high-level description
unless you’re asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

14/26

Programming Turing machines: Graph connectivity

L4 = {〈G〉 | G is a connected undirected graph}

How do we feed a graph into a Turing Machine?
How to encode a graphG as a string 〈G〉?

1 2

3 4

(1,2,3,4)((1,4),(2,3),(3,4),(4,2))

Conventions for describing graphs:

(nodes)(edges)
no node appears twice
edges are pairs (first node, second node)

15/26

Programming Turing machines: Graph connectivity

L3 = {〈G〉 | G is a connected undirected graph}

High-level description:

On input 〈G〉
0. Verify that 〈G〉 is the description of a graph

No node/edge repeats; Edge endpoints are nodes

1. Mark the first node ofG
2. Repeat until no new nodes are marked:

2.1 For each node, mark it if it is adjacent to an
already marked node

3. If all nodes are marked, accept; otherwise reject

1 2

3 4

16/26

Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that 〈G〉 is the description of a graph
No node/edge repeats: Similar to Element distinctness
Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node ofG
Mark the leftmost digit with a dot, e.g. 12 becomes 1̇2

2. Repeat until no new nodes are marked:
2.1 For each node, mark it if it is attached to an already marked node
For every dotted node u and every undotted node v:

Underline both u and v from the node list
Try to match themwith an edge from the edge list
If not found, remove underline from u and/or v and try another pair

17/26

Variants of Turing Machines

18/26

Multitape Turing machine

control

b b a b � …

a b a � � …

b a b � � …

Transitions may depend on the contents of all cells under the heads

Different tape heads canmove independent

19/26

Multitape Turing machine

b a � �…

a b a �…

a a b �…
q3 q7

{
�/�L
a/bR
a/aR

b a � �…

a b b �…

a a b �…

Multiple tapes are convenient
One tape can serve as temporary storage

20/26

How to argue equivalence

Multitape Turing machines are equivalent to singlne-tape Turing machines

multiple
tapes

single
tape

easy

requires simulation

21/26

Simulating multitape Turing machine

M

b a � �…

a b b �…

a a � �…

Γ = {a, b,�}

S # b ȧ # a b b �̇ # a ȧ # �…

Γ = {a, b,�, ȧ, ḃ, �̇, #}

22/26

Simulating multitape Turing machine

We show how to simulate a multitape Turing machine on a single tape
Turing machine

To be specific, let’s simulate a 3-tape TM

Multitape TMM

x1 … xr … xi �

y1…… ys … yj �

z1 … zt … zk �

Single tape TM S
#x1x2 . . . ẋr . . . xi#y1y2 . . . ẏs . . . yj#z1z2 . . . żt . . . zk

23/26

Simulating multitape Turing machine

Single-tape TM: Initialization

w1w2 . . .wn

#ẇ1w2 . . .wn#�̇#�̇

S : On inputw1 . . .wn :

Replace tape contents by #ẇ1w2 . . .wn#�̇#�̇
Remember thatM is in state q0

24/26

Simulating multitape Turing machine

Single-tape TM: Simulating multitape TMmoves

Suppose Multitape TMM moves like this:

b a � �…

a b a �…

a a b �…
q3 q7

{
�/�L
a/bR
a/aR

b a � �…

a b b �…

a a b �…

We simulate the move on single-tape TM S like this

b a �̇ # a b ȧ # ȧ a b # �

b ȧ # a b b �̇ # a ȧ b # �

25/26

Simulating multitape Turing machine

S given inputw1 . . .wn :
Replace tape contents by #ẇ1w2 . . .wn#�̇#�̇

Remember (in state) thatM is in state q0

S simulates a step ofM :
Make a pass over tape to find ẋ , ẏ, ż

#x1x2 . . . ẋ . . . xi#y1y2 . . . ẏ . . . yj#z1z2 . . . ż . . . zk

IfM at state qa has transition
qa qb

{
x/x ′A
y/y′B
z/z ′C

update state/tape accordingly

IfM reaches accept (reject) state, S accepts (rejects)

26/26

Simulation

To simulate a modelM by another modelN :

Say how the state and storage ofN is used to represent the state and
storage ofM

Say what should be initially done to convert the input ofN

Say how each transition ofM can be implemented by a sequence of
transitions ofN

