Turing Machines and Their Variants
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Looping

Turing machine may not halt

¥ ={o0,1}

input: €

Inputs can be divided into three types:

VYV (dac) VA% TS

Accept Reject Infinite loop

Halting

We say M halts on input x if there is a sequence of configurations
Cﬂaolw"ack

Cy is starting C; yields Ciy1 (Y is accepting or rejecting

ATM M is a decider if it halts on every input

Language L is decidable if it is recognized by a TM that halts on every input

Programming Turing machines: Are two strings equal?

Ly = {wtw | w € {a,b}*}

Description of Turing Machine

1 Untilyou reach #

2 Read and remember entry

3 Write x

4 Move right past # and past all x’s
5 If this entry is different, reject

6 Write x

7 Move left past # and to right of first x
s Ifyou see only x’s followed by [, accept

xbbaa#xbbaa
xxbaa#xbbaa

xxbaa#xbbaa

xxbaa#xxbaa
xxbaa#xxbaa

Programming Turing machines: Are two strings equal?

Ly = {wtw | w € {a,b}*}

a/aR
b/bR x/xR everything else

Programming Turing machines: Are two strings equal?

input: aab#aab

tajgg x/xR everything else @ configurations:
Qo aab#aab
X (.1 ab#aab
xa (,1 b#aab
xab @1 #aab
xab# @52 aab
xab @9 #xab
xa g3 b#xab
x g3 ab#xab
q3 xab#xab
X (o ab#xab

Programming Turing machines

Ly = {a'/cF | ij = kand i, 4,k > 0}

High level description of TM:

1 Forevery a:

2 Cross off the same number of b’s and c’s
3 Uncross the crossed b’s (but not the ¢’s)
4 Cross off this a

s If all a’s and c’s are crossed off, accept

¥ ={a,b} ' ={a,b,c,a,b,e 0}

Example:

1 aabbcccc
2 aabbeecc
3 aabbeecc
4 @abbeecc
5 dabbeecc
2 aabbeeee
3 dabbeeee

Programming Turing machines

Ly = {a'/c* | ij = kand i, j, k > 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*
Move the head to the first symbol of the tape
For every a:
Cross off the same number of b’s and c’s
Restore the crossed off b’s (but not the c’s)
Cross off this a
If all a’s and c’s are crossed off, accept

Programming Turing machines

Ly = {a'/c* | ij = kand i, j, k > 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*
Move the head to the first symbol of the tape How?
For every a:
Cross off the same number of b’sand c’s How?
Restore the crossed off b’s (but not the c’s)
Cross off this a
If all a’s and c’s are crossed off, accept

Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:

Put a special marker on top of the first a

Cross off the same number of b’s and c’s:
Replace b by b

Move right until you see a c

Replace cbye

Move left just past the last b

If any uncrossed b’s are left, repeat

dabbcccc

dabbcccc
dabbcccc
dabbcccc
dabbeccc
dabbeccc
dabbeccc
dabbeecc

Y ={a,b,c} I'={a,b,c,a,b,€ a4}

Programming Turing machines: Element distinctness

Ly = {#xi#zp .. #2y, | 2; € {0,1}* and 2; # w; forevery i # j}

Example: #01#0011#1 € L3

High-level description of TM:

Oninput w

For every pair of blocks z; and ; in w
Compare the blocks z; and z;
If they are the same, reject

Accept

Programming Turing machines: Element distinctness

Ly = {#m#zy .. . #2y, | 2; € {0,1}* and z; # z; forevery i # j}

Low-level desrciption:

0. [Ifinputise, or has exactly one #, accept
1. Markthe leftmost # as # and move right ~ #01#0011#1

2. Mark the next unmarked # #01#0011#1

Programming Turing machines: Element distinctness

Ly = {#xi#zy .. #2y, | z; € {0,1}* and 2; # w; forevery i # j}
3. Compare the two strings to the right of # #01#0011#1
If they are equal, reject

4, Move theright # #01#0011#1
If not possible, move the left # to the next #
and put the right # on the next #
If not possible, accept

5. RepeatStep3 #01#0011#1
#01#0011#1

#01#0011#1

How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams of
Turing Machines

We usually give a high-level description
unless you're asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

Programming Turing machines: Graph connectivity

Ly = {(G) | Gisaconnected undirected graph }

How do we feed a graph into a Turing Machine?
How to encode a graph G as a string (G)?

(1,2,3,4)((1,4),(2,3),(3,4),(4,2))

0 a Conventions for describing graphs:

‘ (nodes) (edges)
oR0

no node appears twice
edges are pairs (first node, second node)

Programming Turing machines: Graph connectivity

Ls = {(G) | Gisaconnected undirected graph}

High-level description:
Oninput (G)

0. Verify that (G) is the description of a graph
No node/edge repeats; Edge endpoints are nodes

1. Mark the first node of G a ‘a
2. Repeat until no new nodes are marked: e‘

2.1 Foreach node, mark itif itis adjacent to an
already marked node

3. Ifall nodes are marked, accept; otherwise reject

Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that (G) is the description of a graph
No node/edge repeats: ~ Similar to Element distinctness
Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node of G
Mark the leftmost digit with a dot, e.g. 12 becomes 12

2. Repeat until no new nodes are marked:
2.1 For each node, markiitifiit is attached to an already marked node
For every dotted node u and every undotted node v:

Underline both u and v from the node list

Try to match them with an edge from the edge list

If not found, remove underline from u and/or v and try another pair

Variants of Turing Machines

Multitape Turing machine

B [blalblO]
[3
control la[b]a]O[O]:
B albl00]

Transitions may depend on the contents of all cells under the heads

Different tape heads can move independent

Multitape Turing machine

{D o
e

Multiple tapes are convenient
One tape can serve as temporary storage

How to argue equivalence

Multitape Turing machines are equivalent to singlne-tape Turing machines
easy

multiple single
tapes tape

S

requires simulation

Simulating multitape Turing machine

(B[]0
M | [a[B]BI- I~ fa,b,0}
=IO}

S ﬁ‘b‘é‘#‘a‘b‘b‘ﬂ‘#‘a‘é‘#‘g‘...

I'= {a7b7|:|7é7b)|ju#}

Simulating multitape Turing machine

We show how to simulate a multitape Turing machine on a single tape
Turing machine

To be specific, let’s simulate a 3-tape TM

e T Tl
Multitape TM M lylll‘;s‘l%“jl
2

Single tape TM §
¥
B2 .- Tp .. - TH#YI1Y2 .- Ys. .- Yi#Z120 .. 2. 2k

Simulating multitape Turing machine

Single-tape TM: Initialization

12
l » ’ #uLwsy ... wn#ﬂ#m

S: Oninput wy ... wy:

Replace tape contents by #w; ws . . . wn#D#D
Remember that M is in state qq

Simulating multitape Turing machine

Single-tape TM: Simulating multitape TM moves

Suppose Multitape TM M moves like this:

{D o

2o

We simulate the move on single-tape TM S like this

o[[E e [3[3[3[s 0]

#[o[3[# 3 s [o[E[s 2 3[s [0

Simulating multitape Turing machine

S giveninput wy . .. wy:
Replace tape contents by #u ws . . . w,# J#[]
Remember (in state) that M is in state ¢q

S simulates a step of M:

Make a pass over tape to find z, ¥, 2
Yy

l#xlxg...j:...xi#ylyg...y...yj#zlzg...é...zk

If M at state g, has transition

z/z'A
{y//y’B

z/2

update state/tape accordingly

If M reaches accept (reject) state, S accepts (rejects)

Simulation

To simulate a model M by another model N:

Say how the state and storage of NV is used to represent the state and
storage of M

Say what should be initially done to convert the input of N

Say how each transition of M can be implemented by a sequence of
transitions of N

