LR(0) Parsers
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Parsing computer programs

if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

4l

INT_LIT

return

=]:]D]

The alphabet of Java CFG consists of tokens like
Y = {if,return, (,),{,},;,==, ID, INT_LIT,... }

Parsing computer programs

Statement
if ParExpression Statement
| \
(— Expression T) Block
— ~ \
Expression ExpressionRest { “BlockStatements ™ }
[/s AN \
Primary Infixop Expression BlockStatement
| \ w \
Identifier == Primary Statement
\ / |
ID Literal return Expression ;
\ [
INT_LIT Primary
\
Identifier
if (n == 0) { return x; } \
ID

Parse tree of a Java statement

CFG of the java programming language

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral
Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral
Expression:
LambdaExpression
AssignmentExpression
AssignmentOperator:
(one of) = *= [= %= 4= -= <<= >>= >>>= &= A= |=

from http:
//java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

Parsing Java programs

class Point2d {
/* The X and Y coordinates of the point--instance variables */
private double x;
private double y;
private boolean debug; // A trick to help with debugging

public Point2d (double px, double py) { // Constructor
X = px;

y = py;

debug = false; /] turn off debugging

}
public Point2d () { // Default constructor

this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
}

// Note that a this() invocation must be the BEGINNING of
/| statement body of constructor

public Point2d (Point2d pt) { // Another consructor
x = pt.getX();
y = pt.getY();

}

Simple Java program: about 1000 tokens

Parsing algorithms

How long would it take to parse this program?

try all parse trees > 10% years
CYK algorithm hours

Can we parse faster?
CYK s the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!

Hierarchy of context-free grammars

context-free grammars

LR(oc0) grammars

LR(1) grammars

E LR(0) grammars]

- 7)

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it

LR(0) parser: overview

S—SA|A input: ()()
A= 10
1 00 2 ()0 3 ()00
4 Ae() | B Se(6 S(e)
/ \ | |
D) A A
/ \ /\
) ¢)
7 SO | 8 S Ae 9 e
| | /\ / N\
A AC) S A
/\ /\ I /\
)) A (

LR(0) parser: overview

S—SA|A input: ()()
A= (S| 0O

Features of LR(0) parser:
> Greedily reduce the recently completed rule into a variable

» Unique choice of reduction at any time

3 000 = 4 Ae() = 5 §e()
/A !

¢) A
/A

¢)

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P
In fact, the PDA will be a simple modification of an NFA N

The NFA accepts ifarule B — [has just been completed
and the PDA will reduce S to B

.= 2 (&)() = 3 ()e() ‘:/> 4 Ae() ‘:/> 5 Se() = ...
/\ [

¢) A
/A

(G
v: NFA N accepts

NFA acceptance condition
S—SA| A
A= (S0

Arule B — (3 has just been completed if

Case 1 input/buffer so far is exactly 5

Examples: 3 (O)e() and 4 Ae()
/A
¢)
Case 2 Or buffer so faris a8 and there is another rule C' — a B~y
Example: 7 SQe
!
A
/A
(G

This case can be chained

Designing NFA for Case 1

S—SA|A
A= S| 0

Design an NFA N’ to accept the right hand side of some rule B — 3

Designing NFA for Case 1

S—SA|A
A= S| 0

Design an NFA N’ to accept the right hand side of some rule B — 3

= oSA]—S{S —Se A]i[[s — SAe]

(55 oA 25 49)

(A= o AA = (o5} A= So) A Bre)
Ef—> O (o)A = 09)

3

Designing NFA for Cases 1 &2

Design an NFA IV to accept a3 for some rules
S — SA[A C —aBy, B—f
A= S0 and for longer chains

Designing NFA for Cases 1 &2

Design an NFA IV to accept a3 for some rules
S — SA[A C —aBy, B—f
A= S0 and for longer chains

Foreveryrule C' — aB~, B — f3,add [C —ae By]—E{B — oﬁj

= oSA]—S{S —Se A]i[[s — SAe)

[S —> oA S — Ao]] All blue — are e-transitions

[i{c S A (e H)PHA S (5 ﬂl[[A — (S)e])
(4~ -<>HA S ()45 0d)

Summary of the NFA

Foreveryrule B — (3, add

For every rule B — X3 (X may be terminal or variable), add
[B—m.x@i{B—mX.ﬁ]

Every completed rule B — [is accepting

Foreveryrule C' — aB~, B — (3, add

[C — aoB”y]—g{B — oﬂ]

The NFA N will accept whenever a rule has just been completed

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

S—>SeAdA| A S — SAe
A — o(S)
A — ()
I

S
A—(e5)
A— (o)
S — eSA
S —eA
A — o(9)

)
A o0 (4= 9]

~

Observation: every accepting state contains only one rule:
acompleted rule B — (e, and such rules appear only in accepting states

LR(0) grammars
Agrammar G is LR(0) if its corresponding D satisfies:

Every accepting state contains only one rule:
a completed rule of the form B — (e
and completed rules appear only in accepting states

Shift state: Reduce state:

no completed rule has (unique) completed rule

Simulating DFA D

Our parser P simulates state transitions in DFA D

(Oe) = (Ae)
/A
¢)

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack
go back to the correct state by looking at the stack

Let’s label D’s states

S—SeA
A — o(S)
A — e()

A— (e8)
A— (e)
S — eSA
S —eA
A — o(S)

A — o)
- @@

LR(0) parser: a “PDA” P simulating DFA D

P’s stack contains labels of D’s states to remember progress of partially
completed rules

At D’s non-accepting state g;
1. P simulates D’s transition upon reading terminal or variable X

2. P pushes current state label ¢; onto its stack

At D’s accepting state with completed rule B — X; ... X}
1. P pops klabels g, . . ., ¢ from its stack

B
2. constructs part of the parse tree /X/ N
y -

1 Xk

3. P goesto state ¢ (last label popped earlier), pretend next input
symbolis B

Example

state stack
1 e()() a1 $
2 (9)() as $1 state stack
3 (0)e() as $15 5 Se() @ $1
40 @ 3 !
/\ /A\
(G ¢)
! /A\.() " . 6 S(®) ¢ $12
))
e S0 @ $ /\
! (G
A
/ A\

Example

state stack
LIS Q1 $

state stack
7 SQe as $125
\
A
/\
«C)
S e A Q2 $1
VRN
A C)
/\
«C)
8 S Ae @3 $12
VRN
A ()
/\
«C

parser’s output is the parse tree

Another LR(0) grammar

L = {wswf | w e {a,b}*} C —aCa|bCh|#

NFA N:

—

[C —ae Ca}é[c — aCOa]E'[[C — aCaO]]

N g

Another LR(0) grammar

C —aCa|bCb|#

input: ba#ab

C — eaCa
—1 C — o (b stack state action

C — ot $ 1 S
* 1 4 S
- 4 $14 3 S
C—aelCa|ly |C—belh §143 2 R
aC C — eaCa C — eaCa b $143 5 S
C — eb(Cb C — eb(Cb $1435 7 R
C — ot C — et $14 6 S
¢ [0 we s

[C%aCOa? [C—)fCOb?
b
(G5 a0m] (T oCoe}

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as
L= {ww?®| we {a,b}*}

What goes wrong when we do LR(0) parsing on L?

Example 2

L= {ww?®| we {a,b}*} C —aCa|bChb|e

NFA N:

—

[C —ae Ca}é[c — aC’Oa]E'[[C — aCaO]]

N g

Example 2

Y

C — ea(la
— C — eb(Chb
C—e

’ N

C —ae(Ca b C —be(Chb

C —aCa|bCb|e

aC C — ea(Cla C — ea(la
C — eb(Chb C — eb(Chb
C—oe 30 shift-reduce conflicts
\C e

Parser generator

C — aCa
parser
C—bCb — generator
C —# :
CFG G M

error

if G is not LR(0)

)
C — eaCa

C — ebCh
C — o

a

0
C —ae(Ca

C — eaCa

C — ebCh

C — eo#

C —beCh
C — eaCa
C — ebChb

C — o

“PDA” for parsing G

Motivation: Fast parsing for programming languages

LR(1) Grammar: A few words

LR(0) grammar revisited

LR(1) grammars
[LR(0) grammars]

LR(0) parser: Left-to-right read, Rightmost derivation, O lookahead symbol

Derivation

S=84=S50)= A=
S SA| A O O 00
A= S| 0O Reduction (derivation in reverse)

00— AQ) — SO — SA— S

LR(0) parser looks for rightmost derivation
Rightmost derivation = Leftmost reduction

Parsing computer programs
if (n == 0) { return x; }

Statement

="

arExpression Statement

/ \ \

(Expression)

if

Parsing computer programs

if (n == 0) { return x; }

else { return x + 1; }

Statement

P

if ParExpression Statement else Statement

/ \ \

(Expression)

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart
if...then from 1if...then...else

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA IV
LR(0): LR(1):

A= aef | [A— e, d
Statesin DFA D
LR(0): LR(1):
no shift-reduce conflicts some shift-reduce conflicts allowed
no reduce-reduce conflicts | some reduce-reduce conflicts allowed
as long as can be resolved with
lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details

