Parsing
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Context-free versus regular

Write a CFG for the language (0 4 1)*111

Context-free versus regular

Write a CFG for the language (0 4 1)*111

S — Ulll
U—oU|1U]|e

Can you do so for every regular language?

Context-free versus regular

Write a CFG for the language (0 4 1)*111

S — U111
U—oU|1U]|e

Can you do so for every regular language?
Every regular language is context-free

regular
expression

= NA <€ DFA

From regular to context-free

regular expression = CFG

16} grammar with no rules
€ S—e

a (alphabet symbol) S—a

B+ By S = 81| S

FE\E> S — 515

EY S — 85 | e

S becomes the new start variable

Context-free versus regular

Is every context-free language regular?

Context-free versus regular

Is every context-free language regular?

S—0S1 L={0"1"|n>0}
Is context-free but not regular

context-free

Ambiguity

Ambiguity

E— E+E|E*E|(E)| N
N —>1N|2N |12

1+2*2

A CFG is ambiguous if some string has more than one parse tree

Example

Is| S — SS|x|ambiguous?

Example

Is| S — SS|x|ambiguous?

Yes, because

S
/ N\
S S
/ N\ \ /
S S X X
\ \
X X

Two ways to derive xxx

Disambiguation

Sometimes we can rewrite the grammar to remove ambiguity

Disambiguation

E— E+E|E*E|(E)| N
N —1N|2N|1]2

+and * have the same precedence!
Divide expression into terms and factors

Disambiguation

E— E+E | E*E | (E) | N
N—1N|2N|1]2

An expression is a sum of one or more terms E— T|E+T
Each term is a product of one or more factors T—F|TF

Each factor is a parenthesized expression oranumber F' — (E) | 1|2

Parsing example

E— T|E+T
T—F|TF
F—(E)|1]|2

Parse tree for
2+(1+142*2)+1

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages
There is no general procedure for disambiguation

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages
There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules,
and we can resolve like in the example

In English, ambiguity is sometimes a problem:

A

—
I look at the dog with one eye

Parsing

S — 0511505 | T input: 0011
T—S|e

Is0011 € L?
If so, how to build a parse tree with a program?

Parsing

S — 0511505 | T input: 0011
T—Sle

Try all derivations?

051

/

S — 15085

Parsing

S — 0511505 | T input: 0011
T—Sle

Try all derivations?

00511

/
051 — 015051

\
071
105108

S — 15085

/ \

T

/\

Parsing

S — 0511505 | T input: 0011
T—Sle

Try all derivations?

/V
00511
7 00711
051 — 015051 — -+

\
071 — -
105108 — -

§ 15057

/

T\

3

Parsing

S — 0511505 | T input: 0011
T—Sle

Try all derivations?

00511 _ 00511

7 00711
051 — 015081 — -+~ 0011/

\
071 — -
. 105108 — -
S — 1508 -

T
\

3

This is (part of) the tree of all derivations, not the parse tree

Problems

1. Trying all derivations may take too long

2. Ifinputis notin the language, parsing will never stop

Let’s tackle the 2nd problem

When to stop

S —0S1]150S | T Idea: Stop when
T—S|e |derived string| > |input]

When to stop

S —0S1]150S | T
T—S|e

S=051=0T7T1= 01

Derived string may shrink
because of “e-productions”

Problems:

Idea: Stop when
|derived string| > |input]|

When to stop

S —0S1]150S | T Idea: Stop when
T—s|e |derived string| > |input]|
Problems:

S=051=071=01 S=T=5S=T=...
Derived string may shrink Derviation may loop because
because of “c-productions” of “unit productions”

Remove ¢ and unit productions

Removing e-productions

Goal: remove all A — ¢ rules for every non-start variable A

Foreveryrule A — where A is

If S'is the start variable and the not the (new) start variable

rule S — € exists
1. Removetherule A — ¢

2. Ifyousee B — aAS
Add anewrule B — af

Add a new start variable T’
Addtherule T — S

S — ACD
A—a
B—e¢
C—ED]|e
D— BC|b
E—b

Removing e-productions

Goal: remove all A — ¢ rules for every non-start variable A

Foreveryrule A — ¢ where A is

If S'is the start variable and the not the (new) start variable

rule S — ¢ exists
1. Removetherule A — ¢

Add ahnew staj:t vari;ble T 2. Ifyousee B — aAf
Addtherule T' — Add anewrule B — «of3

S— ACD D— C
A—a

B—==

C—ED]|c

D — BC|b

E—b

Removing B — ¢

Removing e-productions

Goal: remove all A — & rules for every non-start variable A

Foreveryrule A — ¢ where A is

If S'is the start variable and the not the (new) start variable

rule S — ¢ exists
1. Removetherule A — ¢

Add a new start variable T' 2. Ifyousee B — aAf
Addtherule T — 5 Add anewrule B — af3

S — ACD D—C

Asa T ap

B=7=

C — ED|{¢

D— BC|b

E—b

Removing C'— ¢

Removing e-productions

Goal: remove all A — & rules for every non-start variable A

Foreveryrule A — ¢ where A is

If S'is the start variable and the not the (new) start variable

rule S — ¢ exists
1. Removetherule A — ¢

Add a new start variable T' 2. Ifyousee B — aAf
Addtherule T — 5 Add anewrule B — af3

S — ACD D—C

A—a Sf—> AD

% D_>5

C — ED|{¢

D— BC|b

E—b

Removing C'— ¢

Removing e-productions

Goal: remove all A — ¢ rules for every non-start variable A

Foreveryrule A — ¢ where A is

If S'is the start variable and the not the (new) start variable

rule S — ¢ exists
1. Removetherule A — ¢

Add a new start variable T' 2. Ifyousee B — aAf
Addtherule ' — § Add anewrule B — af3
S — ACD D—C
A—a S— AD
B—7F D=7
D— BC|b
E—b

Removing D — ¢

Removing e-productions

Goal: remove all A — ¢ rules for every non-start variable A

Foreveryrule A — ¢ where A is

If S'is the start variable and the not the (new) start variable

rule S — ¢ exists
1. Removetherule A — ¢

Add a new staj:t vari;ble T 2. Ifyousee B — aAf
Addtherule T' — Add anewrule B — af3
S — ACD D—C
A—a S— AD
B=F Lgf/g
C — ED|{
E
D— BC|b _>A
E—b 5=

Removing D — ¢

Eliminating e-productions

Forevery A — e rule where A is not the start variable
1. Removetherule A — ¢

2. Ifyousee B — aAS
Add anewrule B — af8

Do 2. every time A appears

B — aAB A~ yields
B — aBAy B — aApy
B — afy

Eliminating e-productions

Forevery A — e rule where A is not the start variable
1. Removetherule A — ¢

2. Ifyousee B — aAS
Add anewrule B — af8

Do 2. every time A appears
y PP B — Abecomes B — ¢

B — aAB A~ yields
B — aBAy B — aApy
B — afy

If B — ¢ was removed earlier,
don’t add it back

Eliminating unit productions

A unit production is a production of the form

A— B
Grammar: Unit production graph:
S —0S1|150S5 | T ST T
T—S|R|e /

R — 0SR R

Removing unit productions

(@ If there is a cycle of unit productions
A—-B— - -—w(C—A

delete it and replace everything with A
§—081[150S| T S T

T S|R|e /
R — 0SR R

Removing unit productions

(@ If there is a cycle of unit productions
A—-B— - -—w(C—A

delete it and replace everything with A

S —081]1808 | & ST >T S — 0851|1508
T8 |R|e / S—R|e
R — 0SR R R — 0SR

Replace T by S

Removal of unit productions

(@ replace any chain

A—-B—- - = (C—a«

by A—-a, B—a ..., C—oa«
S — 0511508 S
|R|e !

R — 0SR R

Removal of unit productions

(@ replace any chain

A—-B—- - = (C—a«

by A-a, B—a ..., C—a«
S — 0511508 S S — 0511508
|R|e | | 0SR | e
R — 0SR R R — 0SR

Replace S —+ R —0SR by S —0SR, R —0SR

Recap

Problems:
Trying all derivations may take too long

If input is not in the language, parsing will neverstop v/

Solution to problem 2:
Eliminate € productions
Eliminate unit productions

Try all possible derivations but stop parsing when
|derived string| > |input]|

Example

S —0S51|0505 | T

= S —0S51]0505 |0
T—S|o

input: 0011

0xX

/'

N

05085

S

051

Example

S —0S51|0505 | T

= S —0S51]0505 |0
T—S|o
input: 0011
0xX
001 X
S > 051 /‘O()B'Iltoo long

\
005051 too long
0005

— 005105 tooll
0S50S SS—_— 5108 too long
0050505 too long

Example

S —0S51|0505 | T

= S —0S51]0505 |0
T—S]o
input: 0011
0X
o 001 X
S > 051 \: 00511 too long
005051 too long 0000 X

— 000051 too |
0005 S— S1too long
— 0051005 too | 0000500 tool |
OSOS\ 5105 too long S50 too long
0050505 too long

Conclusion: 0011 ¢ L

Problems

1. Trying all derivations may take too long

2. Ifinputis notin the language, parsing will never stop

Preparations

A faster way to parse:

Cocke-Younger-Kasami algorithm

To use it we must perprocess the CFG:

Eliminate € productions
Eliminate unit productions
Convert CFG to Chomsky Normal Form

Chomsky Normal Form

A CFG is in Chomsky Normal Form if
every production has the form

A—BC or A—a
where neither B nor C is the start variable

butwealsoallow S — & forstartvariable S

Noam Chomsky

Convert to Chomsky Normal Form:

A— BcdDE = A— BCDE - A — BX

replace C —c¢ breakup X — CY
terminals sequences Y — DE
with new withnew C —c¢

variables variables

Cocke-Younger-Kasami algorithm

S — AB| BC
A— BA|a
B—CC|b
C — AB|a

N W e Ol

Input: z = baaba

let
o[i, 0] = TiTiqq .. Ty

For every substring z[Z, £|, remember all variables R that derive z[3, /]
Store in a table 7'[¢, /]

Cocke-Younger-Kasami algorithm

14
A— BA|a 4
B— CClb 3
C — AB|a 9
Input: x = baaba 1| B ‘
let 12 3 4 5 i
b a a a

o[i, 0] = TiTiqq .. Ty

For every substring z[Z, £|, remember all variables R that derive z[3, /]
Store in a table 7'[¢, /]

Cocke-Younger-Kasami algorithm

S — AB| BC
A— BA|a
B—CC|b
C — AB|a

N W e Ol

B |4|c|alc| B |A|C]
1 2 3 4 5 i

Input: z = baaba

let
o[i, 0] = TiTiqq .. Ty

For every substring z[Z, £|, remember all variables R that derive z[3, /]
Store in a table 7'[¢, /]

Cocke-Younger-Kasami algorithm

J4
A— BA|a 4
B CC|b]
C — AB|a 9 [s/4
Input: 2 = baaba 1 | B |A|C|A[C| B A|C‘

let 1 2 3 4 5 1

o[i, 0] = TiTiqq .. Ty

For every substring z[Z, £|, remember all variables R that derive z[3, /]
Store in a table 7'[¢, /]

Cocke-Younger-Kasami algorithm

J4
A— BA|a 4
B CC|b ;
C— AB|a o [s14] B |s)c|s)a
Input: 2 = baaba 1 | B |A|C|A[C| B A|C‘

let 1 2 3 4 5 1

o[i, 0] = TiTiqq .. Ty

For every substring z[Z, £|, remember all variables R that derive z[3, /]
Store in a table 7'[¢, /]

Computing T'[i, (] for ¢ > 2
To compute T2, 4]
Try all possible ways to split 2[2, 4] into two substrings

b a a b a

ﬁ

i

Computing T'[i, (] for ¢ > 2
To compute T2, 4]
Try all possible ways to split 2[2, 4] into two substrings

b a a b a

AlC B
@ <>
B S|A
@
B AlC
@ <>

Look up entries regarding shorter substrings previously computed

Computing T'[i, (] for ¢ > 2
To compute T2, 4]
Try all possible ways to split 2[2, 4] into two substrings

b a a b a

AlC B
@ >
B S|A
@
B AlC
@ >
Look up entries regarding shorter substrings previously computed
S — AB| BC
A — BA
|3 T[2,4] = S|A|C

B— CC|b

C — AB|a

Cocke-Younger-Kasami algorithm

¢
5 |sidlc
S — AB| BC 4 [\ e
A— BA|a 3 \ B [>B
B— CC[b 2 |sia| B |sc
AB + 7
C— 45| 1 | B Pae | ac > Tae
Input: £ = baaba J[\iz \3 * 5‘;
b a a b a

Get parse tree by tracing back derivations

