Text Search and Closure Properties CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Text Search

grep program

grep -E regexp file.txt

Searches for an occurrence of patterns matching a regular expression

{cat, 12}	union
$\{{\tt a},{\tt b},{\tt c}\}$	shorthand for a b c
$egin{array}{c} a1, a2, b1, b2 \end{smallmatrix} egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	concatenation
$\{arepsilon, {\sf ab}, {\sf abab}, \dots\}$	star
$\{\varepsilon, a, b\}$	zero or one
$\{{\sf cat}, {\sf catcat}, \dots\}$	one or more
$\{ \mathtt{aa}, \mathtt{ab}, \mathtt{ba}, \mathtt{bb} \}$	$n \operatorname{copies}$
	$ \left\{ \begin{array}{l} a,b,c \right\} \\ \left\{ a1,a2,b1,b2 \right\} \\ \left\{ \varepsilon,ab,abab,\ldots \right\} \\ \left\{ \varepsilon,a,b \right\} \\ \left\{ cat,catcat,\ldots \right\} \end{array} $

Searching with grep

Words containing savor or savour cd /usr/share/dict/ grep -E 'savou?r' words

savor	
savor's	
savored	
savorier	
savories	
savoriest	
savoring	
savors	
savory	
savory's	
unsavory	

Searching with grep

Words containing savor or savour cd /usr/share/dict/ grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

Words with 5 consecutive a or b grep -E '[abAB]{5} words'

Babbage

More grep commands

•	any symbol
[a-d]	anything in a range
^	beginning of line
\$	end of line

How do you look for

Words that start in go and have another go grep -E '^go.*go' words

Words with at least ten vowels?
grep -iE '([aeiouy].*){10}' words

Words without any vowels? grep -iE '^[^aeiouy]*\$' words [^R] means "does not contain"

Words with exactly ten vowels? grep -iE '^[^aeiouy]*([aeiouy][^aeiouy]*){10}\$' words

How grep (could) work

differences	in class	in grep
[ab]?, a+, (cat){3}	not allowed	allowed
input handling	matches whole	looks for pattern
output	accept/reject	finds pattern

Regular expression also supported in modern languages (C, Java, Python, etc)

Implementation of grep

How do you handle expressions like

[ab]?	ightarrow () [ab]	zero or more	$R? \rightarrow \varepsilon R$
(cat)+	ightarrow (cat)(cat)*	one or more	$R+ \rightarrow RR^*$
a{3}	ightarrowaaa	$n \operatorname{copies}$	$R\{n\} \to \underbrace{RR\dots R}_{n \text{ times}}$
[^aeiouy]	?	not containing	77 times

Closure properties

Example

The language $L\,{\rm of}$ strings that end in 101 is regular

 $(0+1)^*101$

How about the language \overline{L} of strings that do not end in 101?

Example

The language L of strings that end in 101 is regular

 $(0+1)^*101$

How about the language \overline{L} of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in 000, 001, 010, 011, 100, 110 or 111 or has length 0, 1, or 2

So \overline{L} can be described by the regular expression $(0+1)^*(000+001+010+011+100+110+111)+\varepsilon+(0+1)+(0+1)(0+1)$

Complement

The complement \overline{L} of a language L contains those strings that are not in L

$$\overline{L} = \{ w \in \Sigma^* \mid w \notin L \}$$

Examples
$$(\Sigma = \{0, 1\})$$

$$L_1 =$$
all strings that end in 101

$$\overline{L_1} =$$
 all strings that do not end in 101

$$L_2 = 1^* = \{\varepsilon, 1, 11, 111, \dots\}$$

- $\overline{L_2} = \operatorname{all}$ strings that contain at least one 0
 - = language of the regular expression $(0+1)^*0(0+1)^*$

Example

The language L of strings that contain 101 is regular $(0 + 1)^* 101(0 + 1)^*$ How about the language \overline{L} of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

Closure under complement

If L is a regular language, so is \overline{L}

To argue this, we can use any of the equivalent definitions of regular languages

The DFA definition will be the most convenient here We assume L has a DFA, and show \overline{L} also has a DFA

Arguing closure under complement

Now consider the DFA M^{\prime} with the accepting and rejecting states of M

accepts strings not in L

Can we do the same with an NFA?

$$(0+1)^*10$$

Can we do the same with an NFA?

$$(0+1)^*10$$

 $(0+1)^*$ Not the complement!

Intersection

The intersection $L \cap L'$ is the set of strings that are in both L and L'

If L and L' are regular, is $L \cap L'$ also regular?

Closure under intersection

If L and L' are regular languages, so is $L \cap L'$

To argue this, we can use any of the equivalent definitions of regular languages

Suppose L and L' have DFAs, call them M and M' Goal: construct a DFA (or NFA) for $L \cap L'$

Example

$$L = even number of 0s$$

 $L\cap L'={\rm even}$ number of 0s and odd number of 1s

Example

$$L = even number of 0s$$

 $L \cap L' = \operatorname{even} \operatorname{number} \operatorname{of} \operatorname{0s} \operatorname{and} \operatorname{odd} \operatorname{number} \operatorname{of} \operatorname{1s}$

Closure under intersection

	$M { m and} M'$	DFA for $L\cap L'$
states	$Q = \{r_1, \dots, r_s\}$ $Q' = \{s_1, \dots, s_m\}$	$Q \times Q' = \{(r_1, s_1), (r_1, s_2), \dots, (r_2, s_1), \dots, (r_n, s_m)\}$
start states	$r_i { m for} M \\ s_j { m for} M'$	(r_i, s_j)
accepting states	F for M F' for M'	$F \times F' = \{(r_i, s_j) \mid r_i \in F, s_j \in F'\}$
Whenever M is in state r_i and M' is in state s_i , the DFA for $L \cap L'$ will be in		

Whenever M is in state r_i and M' is in state s_j , the DFA for $L\cap L'$ will be in state (r_i,s_j)

Closure under intersection

Reversal

The reversal w^R of a string w is w written backwards $w = \mathrm{dog} \qquad w^R = \mathrm{god}$

The reversal L^R of a language L is the language obtained by reversing all its strings $L = \{ \text{dog, war, level} \}$ $L^R = \{ \text{god, raw, level} \}$

Reversal of regular languages

 $L = {\rm all\ strings\ that\ end\ in\ 001\ is\ regular} \ ({\rm 0}+{\rm 1})^*{\rm 001}$

How about L^R ?

This is the language of all strings beginning in 100 It is regular and represented by $100(0+1)^*$

Closure under reversal

Arguing closure under reversal

Take a regular expression E for L

We will show how to reverse ${\cal E}$

A regular expression can be of the following types:

- special symbol \emptyset and ε
- alphabet symbols like a and b
- union, concatenation, or star of simpler expressions

Proof of closure under reversal

Regular expression ${\cal E}$	reversal E^R
Ø	Ø
ε	ε
а	а
$E_1 + E_2$	$E_1^R + E_2^R$
E_1E_2	$E_2^R E_1^R$
E_1^*	$(E_{1}^{R})^{*}$

Duplication?

$$L^{\mathsf{DUP}} = \{ww \mid w \in L\}$$

Example: $L = \{ cat, dog \}$ $L^{DUP} = \{ catcat, dogdog \}$

If L is regular, is L^{DUP} also regular?

Let's try regular expression

$$L^{\mathsf{DUP}} \stackrel{?}{=} L^2$$

Let's try regular expression $L = \{a, b\}$ $L^{DUP} = \{aa, bb\}$ $LL = \{aa, ab, ba, bb\}$

Let's try NFA

$$\rightarrow \overbrace{q_0}^{\varepsilon} \xrightarrow{\varepsilon} \operatorname{NFA \text{ for } } L \xrightarrow{\varepsilon} \overbrace{q_1}^{\varepsilon}$$

An example

$$L = \text{language of } 0^*1 \qquad (L \text{ is regular})$$
$$L = \{1, 01, 001, 0001, \dots\}$$
$$L^{\text{DUP}} = \{11, 0101, 001001, 00010001, \dots\}$$
$$= \{0^n 10^n 1 \mid n \ge 0\}$$

Let's design an NFA for $L^{\rm DUP}$

An example

$$L^{\mathsf{DUP}} = \{11, 0101, 001001, 00010001, \dots\}$$
$$= \{0^{n}10^{n}1 \mid n \ge 0\}$$

An example

$$L^{\mathsf{DUP}} = \{11, 0101, 001001, 00010001, \dots\} \\ = \{0^n 10^n 1 \mid n \ge 0\}$$

Seems to require infinitely many states!

Next lecture: will show that languages like L^{DUP} are not regular

Backreferences in grep

Advanced feature in grep and other "regular expression" libraries

grep -E '^(.*)\1\$' words

the special expression \1 refers to the substring specified by (.*) (.*)\1 looks for a repeated substring, e.g. mama

 $(.*)\1$ \$ accepts the language L^{DUP}

Standard "regular expression" libraries can accept irregular languages (as defined in this course)!