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Notes 16: Effective resistance

As in the last lecture, let H = (V, E) be a connected, undirected graph (representing an electrical
network) with positive edge weights w : E — R .

The goal of this lecture is to develop tools for fast algorithms to approximately solve Laplace
equations.

1. EFFECTIVE RESISTANCE

Given any nodes a and b, we can treat the whole electrical network H as a single resistor between
a and b. What is the resistance of this resistor?

If we inject one unit of external current at a¢ and remove one unit of current at b, we can measure
the resulting potential difference v(a) — v(b). Ohm’s law tells us to expect

v(a) —v(b) =i(a,b)Reg(a,b) .

Thus, we define the effective resistance Reg(a,b) between a and b so that this equation holds.

This corresponds to the external current vector u = 1, — 1. The above discussion implies the
voltage vector due to u is v = LTu. The potential difference v(a) — v(b), and hence Reg(a,b), is
(1o, — 1) ' Lt (1, — 1)

Since L is positive semidefinite, so is Lt, and therefore it has a square-root L*/2. In terms of
spectral decomposition using nonnegative eigenvalues Ay, and orthonormal eigenvectors vy,
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Therefore
.
Regi(a,b) = (1 — 1) "L (1g — 1) = (Lo — 1) (L) LH2(1g — 1) = | L1 — L2133 .

In other words, if we represent every node a as the vector LT/?1,, then Reg(a,b) is the squared
Euclidean distance between the corresponding vectors L1/21, and L1/21,. This map a — L1/%1,
is sometimes called the effective resistance embedding.

2. EQUIVALENT NETWORKS, (GAUSSIAN ELIMINATION

We just considered what happens when two nodes are under external influence — the rest of the
network can be represented as a single resistor. We now do the same when a subset B C V of nodes
are under external influence.

We call B the set of boundary nodes and I = V' \ B the set of internal nodes. You may imagine
that we can attach electrodes of batteries to nodes in B but not in I. So we can set voltages of
nodes in V', while voltages of nodes in I are determined by electrical flow of the batteries.

When B =V, the Laplace operator L maps voltage vector v € RE to vector of external currents
u € RE. Now for a general subset B C V', we want to find a matrix Lp such that

up = LBUB .

Turns out Lp is a Laplacian matrix (easy exercise), and is obtained by applying Gaussian elimi-
nation to remove the internal nodes.

To be concrete, we take V = {1,...,n}, B = {2,...,n}, and we eliminate the internal node 1
using Gaussian elimination. Given any voltage vector vp € RE, we want to find v € RV such that
v(b) = vp(b) for every b € B, and

0=u(l)=> i(1,b) =Y w(l,b)(v(1)—v(b)).
b~1 b~1
Rearranging,

v(l) = d(ll)Zw(l,b)v(b) :

b~1
1



2

This means v(1) is a weighted average of voltages of its neighbors b. It also means when solving
the Laplace equation u = Lv, we will substitute v(1) as the right-hand-side whenever v(1) appears.
The term v(1) only appears in the equation for u(a) when a is a neighbor of 1, and the equation is

u(a) = d(a)v(a) — Y " w(a,b)v(b) .
b~a

After substituting v(1), the equation for u(a) becomes

u(a) = d(a)v(a) — Z w(a,b)v(b) — a0 Zw(l,b)v(b) .

b~a, b#1

One of the term in the last sum is in fact node a, so the equation should be rewritten as

u(a) = d(a)v(a) — E w(a,b)v(b) — w(l, a) E w(1,b)v(b) — Mv(a)
7 d(1) ’ d(1)
b~a, b#1 b~1,b#a
w a 2 w a
_ (d(a) - (611(1))> @)= Y wlab)o(b) - c(zgi)) S w(1,b)o(b) .
b~a, b#1 b~1,b#a

This is exactly the result of applying Gaussian elimination to eliminate the variable v(1) using the
equation u(1) = 0.

3. DISTANCE

A distance d (also known as a metric) is any real-valued function on pair of vertices such that

e (Nonnegativity) d(a,b) > 0 for any vertices a and b

o (Identity of indiscernibles) d(a,b) =0 if and only if a = b

e (Symmetry) d(a,b) = d(b,a) for any a and b

e (Triangle inequality /subadditivity) d(a,c) < d(a,b) 4+ d(b,c) for any a,b and ¢

We now argue that effective resistance Rog is a distance. The first three properties easily follow
from §1 of this notes. It remains to prove the last property (triangle inequality).

We need the following simple observation: Given a unit electrical flow from a to b, the corre-
sponding voltage vector v € RV satisfies v(a) > v(c) = v(b) for any node c.

This observation holds because the voltage of any internal node ¢ is a weighted average of its
neighbors. To formally prove it, one can first consider the equivalent network with boundary
B = {a,b,c}. The voltage of ¢ in this equivalent network, after v(a) and v(b) are fixed, will be a
weighted average of v(a) and v(b), and hence between them.

Proposition 3.1. Reg(a,c) < Reg(a,b) + Reg(b, ¢).

Proof. Let uqp = 1, — 1 be the external current for the unit current flow from a to b. Similarly,
upe = 1y — 1. and uq,c = 1, — 1.. Note that

Ug,c = Ugb T Upc -

Let v,y = Ltu,y be the voltage vector for ugp. Likewise vy = LT up,. and vge = Lt uge. By
linearity,

Va,e = Va,b T Vb, »
and
Reg(a, ¢) = vg.c(a) — vgc(c) = vap(a) — vap(c) + vpe(a) — vpe(c) .
By above observation, the first two terms

Vab(@) — Vap(c) < Vg p(a) — vap(b) = Rer(a, b)

and similarly v, c(a) — vpc(c) < Vb (D) — vpc(c) = Re(b, €). O



4. EQUIVALENT ELECTRICAL POWER

Effective resistance between a and b in a network is defined as the resistance of the equivalent
resistor. Turns out the network and its equivalent resistor share more common properties than just
the same resistance: they also dissipate the same power per unit flow.

Proof. The power dissipated per unit of a-b flow in the equivalent resistor is exactly Reg(a,b), due
to Joule’s law P = I*R.

The power dissipated in the network per unit of a-b flow is i ' W~1i, where W is the diagonal
matrix of edge weights, and ¢ is the unit electrical flow from a to b. Since ¢ is induced by some
voltage v € RV and i = W Bv, the power dissipated is

"W i = (WBv) WY (WBv) =v' BTWBv=1v"Lv .
And since
Re(a,b) = (1, — 1) ' LT (1, — 1) = (Lv) ' LT (Lv) = v Lo,
the network dissipates the same power as the equivalent resistor.
In the last equation, the first equality relating effective resistance and L™ is proved to §1 of this

notes; the second equality is due to Lv = 1, — 1; (that is, v is the voltage vector so that one unit
of current flows from a to b); the last equality is LLTL = L. O
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