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Notes 11: Cheeger—Alon—Milman inequality
1. LOCAL SWEEP CUT
We now prove the hard direction of Cheeger—Alon—Milman inequality from the previous lecture.
Theorem 1.1 (Cheeger—Alon-Milman). ¢(G) < V2.

The proof is a “rounding algorithm” that converts any y € RY with small Rayleigh quotient
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Lemma 1.2. Given any y € RY, there is an algorithm to find S C supp(y) with o(S) < \/2R(y).

R(y) into a subset S with small conductance.

Here supp(y) = {i € V' | y; # 0} denotes the support of y.

How to turn y € RY into a subset? We saw from last lecture that if y is the indicator 17 of
some subset T' C V', then R(y) = ¢(T'). It is natural to consider rounding by thresholding: Choose
threshold ¢ € R and output Sy ={i € V' | y; > t}.

The algorithm instead output S; = {i € V | y? > t}. The squaring allows us to relate conduc-
tance to Rayleigh quotient, which involves squared terms (y; — y;)? and y? in the numerator and
denominator, respectively.

Proof of Lemma 1.2. Imagine threshold ¢ increases from zero to infinity, and S; = {i € V| yz-2 >t}
shrinks from supp(y) to (). The cut weight w(Sy, S;) and total degree d(S;) also changes as t grows.

We will assume all |y;| < 1, as scaling y by a constant does not affect R(y). We will also pick
t € [0, 1] uniformly at random. We now analyze the expected cut weight E;[w(S;, S¢)] and expected
total degree E:[d(S;)].
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The inequality is Cauchy—Schwarz. The first term under square-root is the numerator of the Rayleigh
quotient. For the second term under square-root,
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Now for the expected total degree,
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Altogether,

So their ratio satisfies

E¢[w(St, St)] < V2R() .
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By the following proposition, there must be some choice of ¢ = ¢, such that
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Proposition 1.3. Let f and g be arbitrary real-valued integrable functions. There must be some
choice of tyx such that

Proof. Let C' = E[f(t)]/ Et[g(t)], so that
0= EL7(¢)] - CElg(t)

ELF(1) - Co(t)]
There must be some choice of ¢ = ¢, such that the term in the expectation is nonpositive:
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The algorithm in Lemma 1.2 can find small conductance S;, deterministically: Simply try all

thresholds ¢ that lead to different S; = {i € V | y? > ¢}, and output the one with the smallest
conductance. There are at most n choices for ¢ once vertices are sorted according to y2.

ft) = Cg(t) <0 <=

2. FROM ORTHOGONALITY TO SMALL SUPPORT

Does Lemma 1.2 prove Theorem 1.17 Not yet, the subset S;, produced need not contain at most
half of the total degree. It may even be the case that S;, = V.

But we also did not exploit the orthogonality condition: that » ;i d(i)y; = 0. In this section,
given y € RY with small Rayleigh quotient and satisfying the orthogonality condition, we will
produce two vectors z_ and z; both with “small support”, and apply the algorithm in previous
section to z_ or 2.

Note that the numerator of the Rayleigh quotient does not change if all entries of y are shifted by
the same ¢ € R. Among all shifts z = y+ c1, the denominator of the Rayleigh quotient is minimized
when »,y d(i)z; = 0, because the quadratic form

2Dz = Z d(i)z? = Z d(i) (y; + ¢)?
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has derivative (with respect to ¢) 23, d(4)y;.

Assume without loss of generality that y is sorted, so that y1 < ... < y,. Find the smallest j such
that >, ;<; d(i) = d(V)/2. We will then shift y by ¢ = —y; to obtain z = y — y;1. The previous
paragraph implies that R(z) < R(y), because the numerator stays the same but the denominator
can only increase after the shift.

Note that z; = 0. The above choice of j ensures both sets S_ ={i eV |y, <y;j}={ieV |z <
0}and Sy ={i eV |y >y;} ={i € V| z >0} contain at most half of the total degree of V. We
will take the positive and negative part of z to get z4 and z_:

zi < 0 2z > 0
Z_ = . and Zy = L.
0 otherwise 0 otherwise

We now show z_ or z; has Rayleigh quotient at most that of z.
Lemma 2.1. min{R(z_), R(z4+)} < R(2).

Proof. z' Dz = zIDer + 21 Dz_, because left-hand-side is a weighted sum of ZZ-Q, and each nonzero
22 is counted in z; or z_.

2TLz > ZILer + 2" Lz_, because left-hand-side is a weighted sum of (z; — z;j)° over edges, and
every edge that contribute to left-hand-side, it either get dropped if z; and z; have opposite signs,
or is retained otherwise.
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We have therefore shown

< R(z). The result follows once we can show




3. DISCUSSION

The task of finding subset of smallest conductance is known as Sparsest Cut. This problem is
NP-hard, so we settle for an approximation algorithm.
By the above arguments, an algorithm to find a set S of small conductance is as follows:
(1) Compute an eigenvector y to the second smallest eigenvalue of £
(2) Sort all entries of y so that y;, < ... < y;,, i.e. vertex i1 has the smallest value, i,, the largest
(3) Try all cut of the form S = {iy,...,i;} (or S, whichever has smaller total degree)
By both sides of Cheeger—Alon—Milmon, this algorithm is guaranteed to find a subset S with
p(5) < 2v/p(G).
The approximation guarantee is quite bad if ¢(G) is very small, say order of 1/n.
There are other approximation algorithm with better guarantee. There is an SDP-based approx-
imation algorithm by Arora—Rao—Vazirani with approximation ratio O(y/logn).
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