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Notes 10: Conductance, Expansion, Normalized Laplacians

1. CONDUCTANCE AND EXPANSION

Last lecture we saw that a graph is connected if and only if the second smallest eigenvalue Ao of
its Laplacian L is strictly larger than the smallest eigenvalue Ay (which is zero). Today we will
show a robust version of this result: a graph is “well-connected” if and only if A2 is much bigger
than )\1.

One way to measure how well a graph G = (V, E) is connected is expansion.

Definition 1.1. Given a graph G with positive edge weights w € Rf , the degree of vertex i is
d(1) :=>_.i jer wij and the total degree of a vertex subset S C V' is d(5) 1= >_,;c 5 d(i).
The conductance of a vertex subset S C V is

p(S) = w(S,9)/d(S) ,
where w(S, S) = 2_ieS,j¢s,(i,j)eE Wij 18 the total edge weight across the cut from S to S.
The expansion of a graph is
G) = i S) .
P(G) = i, ()
d(S)<d(V)/2
The condition d(S) < d(V)/2 in expansion is equivalent to d(S) < d(S).
The total degree of a subset S measures the size of a subset, weighted according to degrees. If
the graph is regular (all vertices have the same degree), then deg(S) is proportional to |S|.
The conductance of a subset or the expansion a graph is always between 0 and 1. A graph is
disconnected if and only if ¢(G) = 0.

1.1. Complete graph. What is the expansion of the complete graph, the most well-connected

k(n —k —k
graph? Given a subset S C V of size k, its conductance is kEZ — 1; = Z_ T So for any subset of

. Complete graph therefore has expansion

. . . n 1
size at most n/2, its conductance is at least —— ~ —
2(n—1) 2

roughly 1/2.

1.2. Barbell graph. The barbell graph on 2n vertices consists of two disjoint complete subgraphs,
each of size n, that are joined by a single edge. This graph is connected (every vertex has a path
to any other vertex), but intuitively not well-connected, since removing the extra edge disconnects
the two complete subgraphs.

What is the expansion of this graph? Consider S to be the vertex set of one of the complete

1 1
subgraphs. Then S has conductance —— = O [ — |. Hence the expansion of the barbell
1+n(n-1) n?
graph is also O(1/n?).

2. NORAMLIZED LAPLACIANS

We are going to compare graph expansion to Laplacian eigenvalues. We will assume the graph
has no isolated vertices (of degree 0).

Recall that Lg =3 (; yep wij(Li — 1) (1 — ]lj)T = D — A, where D is the diagonal matrix with
D;; = d(i) and A is the adjacency matrix. (We will drop subscript G and write L = L¢.)

All eigenvalues of L lie in the range [0,2A], where A = max;cy d(i) is the maximum degree:

Proposition 2.1. —D x A<D and 0 5 L < 2D. In particular, eigenvalues of A are between —A
and A, and those of L are between 0 and 2A.

Proof. D — A=Y sepwij(Li —1;)(L; —1;) = 0.
Similarly D + A = Z(i,j)EE wij(L; + 1;)(1; + ]lj)T = 0.

Inequalities for L follow from those of A = D — L. O
1



We want to remove the dependence on degree and normalize the Laplacian, so that its eigenvalues
are between [0, 2]. To this end, we “divide” L by the positive definite matrix D — or rather, multiply
by D=2 on both left and right, so that the resulting matrix is still symmetric.

Definition 2.2. The normalized adjacency matrix is A = D~1/24D~1/2,
The normalized Laplacian is £ = D~Y2LD~Y2 = D-Y2(D — A)D~Y2 =T — A.

Claim 2.3. If n-by-n real symmetric matric X is positive semidefinite, then so is Y ' XY for any
n-by-m real matriz Y. (simple proof omitted)

Proposition 2.4. Figenvalues of A are between —1 and 1. Eigenvalues of L are between 0 and 2.

Proof. The above proposition showed that D — A = 0. Therefore I — A= D~'/2(D — A)D~Y2 =0
by the above claim (with X = D — A, Y = D~1/2). Equivalently, all eigenvalues of A are at most 1.
Similarly D+ A 3= 0. Therefore I+A = D~'/2(D+A)D~/2 3= 0 by the above claim. Equivalently,
all eigenvalues of A are at least —1.
Eigenvalue bounds for £ follows from eigenvalue bounds for A =1 — L. O

In fact 0 is always an eigenvalue of £, with eigenvector v; = DV/21, because

Lvy = D~Y2LD~Y2DY2 = D=1 = 0.
One can show that L and £ have the same zero eigenspace, via the invertible map D~1/2,

3. CHEEGER—ALON—MILMAN INEQUALITY

Let 0 = A1 < A2 < ... < Ay < 2 be the eigenvalues of the normalized Laplacian matrix £ of a
graph G.

In the previous lecture, we showed that Ao = 0 (= A1) if and only if the graph is disconnected.

We now quantify well-connectedness of a graph via A2 (the gap between the two smallest eigen-
values).

Theorem 3.1 (Cheeger—Alon—Milman).
A
5 <e(G) < V2N

We first prove the easy direction (left inequality).
By Courant-Fischer, taking v; = D21 to be an eigenvector of £ with eigenvalue 0,
x' Lx . 2" D12, D~1/2, . yTLy

A9 = min = min = min
zlvg Tz zlvg Tz DY/2y 1 yTDy ’

where y = D™1/2¢,
For every vertex subset S, we will construct a vector y satisfying the orthogonality constraint
whose Rayleigh quotient is controlled by the conductance of S:

Lemma 3.2. Every nonempty subset S C V corresponds to a vector y such that DYy 1 vy and

.
y Ly (V)
Z y' Ly
If d(S) < d(V)/2 (equivalently d(S) > d(V)/2), then the quotient 5 < 2¢(S). Every
y Ly

nonempty subset S C V with at most half of the total degree therefore gives us an upperbound
A2 < 2¢(S). Minimizing over all such S yields A2 < 2¢(G).

It remains to prove the lemma.

The condition D'/?y 1 v; means 0 = (D1/2y)TD1/2]l =y D1 =3, d(i)y;.

Also, the denominator in the quotient is y" Dy = Y, d(i)y?.

In summary,

N — min Z(m)gE wij(yi — yj)2
Ziev d(i)y;=0 ZiEV d(z)ylz
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How to construct y from S7 A natural choice is y = 1g, the indicator function for S, i.e. y; = 1
ifieSandy, =0ifi ¢ S.
Then the numerator »_; »cpwij(yi — y;)? = w(S,S) and denominator Y., d(i)y? = d(S), so
the quotient gives us exactly ¢(S5).
But this y fails to satisfy the orthogonality constraint, because 0 # ;. d(i)y; = d(S).
Instead we pick real numbers a and b and assign y; = a if i € S and y; = b if i ¢ S. We want
0="> d(i)y; = d(S)a+d(S)b.

i€V
Solving gives . .
a= m and b= ﬁ
For this y,
_ 2 _ 2
> i Wi (Yi — y;)? _ w(S, 5) (ﬁ + ﬁ) _ w($, ) (ﬁ + ﬁ)
s (L LY g g dS) +dE) w(s,B)w)
= wl$5) (d(S) * d(S)> = w(5,5) d(S)d(S) —  d(S)d(S)

We will prove the hard direction (right inequality) of Cheeger—Alon—Milman in the next lecture
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