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Notes 05: Dual programs

1. Convex programs [BV §4.1.1,§4.2.1]

A convex program is an optimization problem minimizing a convex objective function over a
convex domain.

We will consider optimization problem of the form
minimize f0(x) (objective function)

subject to fi(x) ⩽ 0 1 ⩽ i ⩽ m (inequality constraints)
hi(x) = 0 1 ⩽ i ⩽ p (equality constraints)

where x ∈ Rn is the optimization variable, f0 : Rn → R the objective function, fi : Rn → R are
functions in the inequality constraints, hi : Rn → R are functions in the equality constraints. A
point x ∈ Rn is feasible for the problem if it satisfies all the constraints.

The optimization problem is convex if f0, f1, . . . , fm are all convex functions, and h1, . . . , hp are
all affine functions (of the form hi(x) = a⊤i x − bi), in which case equality constraints reduce to
a⊤i x = bi. The feasible region (set of feasible points) of a convex optimization problem is convex.

1.1. Linear programs (LP). Linear programs are the special cases where the objective function
f0 and the functions f1, . . . , fm in the inequality constraints are all affine. In other words,

min c⊤x

subject to a⊤i x ⩽ bi 1 ⩽ i ⩽ m

d⊤i x = si 1 ⩽ i ⩽ p

The LPs we define here look different from what we defined in Lecture 01, but there are standard
tricks to convert from between these two representations.

1.2. Semidefinite programs (SDP). Semidefinite programs are special cases of convex programs,
where x ∈ Rn corresponds to the upper triangular entries of a real symmetric matrix X. Again the
objective function f0 is affine, and functions f1, . . . , fm in the inequality constraints are either affine
or the negative minimum eigenvalue function fi(x) = −λmin(X) (which is a convex function of x).

2. Local vs global optimality [BV §4.2.2]

Unlike integer programs, convex programs can be solved in polynomial time up to arbitrary
precision, thanks to two properties: (1) the feasible region of a convex program is convex, and (2)
every locally optimal solution is automatically a globally optimal.

A locally optimal solution to a convex program is a point x0 ∈ Rn such that, for some radius
r > 0, x0 minimizes the objective function f0 among all feasible points z that has distance at most
r from x (so that ∥z − x0∥ ⩽ r).

To see that a locally optimal solution x0 is globally optimal, consider any feasible point x. Let
L be the line segment between x0 and x. This line segment stay inside the feasible region, because
the program is convex. x is also a local minimum for f0 restricted to this line segment. Finally,
one can show that a local minimum of the convex function f0 on a line segment is also its global
minimum, so f0(x0) ⩽ f(x), as required.

3. Dual programs

Consider the following linear program:
min −2x1 − 3x2

−4x1 − 8x2 ⩾ −12

−2x1 − x2 ⩾ −3

x1 ⩾ 0

x2 ⩾ 0
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To upperbound its objective value, we can show you one feasible solution of small value, such as
x1 = x2 = 1 with objective value −5.

What about lowerbounding the objective value?
Multiply the first inequality constraint by 1/2, we get −2x1 − 4x2 ⩾ −6. Now add the last

constraint x2 ⩾ 0, we get −2x1 − 3x2 ⩾ −6.
To get a better lowerbound, we add the first two inequalities and divide by 3, showing −2x1 −

3x2 ⩾ −5. So the optimum value is −5.
We are trying to find the best nonnegative multipliers to add the inequalities to get the best

possible lowerbound (nonnegative to avoid flipping the inequality sign). This is the dual program.

4. Langrangian dual [BV §5.1.1-5.1.3]

Definition 4.1. The Lagrangian for a convex problem is
L(x, λ, ν) = f0(x) +

∑
1⩽i⩽m

λifi(x) +
∑

1⩽i⩽p

νihi(x)

where λi are the Lagrangian multipliers of the ith inequality constraints and νi are the Lagrangian
multipliers of the ith equality constraints.

The Lagrangian dual function is the infimum of the Lagrangian over x ∈ Rn:

g(λ, ν) = inf

f0(x) +
∑

1⩽i⩽m

λifi(x) +
∑

1⩽i⩽p

νihi(x)

∣∣∣∣∣∣ x ∈ Rn


Lagrangian dual is closely related to conjugate, see [BV §5.1.6].

Given any λ ∈ Rm, ν ∈ Rp with λ ⩾ 0, g(λ, ν) is a lowerbound to f0(x) for any feasible x, because

g(λ, ν) ⩽ f0(x) +
∑

1⩽i⩽m

λi︸︷︷︸
⩾0

fi(x)︸ ︷︷ ︸
⩽0

+
∑

1⩽i≤p

νi hi(x)︸ ︷︷ ︸
=0

⩽ f0(x).

This inequality also holds when we take the infimum over all feasible x, and we take the supremum
over all λ ⩾ 0:

d⋆ := sup {g(λ, ν) | λ ⩾ 0} ⩽ inf {f0(x) | feasible x} =: p⋆.

The dual program is
sup {g(λ, ν) | λ ⩾ 0}.

The Lagrangian multipliers λi and νi are the dual variables of the dual program.
The dual optimal value d⋆ always lowerbounds the optimal value p⋆ of the primal (i.e. original

program). This is known as weak duality.
Even if the primal program is not convex, the dual program is always convex. This is because

g(λ, ν) is the pointwise infimum of concave (in fact, affine) functions, so g(λ, ν) is a concave function,
and maximizing a concave function is a convex program.

How good is the dual optimum as a lowerbound?
For convex programs, under a mild condition (Slater’s condition), the dual optimum gives the

best lowerbound and equals the primal optimum.

4.1. Linear programs [BV §5.1.5]. Linear program in inequality form
min c⊤x

Ax ⩽ b

has Lagrangian dual
g(λ) = inf

x
c⊤x+ λ⊤(Ax− b) = inf

x
(c⊤ + λ⊤A)x− λ⊤b

The infimum is −∞ if c⊤ + λ⊤A ̸= 0, and −λ⊤b otherwise. The dual program is
max −b⊤λ

Aλ+ c = 0

λ ⩾ 0,

itself a linear program in standard form.
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