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Notes 02: SDP vs LP; MaxCut

1. LP vs SDP

Every linear program can be represented as a semidefinite program. For example, the linear
program in Eq (1) in NotesO1 is equivalent to a semidefinite program with a 3-by-3 symmetric
matrix X as its variables, and we may add additional constraints to force X to be diagonal (by
making every off-diagonal entry to be zero). We can also make the objective matrix C' diagonal,
that is, the SDP objective function becomes
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CeX = 3 ° Ta = 2x1 + 3x9 — 4x3 ,
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exactly the same as the linear program objective. The positive semidefinite constraint X 5= 0 is
equivalent to requiring all diagonal entries of X to be nonnegative, and is the same as the nonnegative
constraints x1, x2,x3 > 0 in that linear program.

In general, a semidefinite program reduces to a linear program when the objective matrix C' and
constraint matrices Aq, ..., A,, are all diagonal matrices.

Recall that a linear program amounts to maximizing a linear objective function in a polyhedron
(a region that is the intersection of halfspaces of the form {x € R" | ¢/ z < b;}).
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A semidefinite program amounts to maximizing a linear objective function in a feasible region whose
boundary may involve curves. For example, its feasible region may be the unit circle.

This can happen with the positive semidefinite constraint

1 =z y
(1) x 1 0] =0
y 0 1

and certain matrix entries have been forced to be either 0 or 1 as indicated. Since a matrix is
positive semidefinite precisely when all its principal minors are nonnegative (look up “Sylvester’s
criterion” on Wikipedia), (1) is equivalent to the following three constraints:

1>0
1—22>0
1—x2—y220.

The first constraint is trivial, and the last constraint dominates the second. This shows that (1) is
equivalent to (z,y) being inside the unit circle.

If a linear program involves only rational entries, then its optimal solution must also have only
rational entries. The same is not necessarily true for a semidefinite program, as the previous circle
example demonstrates. For instance, if we maximize along the direction (1, 1) over the unit circle,
the optimal solution (1/v/2,1/4/2) has irrational entries. We cannot hope to represent a SDP
optimal solution exactly, partly explaining why the algorithms for solving SDP we describe later
can only look for an approximate solution.



Finally, if a linear program has finite optimum value, then the optimum value is achieved by some
solution. This is again not always true for a semidefinite program. Here is a counterexample:

min x

x 1
<1 y>¢0

We are minimizing z, but it’s equivalent to maximizing —x. The PSD constraint is satisfied when
x,y > 0 and zy > 1. Equivalently, when y > 0 and = > 1/y. The SDP optimum value is zero, by
choosing smaller and smaller x > 0, but z = 0 is not feasible. This shows that the “minimum?” is in
fact an infinum.

2. MAXx-CuT AND GOEMANS—WILLIAMSON ROUNDING

A classical problem is to find a subset S C V(G) maximizing the number of edges going between
S and V(G)\ S. This Max-Cut problem is known to be NP-hard to solve exactly, so we will settle
for an approximation algorithm.

Theorem 2.1 (Goemans—Williamson [2]). There is a polynomial-time algorithm to approximate
Maz-Cut to within 0.878. ..

In other words, if the best cut in a graph with 10000 cross edges, then the algorithm will return a
cut with at least 8780 cross edges. The algorithm is based on a semidefinite program first proposed
by Delorme and Poljak [1]. The rounding algorithm came from a seminal work by Goemans and
Williamson, where they interpret the SDP as a vector optimization program. To motivate the vector
program, first formulate Max-Cut as the following quadratic integer program:

1—
max Y 1Tl

(u,v)EE
xy € {+1,—-1} for every u € V(G)

Given any candidate solution S to Max-Cut, if we assign —1 to vertices in S and +1 to vertices
outside S, then the term (1 — z,x,)/2 will be either 1 or 0, depending on whether the edge (u,v)
crosses the cut. Therefore the objective function measures exactly the total number of cut edges.
We are assigning +1 rather than {0, 1} because it will simplify the calculations to come.

The above quadratic integer program is equivalent to Max-Cut and is NP-hard to solve exactly,
so we relax the problem by instead assigning a vector to every vertex. We arrive at the following
vector program.

1- <yu7yv>
(2) max Z —
(u)EE
lyuls =1 for every u € V(G)
Yy, € R"  for every u € V(G)

The norm constraint ||yu||% = 1 says that we are assigning a unit vector to every vertex. Here the
dimension n of the space containing the vectors equals the number of vertices of G.

Claim 2.2. The vector program optimum value is always at least the Maz-Cut optimum value.

Proof. Pick any unit vector yp € R”. Given a candidate solution S to Max-Cut, we assign —yg
to vertices in S and yo to vertices outside S. Then the term (1 — (yu,y»))/2 will be either 1 or 0,
depending on whether the edge (u,v) crosses the cut. Therefore there is always a vector assignment
with value at least as large as the number of edges crossing S. U

When y, and ¥, are both unit vectors, the objective function is a sum of terms of the form

(1 - <yu>yv>)/2 = (HyuH% - 2<yu>yv> + Hyv||g)/4 = ||yu - yv||g/4 :

Therefore the vector program is seeking a mapping of vertices to the high dimensional unit sphere
that maximizes the sum of squared distances between endpoints of an edge.
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The vector program (2) is equivalent to the following semidefinite program (that can be solved
efficiently):

(3) max Z %L““ oY
(u,v)eE
Yiu =1 for every u € V(QG)
Y =0,

where L"’ is the matrix that is zero everywhere, except that it is 1 at uu and vv entries, and is —1
at uv and vu entries. Recall that the PSD constraint means Y encodes the inner products between
vectors {Yutuev (G, 50 that Yiy = (yu,yw). One can check that L e Y /4 = ||y, — yul|3/4, which
equals (1 — (yu, Yv))/2 for unit vectors y,, and y,, so (3) and (2) have the same objective functions.
The constraint Yy, = 1 in the SDP (3) is identical to ||y,||3 = 1 in the vector program (2). In
general, any SDP is equivalent to a vector optimization problem with linear objective function and
linear constraints on inner products.

FIGURE 1. Random hyperplane rounding (picture from [3])

Given a solution to the vector program, Goemans—Williamson proposed to randomly round them
into a cut, by picking a random hyperplane, and putting all vectors on one side of the hyperplane
to S. In other words, one pick a random unit vector g € R™ (a normal vector to the hyperplane),
and set S = {u €V | (yu,g) = 0}. We now show that, in expectation, this random subset S cuts at
least 0.878... fraction of edges in the optimal cut.

Proposition 2.3.
E[number of edges cut] > 0.878 --- x SDP-OPT ,

where SDP-OPT denotes the optimum value of the SDP (or the vector program).
Note that the proposition together with Claim 2.2 implies Theorem 2.1 (at least in expectation).
Proof of proposition. Let {y,}uev be an optimal vector assignment to (2). Expand
E[number of edges cut] = Z E[1((u,v) is cut by )]
(u,v)EE

by linearity of expectation. Focusing on each summand, each edge (u,v) is cut with probability
Ouv/m, where 60,, is the angle between y,, and y,. In other words, 6,, = arccos(y., yu).

Yu yv
>

On the other hand, each edge (u,v) contributes (1 — (yu,yv))/2 = (1 — cosByy)/2 to the vector
program. We now compare the contribution to the cutting probability and the contribution to the
vector program.
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Lemma 2.4 (Goemans-Williamson). For every 0 < 6 <

950878 x M.
2
This lemma can be proved rigorously by taking derivatives. We will not do so, but instead only
“prove” with a plot of f(f) = £ /1=¢s0.
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Therefore
o Ouv
E[number of edges cut] = Z P[(u,v) is cut by S| = Z —
(u,v)eE uv)eE
> 0878 x 3 2 y“’y”> = 0.878- - x SDP-OPT, O

(u,v)eE

We remark that Goemans—Williamson algorithm also works with the weighted version of the
problem, where each edge (u,v) has a nonnegative weight w,,,, and we seek to maximizing the sum
of weights of edges crossing the cut.
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