CSCI5160 Approximation Algorithms Lecturer: Siu On Chan Spring 2022 Scribe: Siu On Chan

Notes 01: Semidefinite Programs and positive semidefiniteness

1. Semidefinite programs

Semidefinite programs generalize linear programs (LP). Recall that a linear program looks like the following:

(1)
$$\max \quad 2x_1 + 3x_2 - 4x_3 \\ 5x_1 - 8x_2 + 4x_3 \leqslant 10 \\ 4x_1 + 3x_2 - x_3 \leqslant 5 \\ x_1, x_2, x_3 \geqslant 0$$

More generally, a linear program (in canonical form) takes the form

$$\begin{array}{ll} \max & c^{\top}x \\ & a_{1}^{\top}x \leqslant b_{1} \\ & \vdots \\ & a_{m}^{\top}x \leqslant b_{m} \\ & x \geqslant 0 \end{array}$$

where $x, c, a_1, \ldots, a_m \in \mathbb{R}^n$ are all *n*-dimensional real vectors, and $b_1, \ldots, b_m \in \mathbb{R}$ are real scalars. Here x represents our LP variables, c represents our linear objective function, and a_1, \ldots, a_m are the linear constraints. The last inequality constraint $x \ge 0$ means that x has to be entry-wise nonnegative.

By contrast, a semidefinite program (SDP) looks like the following:

$$\max \begin{pmatrix} 2 & 3/2 \\ 3/2 & -4 \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}$$
$$\begin{pmatrix} 5 & -4 \\ -4 & 4 \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \leqslant 10$$
$$\begin{pmatrix} 4 & 3/2 \\ 3/2 & -1 \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \leqslant 5$$
$$\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succcurlyeq 0$$

Here • denotes the Frobenius/Hadamard inner product between two matrices, defined as the entrywise inner product between two *n*-by-*n* matrices (treating them as length- n^2 vectors)

$$A \bullet B \stackrel{\text{def}}{=} \sum_{1 \leqslant i, j \leqslant n} A_{ij} B_{ij}$$

The above semidefinite program has exactly the same objective function as the linear program (1) above, because

$$\begin{pmatrix} 2 & 3/2 \\ 3/2 & -4 \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} = 2x_1 + 3x_2 - 4x_3 .$$

Compared to (1), the main difference is that the final nonnegative constraint is replaced with a *positive semidefinite* constraint, as defined now.

Definition 1.1. A symmetric *n*-by-*n* matrix *M* is *positive semidefinite* if for every $y \in \mathbb{R}^n$, the quadratic form $y^{\top}My \ge 0$.

A general semidefinite program takes the form

$$\max \quad C \bullet X$$

$$A_1 \bullet X \leqslant b_1$$

$$\vdots$$

$$A_m \bullet X \leqslant b_m$$

$$X \succcurlyeq 0$$

where X, C, A_1, \ldots, A_m are all *n*-by-*n* real symmetric matrices, and $b_1, \ldots, b_m \in \mathbb{R}$ are real scalars. The matrix X represents our SDP variables.

2. Quadratic forms

Given a real symmetric matrix M, the expression $y^{\top}My$ in Definition 1.1 represents a quadratic form. A quadratic form in \mathbb{R}^n is a homogeneous polynomial of degree 2, without linear or constant terms, such as $f(y_1, y_2) = 2y_1^2 + 3y_1y_2 - 4y_2^2$. This quadratic form corresponds to the real symmetric matrix

$$\begin{pmatrix} 2 & 3/2 \\ 3/2 & -4 \end{pmatrix}$$
, because $\begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} 2 & 3/2 \\ 3/2 & -4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f(y_1, y_2).$

Every real symmetric matrix corresponds to a unique quadratic form, and vice versa. Definition 1.1 says that the a real symmetric matrix is positive semidefinite if its corresponding quadratic form is nonnegative at every input y.

A quadratic form whose input is a scalar (as opposed to a vector) must be of the form $g(y) = \lambda y^2$ for some real number λ . Such a quadratic form is positive semidefinite (that is, the corresponding matrix is positive semidefinite) if and only if $\lambda \ge 0$.

We can add two quadratic forms (coefficient-wise) to get another quadratic form, just like we can add two real symmetric matrices to get another real symmetric matrix. By adding together "simple" quadratic forms, we get complicated ones. Here a quadratic form is "simple" if, roughly speaking, it depends only on one dimension. Formally, a quadratic form f(y) is simple if $f(y) = g(y^{\top}v)$ for some vector v and quadratic form g that takes a scalar input. In other words, f is constructed by first projecting y along direction v and then evaluating scalar quadratic form g. The real symmetric matrices corresponding to "simple" quadratic forms are precisely those of rank 1, that is, of the form λvv^{\top} for some $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^n$.

The following theorem (that we state without proof) tells us the structure of every quadratic form and their corresponding real symmetric matrices.

Theorem 2.1 (Spectral theorem for real symmetric matrices). Any n-by-n real symmetric matrix M has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ and n orthonormal eigenvectors v_1, \ldots, v_n . Equivalently, we can express any such an M as

(2)
$$M = V\Lambda V^{\top},$$

where V is an n-by-n matrix whose columns are precisely the eigenvectors v_1, \ldots, v_n , and Λ is a diagonal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ on its diagonal ($\Lambda_{ii} = \lambda_i$). Since the eigenvectors are orthonormal, we also have $V^{\top}V = VV^{\top} = I$. Decomposition (2) can be represented in picture as

$$M = \begin{bmatrix} \begin{vmatrix} & & & \\ & & & \\ & v_1 v_2 \cdots v_n \\ & & & \end{vmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} -v_1 - & & \\ -v_2 - & & \\ & \vdots & \\ -v_n - & \end{bmatrix}$$

or as a sum of outer products

$$M = \sum_{1 \leqslant i \leqslant n} \lambda_i v_i v_i^\top \, .$$

This theorem says that every quadratic form in \mathbb{R}^n is a sum of n "simple" quadratic forms, and these simple quadratic forms depend on orthogonal directions.

3. Positive semidefiniteness

The positive semidefinite (PSD) condition has a number of equivalent definitions.

Proposition 3.1. Given a real symmetric n-by-n matrix M, the following are equivalent:

- (a) For every $y \in \mathbb{R}^n$, we have $y^{\top} M y \ge 0$
- (b) All eigenvalues of M are nonnegative
- (c) $M = U^{\top}U$ for some m-by-n matrix U (U is not necessarily symmetric or square)

Condition (c) is equivalent to saying that there are *n* vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ such that *M* encodes the inner products between them. More precisely, $M_{ij} = u_i^{\top} u_j$, namely the *ij*-entry of *X* equals the inner product between the *i*- and the *j*-vectors. To see this, simply define u_1, \ldots, u_n as the column vectors of *U*, and condition (c) becomes

$$M \qquad = \qquad \underbrace{ \begin{matrix} --u_1 - \cdots \\ --u_2 - \cdots \\ \vdots \\ --u_n - \cdots \end{matrix}} \begin{vmatrix} | & | & | \\ u_1 u_2 \cdots u_n \\ | & | \\ \end{vmatrix}$$

Proof of the proposition. (a) \Rightarrow (b): Consider each eigenvalue λ_i and its eigenvector v_i of M. Take y to be v_i , and positive semidefiniteness implies

$$0 \leqslant y^{\top} M y = v_i^{\top} M v_i = \lambda_i$$
.

This inequality is true for every eigenvalue λ_i , so all eigenvalues are nonnegative.

(b) \Rightarrow (c): Let $\sqrt{\Lambda}$ be the diagonal matrix with $\sqrt{\lambda_1, \ldots, \sqrt{\lambda_n}}$ on its diagonal $(\sqrt{\Lambda_{ii}} = \sqrt{\lambda_i})$, and let $U = \sqrt{\Lambda}V^{\top}$. Since M has only nonnegative eigenvalues (and they lie on the diagonal), $\sqrt{\Lambda}$ has only real entries. Also $(\sqrt{\Lambda})^{\top} = \sqrt{\Lambda}$ because it is a diagonal matrix. Then the spectral decomposition (2) becomes

$$M = V\sqrt{\Lambda}^{\top}\sqrt{\Lambda}V^{\top} = U^{\top}U,$$

where $U = \sqrt{\Lambda} V^{\top}$. (c) \Rightarrow (a): For any $y \in \mathbb{R}^n$,

$$y^{\top} M y = y^{\top} U^{\top} U y = \|Uy\|_2^2 \ge 0 \; .$$

This proof says that when $M = U^{\top}U$, the quadratic form $y^{\top}My$ amounts to measuring the norm squared of the vector Uy (the image of y under the linear map U from \mathbb{R}^n to \mathbb{R}^m). And the norm squared of any vector is nonnegative.