
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Varun Kanade’s notes

Notes 24: Inherent hardness of learning
Notes11 showed that C = {3-term DNFs} is hard to be PAC-learned properly (assuming NP ̸= RP)
But C can be efficiently PAC learned improperly with hypothesis class H = {3-CNFs}
Question: Is there C that is hard to be PAC-learned improperly, regardless of the hypothesis class?
Answer: Yes, under cryptographic assumptions

1. Discrete Cube Root

Let p and q be two large primes requiring roughly the same number of bits to represent
e.g. both n bits (so each prime is between 2n and 2n+1 − 1 in magnitude)

Consider all integers modulo pq (i.e. between 0 and pq − 1), denoted by Zpq = {x ∈ Z | 0 ⩽ x < pq}
Among numbers in Zpq, consider those that are coprime to pq

Recall: x coprime to pq ⇐⇒ x and pq share no common factors other than 1
⇐⇒ greatest common divisor (gcd) of x and pq is 1

Denote the set of such numbers by Z×
pq = {x ∈ Zpq | gcd(x, pq) = 1}

Easy to check that |Z×
pq| = (p− 1)(q − 1) (x has to be both coprime to p and coprime to q)

This is called Euler phi function φ of pq, so φ(pq) = |Z×
pq| = (p− 1)(q − 1)

Z×
pq forms an (abelian) group under multiplication modulo pq

In particular, if x and y are both coprime to pq, then so is xy mod pq

Now assume 3 does not divide |Z×
pq| = φ(pq) = (p− 1)(q − 1)

This happens if and only if both p and q are of the form 3k + 2
Then fpq : Z×

pq → Z×
pq given by fpq(y) = y3 is bijective

Reason: φ(pq) coprime to 3
⇐⇒ 3d = φ(pq)b+ 1 for some integers d, b (due to extended Euclidean algorithm)
=⇒ (fpq(y))

d ≡ y3d ≡ yφ(pq)b+1 ≡ y (mod pq) (using Euler’s theorem)

Given N = pq and y ∈ Z×
pq, it’s easy to compute fN (y) = y3 (its cube mod N)

Given N = pq and x ∈ Z×
pq, seems hard to find y = f−1

pq (x) (cube root of x mod N)
Discrete Cube Root problem
Input: N = pq and x ∈ Z×

N , where p and q are unknown n-bit primes and gcd(3, φ(pq)) = 1
Output: y such that y3 ≡ x (mod N)

Discrete Cube Root Assumption: Any randomized polynomial time algorithm A
When given inputs N and x as above
Where unknown primes p and q are random n-bit primes of the form 3k + 2
And where x ∈ Z×

N is uniformly random
A manages to find the cube root of x with only negligible probability

“Polynomial time” means polynomial in n (not N), since numbers are represented as n-bits
More precisely, negligible probability means probability 1/nω(1)

i.e. decays faster than any inverse polynomial

2. RSA

Discrete Cube Root problem is used in RSA cryptography (when the public key is 3)
Discrete Cube Root Assumption (not Factoring Assumption) is why RSA is secure
When public key is 3: any one can take cube mod N to encrypt a messages
d above is the private key: take cube root (equivalent, d-th power) to decrypt an encrypted message

3. Cryptographic hardness of learning

Can formulate finding the cube root of x ∈ Z×
N as a learning problem (given N)

1



2

Input: samples (x1, y1), . . . , (xm, ym) where xi ∈ Z×
N and y3i ≡ xi (mod N)

Output: hypothesis h : Z×
N → Z×

N such that Px∼Z∗
N
[h(x) ̸= f−1

N (x)] ⩽ ε
Again, we require the learning algorithm B to output such a hypothesis h with prob. ⩾ 1− δ
If Discrete Cube Root Assumption holds, then this learning problem has no efficient algorithm

We can turn learning algorithm B into algorithm A breaking the DCR assumption
By sampling samples (xi, yi) by ourselves

Above learning problem is not a usual PAC learning problem (not binary classification)
But this minor technical issue can be easily worked around:
The output y = fN (x)−1 consists of 2n bits
Define 2n functions f−1

N,1, . . . , f
−1
N,2n : Z×

N → {0, 1} encoding the 2n bits of f−1
N

If for each 1 ⩽ i ⩽ 2n, f−1
Ni

can be PAC learned to accuracy ε/2n

We will be able to reconstruct f−1
N to accuracy ε

So at least one of the PAC learning problems for f−1
N,1, . . . , f

−1
N,2n must be hard


	1. Discrete Cube Root
	2. RSA
	3. Cryptographic hardness of learning

