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Notes 22: Rademacher complexity

1. Rademachar complexity

Given training samples S = {(x1, y1), . . . , (xm, ym)} with yi ∈ {+1,−1} and hypothesis class H
Empirical Risk Minimization algorithm

Output h ∈ H that minimizes empirical error on S

Generalizes Consistent Hypothesis Algorithm from Notes09
samples need not be labeled by any h ∈ H (e.g. labels yi may be corrupted, as in RCN)

Can we bound generalization error of this algorithm, similar to the Theorem in Notes13?

Training/empirical error of hypothesis h : X → {+1,−1} on S is
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Ei∈[m][yih(xi)] can be interpreted as correlation between predictions h(xi) with labels yi
Correlation is always between −1 and 1 (as the average of m numbers, each being −1 or 1)
Finding hypothesis to minimize training error ⇐⇒ Finding hypothesis to maximize this correlation

i.e. arg maxh∈H Ei∈[m][yih(xi)]

Now imagine true labels yi are replaced with Rademacher random variables σi
i.e. σi = +1 with probability 1/2 and σi = −1 with probability 1/2, independently across i

Fix hypothesis class H (with {+1,−1}-valued hypotheses)
Definition Empirical Rademacher complexity of H wrt S is

R̂S(H) = E
σ∈{+1,−1}n

[
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E
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]
sup instead of max to allow infinite H
e.g. |H| = 1 =⇒ R̂S(H) = 0 (regardless of h(xi), E[σi] = 0)
e.g. H shatters {x1, . . . , xm} ⇐⇒ |H| = 2m =⇒ R̂S(H) = 1 (can force σih(xi) = 1)
In general 0 ⩽ R̂S(H) ⩽ 1 (exercise)
Intuitively, it measures how well h ∈ H correlates with random noise σi

Above definition can be generalized to real-valued functions f : X → R (not just h : X → {+1,−1})
Fix a collection F of real-valued functions over X
Fix training samples S = {x1, . . . , xm} over X
Redefinition Empirical Rademacher complexity of F wrt S is

R̂S(F) = E
σ∈{+1,−1}n

[
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f∈F

E
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[σif(xi)]

]

Now fix distribution D over X
Rademacher complexity = average empirical rademacher complexity over m samples from D

Rm(F) = E
x1,...,xm∼D

[
R̂{x1,...,xm}(F)

]
When F = H, Rm(H) measures how expressive H is, much like VC dimension, but in a different way
Rm(H) depends on the distribution D while VC dimension is distribution-independent

Sometimes gives better generalization bounds than VC dimension for certain distributions
Rm(F) can be defined for any family F of real-valued functions, not just binary classifiers
e.g. In linear regression where samples (x, c(x)) have a dependent variable given by target c : X → R

Goal: Find linear hypothesis h : X → R minimizing (say) squared loss Ex∼D[(h(x)− c(x))2]
The corresponding F = {(h(x)− c(x))2 | linear h}
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2. Generalization bound

Notation ED[f ] = Ex∼D[f(x)] for distribution D over X
Notation (empirical average) ÊS [f ] = Ei∈[m][f(xi)] where S = {x1, . . . , xm}

Theorem 1. Let F be a family of functions from X to [0, 1], and training set S = {x1, . . . , xm} where
xi are independently drawn from D. With prob ⩾ 1− δ over S, simultaneously for all f ∈ F ,

ED[f ] ⩽ ÊS [f ] + 2Rm(F) +

√
ln 1/δ

2m

Proof. Bounding ED[f ]− ÊS [f ] for all f ∈ F ⇐⇒ bounding supf∈F (ED[f ]− ÊS [f ]) =: Φ(S)

Claim 1 With prob ⩾ 1− δ over S, Φ(S) ⩽ ES [Φ(S)] +

√
ln 1/δ
2m

Proving this Claim requires McDiarmid’s inequality, a generalization of Hoeffding

Lemma 2 (McDiarmid). Suppose g : Xm → R satisfies, for any x1, . . . , xm ∈ X, 1 ⩽ i ⩽ m, x′i ∈ X,
|g(x1, . . . , xi, . . . , xm)− g(x1, . . . , x

′
i, . . . , xm)| ⩽ ci.

Assume random variables X1, . . . , Xm are independent. Then for any ε > 0,

P[g(X1, . . . , Xm) ⩾ E[g(X1, . . . , Xm)] + ε] ⩽ exp
(
−2ε2

/ ∑
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c2i

)

The Claim follows from McDiarmid’s with g = Φ, ci = 1/m and ε =

√
ln 1/δ
2m

Why does Φ satisfy the required inequalities with ci = 1/m?
Because every f ∈ F , the function S 7→ ED[f ]− ÊS [f ] satisfies those inequalities with ci = 1/m
And Φ is the supremum over f ∈ F of S 7→ ED[f ]− ÊS [f ]

Claim 2 ES [Φ(S)] ⩽ ES,S′ [supf∈F (ÊS′ [f ]− ÊS [f ])] where S′ is independent m samples from D
Reason: ES [Φ(S)] = ES [supf∈F (ED[f ]− ÊS [f ])] = ES [supf∈F (ES′ [ÊS′ [f ]]− ÊS [f ])]

where we have used ED[f ] = ES′ [ÊS′ [f ]] (average of f equals expected empirical average of f)
Next ES [supf∈F (ES′ [ÊS′ [f ]]− ÊS [f ])] = ES [supf∈F (ES′ [ÊS′ [f ]− ÊS [f ]])]

because moving ÊS [f ] inside ES′ does not change its value
Finally ES [supf∈F (ES′ [ÊS′ [f ]− ÊS [f ]])] ⩽ ES,S′ [supf∈F (ÊS′ [f ]− ÊS [f ])]

because the supremum of an expectation is at most the expectation of the supremum

Claim 3 ES,S′ [sup(ÊS′ [f ]− ÊS [f ])] = ES,S′,σ[supf∈F Ei∈[m][σi(f(x
′
i)− f(xi))]]

Note: S′ is called the ghost sample and we use ghost sampling technique here
For each pair of elements xi, x

′
i in S, S′, swap the two with probability 1/2, and do nothing otherwise

Call the resulting two sets of samples T = {z1, . . . , zm}, T ′ = {z′1, . . . , z′m}
Then S, S′ and T, T ′ are identically distributed
Hence ÊS′ [f ]− ÊS [f ] is identically distributed as ÊT ′ [f ]− ÊT [f ]
But ÊT ′ [f ]− ÊT [f ] = Ei∈[m][f(z

′
i)− f(zi)] is identically distributed as Ei∈[m][σi(f(x

′
i)− f(xi))]

since f(z′i)− f(zi) = f(x′i)− f(xi) if not swapped, and = f(xi)− f(x′i) if swapped
Generating (T, T ′) corresponds to generating (S, S′, σ), so we take expectation over σ as well

Claim 4 ES,S′ [supf∈F Ei∈[m][σi(f(x
′
i)− f(xi))]] ⩽ 2Rm(F)
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= Rm(F) +Rm(F)

Last equality uses the fact that −σi is identically distributed as σi

Combining the above Claims, we get the Theorem □


	1. Rademachar complexity
	2. Generalization bound

