CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2021 Based on Rob's Schapire notes

Notes 22: Rademacher complexity

1. RADEMACHAR COMPLEXITY

Given training samples $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ with $y_i \in \{+1, -1\}$ and hypothesis class $\mathcal{H}_{\mathcal{L}}$ Empirical Risk Minimization algorithm

Output $h \in \mathcal{H}$ that minimizes empirical error on S

Generalizes Consistent Hypothesis Algorithm from Notes09

samples need not be labeled by any $h \in \mathcal{H}$ (e.g. labels y_i may be corrupted, as in RCN) Can we bound generalization error of this algorithm, similar to the Theorem in Notes13?

Training/empirical error of hypothesis $h:X\to\{+1,-1\}$ on S is

$$\frac{1}{m} \sum_{1 \le i \le m} \mathbb{1}(h(x_i) \neq y_i) = \mathop{\mathbb{E}}_{i \in [m]} [\mathbb{1}(h(x_i) \neq y_i)] = \mathop{\mathbb{E}}_{i \in [m]} \left[\frac{1 - y_i h(x_i)}{2}\right] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{i \in [m]} [y_i h(x_i)] = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac$$

 $\mathbb{E}_{i \in [m]}[y_i h(x_i)] \text{ can be interpreted as correlation between predictions } h(x_i) \text{ with labels } y_i$ Correlation is always between -1 and 1 (as the average of *m* numbers, each being -1 or 1) Finding hypothesis to minimize training error \iff Finding hypothesis to maximize this correlation i.e. $\arg \max_{h \in \mathcal{H}} \mathbb{E}_{i \in [m]}[y_i h(x_i)]$

Now imagine true labels y_i are replaced with **Rademacher random variables** σ_i

i.e. $\sigma_i = +1$ with probability 1/2 and $\sigma_i = -1$ with probability 1/2, independently across *i* Fix hypothesis class \mathcal{H} (with $\{+1, -1\}$ -valued hypotheses)

Definition Empirical Rademacher complexity of \mathcal{H} wrt S is

$$\hat{\mathcal{R}}_{S}(\mathcal{H}) = \mathop{\mathbb{E}}_{\sigma \in \{+1, -1\}^{n}} \left[\sup_{h \in \mathcal{H}} \mathop{\mathbb{E}}_{i \in [m]} [\sigma_{i} h(x_{i})] \right]$$

sup instead of max to allow infinite \mathcal{H}

e.g. $|\mathcal{H}| = 1 \implies \hat{\mathcal{R}}_{S}(\mathcal{H}) = 0$ (regardless of $h(x_{i}), \mathbb{E}[\sigma_{i}] = 0$) e.g. \mathcal{H} shatters $\{x_{1}, \dots, x_{m}\} \iff |\mathcal{H}| = 2^{m} \implies \hat{\mathcal{R}}_{S}(\mathcal{H}) = 1$ (can force $\sigma_{i}h(x_{i}) = 1$) In general $0 \leq \hat{\mathcal{R}}_{S}(\mathcal{H}) \leq 1$ (exercise)

Intuitively, it measures how well $h \in \mathcal{H}$ correlates with random noise σ_i

Above definition can be generalized to real-valued functions $f: X \to \mathbb{R}$ (not just $h: X \to \{+1, -1\}$) Fix a collection \mathcal{F} of real-valued functions over X

Fix training samples $S = \{x_1, \ldots, x_m\}$ over X

Redefinition Empirical Rademacher complexity of \mathcal{F} wrt S is

$$\hat{\mathcal{R}}_{S}(\mathcal{F}) = \mathop{\mathbb{E}}_{\sigma \in \{+1,-1\}^{n}} \left[\sup_{f \in \mathcal{F}} \mathop{\mathbb{E}}_{i \in [m]} [\sigma_{i}f(x_{i})] \right]$$

Now fix distribution $\mathcal D$ over X

Rademacher complexity = average empirical rademacher complexity over m samples from \mathcal{D}

$$\mathcal{R}_m(\mathcal{F}) = \mathop{\mathbb{E}}_{x_1,\dots,x_m \sim \mathcal{D}} \left[\hat{\mathcal{R}}_{\{x_1,\dots,x_m\}}(\mathcal{F}) \right]$$

When $\mathcal{F} = \mathcal{H}$, $\mathcal{R}_m(\mathcal{H})$ measures how expressive \mathcal{H} is, much like VC dimension, but in a different way $\mathcal{R}_m(\mathcal{H})$ depends on the distribution \mathcal{D} while VC dimension is distribution-independent

Sometimes gives better generalization bounds than VC dimension for certain distributions $\mathcal{R}_m(\mathcal{F})$ can be defined for any family \mathcal{F} of real-valued functions, not just binary classifiers e.g. In linear regression where samples (x, c(x)) have a dependent variable given by target $c: X \to \mathbb{R}$

Goal: Find linear hypothesis $h: X \to \mathbb{R}$ minimizing (say) squared loss $\mathbb{E}_{x \sim \mathcal{D}}[(h(x) - c(x))^2]$ The corresponding $\mathcal{F} = \{(h(x) - c(x))^2 \mid \text{linear } h\}$

2. Generalization bound

 $\mathbb{E}_{\mathcal{D}}[f] = \mathbb{E}_{x \sim \mathcal{D}}[f(x)] \text{ for distribution } \mathcal{D} \text{ over } X$ Notation $\hat{\mathbb{E}}_{S}[f] = \mathbb{E}_{i \in [m]}[f(x_i)] \text{ where } S = \{x_1, \dots, x_m\}$ **Notation** (empirical average)

Theorem 1. Let \mathcal{F} be a family of functions from X to [0,1], and training set $S = \{x^1, \ldots, x^m\}$ where x^i are independently drawn from \mathcal{D} . With prob $\geq 1 - \delta$ over S, simultaneously for all $f \in \mathcal{F}$,

$$\mathbb{E}_{\mathcal{D}}[f] \leq \hat{\mathbb{E}}_{S}[f] + 2\mathcal{R}_{m}(\mathcal{F}) + \sqrt{\frac{\ln 1/\delta}{2m}}$$

Proof. Bounding $\mathbb{E}_{\mathcal{D}}[f] - \hat{\mathbb{E}}_{S}[f]$ for all $f \in \mathcal{F} \iff$ bounding $\sup_{f \in \mathcal{F}} (\mathbb{E}_{\mathcal{D}}[f] - \hat{\mathbb{E}}_{S}[f]) =: \Phi(S)$

Claim 1 With prob $\geq 1 - \delta$ over S, $\Phi(S) \leq \mathbb{E}_S[\Phi(S)] + \sqrt{\frac{\ln 1/\delta}{2m}}$ Proving this Claim requires McDiarmid's inequality, a generalization of Hoeffding

Lemma 2 (McDiarmid). Suppose $g: X^m \to \mathbb{R}$ satisfies, for any $x_1, \ldots, x_m \in X$, $1 \leq i \leq m$, $x'_i \in X$,

$$|g(x_1,\ldots,x_i,\ldots,x_m) - g(x_1,\ldots,x_i',\ldots,x_m)| \leqslant c_i$$

Assume random variables X_1, \ldots, X_m are independent. Then for any $\varepsilon > 0$,

$$\mathbb{P}[g(X_1,\ldots,X_m) \ge \mathbb{E}[g(X_1,\ldots,X_m)] + \varepsilon] \le \exp\left(-2\varepsilon^2 \Big/ \sum_{1 \le i \le m} c_i^2\right)$$

The Claim follows from McDiarmid's with $g = \Phi, c_i = 1/m$ and $\varepsilon = \sqrt{\frac{\ln 1/\delta}{2m}}$ Why does Φ satisfy the required inequalities with $c_i = 1/m$?

Because every $f \in \mathcal{F}$, the function $S \mapsto \mathbb{E}_{\mathcal{D}}[f] - \hat{\mathbb{E}}_S[f]$ satisfies those inequalities with $c_i = 1/m$ And Φ is the supremum over $f \in \mathcal{F}$ of $S \mapsto \mathbb{E}_{\mathcal{D}}[f] - \hat{\mathbb{E}}_S[f]$

 $\mathbb{E}_{S}[\Phi(S)] \leq \mathbb{E}_{S,S'}[\sup_{f \in \mathcal{F}}(\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f])]$ where S' is independent m samples from \mathcal{D} Claim 2 $\mathbb{E}_{S}[\Phi(S)] = \mathbb{E}_{S}[\sup_{f \in \mathcal{F}}(\mathbb{E}_{\mathcal{D}}[f] - \hat{\mathbb{E}}_{S}[f])] = \mathbb{E}_{S}[\sup_{f \in \mathcal{F}}(\mathbb{E}_{S'}[\hat{\mathbb{E}}_{S'}[f]] - \hat{\mathbb{E}}_{S}[f])]$ Reason:

where we have used $\mathbb{E}_{\mathcal{D}}[f] = \mathbb{E}_{S'}[\hat{\mathbb{E}}_{S'}[f]]$ (average of f equals expected empirical average of f) $\mathbb{E}_{S}[\sup_{f\in\mathcal{F}}(\mathbb{E}_{S'}[\hat{\mathbb{E}}_{S'}[f]] - \hat{\mathbb{E}}_{S}[f])] = \mathbb{E}_{S}[\sup_{f\in\mathcal{F}}(\mathbb{E}_{S'}[\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f]])]$ Next

because moving $\hat{\mathbb{E}}_{S}[f]$ inside $\mathbb{E}_{S'}$ does not change its value

 $\mathbb{E}_{S}[\sup_{f\in\mathcal{F}}(\mathbb{E}_{S'}[\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f]])] \leqslant \mathbb{E}_{S,S'}[\sup_{f\in\mathcal{F}}(\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f])]$ Finally because the supremum of an expectation is at most the expectation of the supremum

Claim 3 $\mathbb{E}_{S,S'}[\sup(\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f])] = \mathbb{E}_{S,S',\sigma}[\sup_{f \in \mathcal{F}} \mathbb{E}_{i \in [m]}[\sigma_i(f(x'_i) - f(x_i))]]$ S' is called the ghost sample and we use ghost sampling technique here Note: For each pair of elements x_i, x'_i in S, S', swap the two with probability 1/2, and do nothing otherwise Call the resulting two sets of samples $T = \{z_1, \ldots, z_m\}, T' = \{z'_1, \ldots, z'_m\}$ Then S, S' and T, T' are identically distributed

Hence $\hat{\mathbb{E}}_{S'}[f] - \hat{\mathbb{E}}_{S}[f]$ is identically distributed as $\hat{\mathbb{E}}_{T'}[f] - \hat{\mathbb{E}}_{T}[f]$

But $\hat{\mathbb{E}}_{T'}[f] - \hat{\mathbb{E}}_{T}[f] = \mathbb{E}_{i \in [m]}[f(z'_i) - f(z_i)]$ is identically distributed as $\mathbb{E}_{i \in [m]}[\sigma_i(f(x'_i) - f(x_i))]$ since $f(z'_i) - f(z_i) = f(x'_i) - f(x_i)$ if not swapped, and $f(x_i) - f(x'_i)$ if swapped

Generating (T, T') corresponds to generating (S, S', σ) , so we take expectation over σ as well

$$\begin{aligned} \mathbf{Claim} \ \mathbf{4} \qquad & \mathbb{E}_{S,S'}[\sup_{f\in\mathcal{F}} \mathbb{E}_{i\in[m]}[\sigma_i(f(x'_i) - f(x_i))]] \leqslant 2\mathcal{R}_m(\mathcal{F}) \\ & \mathbb{E}_{S,S'}\left[\sup_{f\in\mathcal{F}} \mathbb{E}_{i\in[m]}[\sigma_i(f(x'_i) - f(x_i))]\right] \leqslant \mathbb{E}_{S,S',\sigma}\left[\sup_{f\in\mathcal{F}} \mathbb{E}_{i\in[m]}[\sigma_if(x'_i)] + \sup_{f\in\mathcal{F}} \mathbb{E}_{i\in[m]}[-\sigma_if(x_i)]\right] \\ & = \mathbb{E}_{S',\sigma}\left[\sup_{f\in\mathcal{F}}[\sigma_if(x'_i)]\right] + \mathbb{E}_{S,\sigma}\left[\sup_{f\in\mathcal{F}}[-\sigma_if(x_i)]\right] = \mathcal{R}_m(\mathcal{F}) + \mathcal{R}_m(\mathcal{F}) \end{aligned}$$

Last equality uses the fact that $-\sigma_i$ is identically distributed as σ_i

Combining the above Claims, we get the Theorem