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Lecturer: Siu On Chan Based on Rob’s Schapire notes

Notes 22: Rademacher complexity

1. RADEMACHAR COMPLEXITY

Given training samples S = {(x1,91), ..., (Tm,Ym)} with y; € {+1, -1} and hypothesis class H
Empirical Risk Minimization algorithm

‘r Output h € H that minimizes empirical error on S

Generalizes Consistent Hypothesis Algorithm from Notes09
samples need not be labeled by any h € ‘H (e.g. labels y; may be corrupted, as in RCN)
Can we bound generalization error of this algorithm, similar to the Theorem in Notes13?

Training/empirical error of hypothesis h : X — {4+1,—1} on S is

1 1 —y;h(x; 1 1

> 1(he) £ ) = B [h(e) £l = B | DD o)
m 1<i<m i€[m] i€[m] i€[m]
Eic[m][yih(7;)] can be interpreted as correlation between predictions h(z;) with labels y;
Correlation is always between —1 and 1 (as the average of m numbers, each being —1 or 1)
Finding hypothesis to minimize training error <= Finding hypothesis to maximize this correlation

L.e. argmaxpey Eic[m] [yih(z;)]

Now imagine true labels y; are replaced with Rademacher random variables o;

i.e. 0; = +1 with probability 1/2 and o; = —1 with probability 1/2, independently across i
Fix hypothesis class H (with {41, —1}-valued hypotheses)
Definition Empirical Rademacher complexity of H wrt S is

7%,5(7-[): E sup E [oih(x;)]
oe{+1,-1}" | heH i€[m]

sup instead of max to allow infinite H

eg M =1 = RsH)=0 (regardless of h(z;), E[o;] = 0)
e.g. H shatters {z1,...,2,} <= |H|=2" — Rg(H)=1

In general 0 < Rg(H) < 1 (exercise)

Intuitively, it measures how well h € ‘H correlates with random noise o;

(can force o;h(x;) = 1)

Above definition can be generalized to real-valued functions f: X — R (not just h: X — {+1,—1})
Fix a collection F of real-valued functions over X

Fix training samples S = {x1,..., 2y} over X

Redefinition Empirical Rademacher complexity of F wrt S is

Rs(F) = E sup E [oif(xi)]
oce{+1,-1}" | feF i€[m]

Now fix distribution D over X
Rademacher complexity = average empirical rademacher complexity over m samples from D

Ru(F)= B [Rusany(F)

T1yeeey T

When F = H, R,,(H) measures how expressive H is, much like VC dimension, but in a different way
Rm(H) depends on the distribution D while VC dimension is distribution-independent
Sometimes gives better generalization bounds than VC dimension for certain distributions
Rm(F) can be defined for any family F of real-valued functions, not just binary classifiers
e.g. In linear regression where samples (x, ¢(x)) have a dependent variable given by target ¢ : X — R
Goal: Find linear hypothesis h : X — R minimizing (say) squared loss Eyp[(h(z) — ¢(z))?]
The corresponding F = {(h(x) — ¢(x))? | linear h}
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2. GENERALIZATION BOUND
Notation Ep[f] = Exz~p[f(x)] for distribution D over X
Notation (empirical average) Es[f] = Bicpm)[f (2i)] where S = {x1,...,zp}

Theorem 1. Let F be a family of functions from X to [0,1], and training set S = {x',... 2™} where
x' are independently drawn from D. With prob > 1 — 0 over S, simultaneously for all f € F,

Inl/§

2m

Eplf] < Eslf] +2Rm(F) +

Proof. Bounding Ep[f] — Es[f] for all f € F <= bounding supc z(Ep[f] — Es[f]) =: ®(5)

2m
Proving this Claim requires McDiarmid’s inequality, a generalization of Hoeffding

Claim 1 With prob > 1 — § over S, 8(S) < Es[®(S)] + /5L

Lemma 2 (McDiarmid). Suppose g : X™ — R satisfies, for any x1,...,2;m € X, 1 <i<m, 2} € X,
lg(z1, .y @iy ey m) — g1,y @) < i

Assume random variables X1, ..., X, are independent. Then for any € > 0,

2
5 )
1<i<m

Plg(X1,..., Xm) = Elg(X1,..., Xn)] +¢] <exp (—252/

The Claim follows from McDiarmid’s with g = ®,¢; = 1/m and € = 4/ In1/o

2m
Why does ® satisfy the required inequalities with ¢; = 1/m?
Because every f € F, the function S — Ep[f] — Eg[f] satisfies those inequalities with ¢; = 1/m
And @ is the supremum over f € F of S — Ep[f] — Es[f]

Claim 2 Es[®(S)] < Es,s'[sup e 7(Esr[f] — Es[f])] where S is independent m samples from D
Reason:  Es[®(5)] = Es[supc(Ep[f] — Es[f])] = Eslsup e 7(Es [Est [f]] — Es[f])]

where we have used Ep[f] = Es/[Es/[f]] (average of f equals expected empirical average of f)
Next Es[supsecr(Es [Es [f]] — Es[f])] = Es[supser(Es [Es/[f] — Es[f]])]

because moving Es|f] inside Eg: does not change its value

Finally Egs[supfer(Es[Es[f] — Es[f]])] < Es,sr[sup e r(Es[f] — Es[f])]
because the supremum of an expectation is at most the expectation of the supremum

Claim 3 Esg[sup(Es[f] — Es[f])] = Es,s o [supser Eicpmloi(f(2]) — f(z:))]]
Note: S’ is called the ghost sample and we use ghost sampling technique here
For each pair of elements z;, 2} in S, S’, swap the two with probability 1/2, and do nothing otherwise
Call the resulting two sets of samples T'= {z1,...,zm}, T" = {2},...,2,}
Then S, 5" and T, T’ are identically distributed
Hence Eg [f] — Es[f] is identically distributed as Ep/[f] — Er[f]
But By [f] — Brlf] = Bicpm[F(2]) — f(2)] is identically distributed as By [oi(F(x]) — £(z:)]
since f(z) — f(zi) = f(«}) — f(=x;) if not swapped, and = f(x;) — f(2}) if swapped
Generating (T, T") corresponds to generating (S, S’, o), so we take expectation over o as well

Claim 4 Es.s'[supser Eicpm)[0i(f (27) — f(2:))]] < 2Rm(F)

E |sup E [w(f(cv;)—f(m)]] < E

sup E [oif(2))] +sup E [—of(z
8.5 | rericiml R loif(z7)] +sup E [~oif(x )]]

JFEF i€[m] JFEF i€[m)]

+ E
S,o

= E lsup [oi f (7))

S'o | feF

SUP[_Uif(xi)]] = Rm(F) + Ron(F)
feF

Last equality uses the fact that —o; is identically distributed as o;

Combining the above Claims, we get the Theorem O
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