CSCI4230 Computational Learning Theory

Lecturer: Siu On Chan Based on Maria-Florina Balcan's notes and Graham Cormode's slides

Notes 21: Differential privacy and Statistical Query model

1. DIFFERENTIAL PRIVACY FROM STATISTICAL QUERY ALGORITHMS

If \mathcal{C} is efficiently learnable from SQ's, then \mathcal{C} is efficiently PAC-learnable, differential-privately

Theorem 1. Suppose some algorithm A efficiently learns C to error ε from M statistical queries of tolerance τ . Then some algorithm B efficiently PAC-learns C to error ε with probability $\ge 1 - \delta$ while satisfying α -differential privacy, using

$$O\left(\left(\frac{M}{\alpha\tau} + \frac{M}{\tau^2}\right)\ln\frac{2M}{\delta}\right) \quad samples$$

Proof. Algorithm *B* draws $O\left(\left(\frac{M}{\alpha\tau} + \frac{M}{\tau^2}\right)\ln\frac{2M}{\delta}\right)$ random samples (call them *S*)

Break S into M disjoint chunks S_1, \ldots, S_M , each of size $O\left(\left(\frac{1}{\alpha\tau} + \frac{1}{\tau^2}\right) \ln \frac{2M}{\delta}\right)$ Answer *i*-th statistical query (φ_i, τ) of A using S_i (taking average of φ_i over S_i) To each response, add Laplacian noise of scale $M/|S_i|\alpha$ Finally return A's hypothesis h

Privacy: Each query is the average of $|S_i|$ values, each between 0 and 1 By Theorem in Notes20, each response satisfies α/M -differential privacy By Composition property, the collection of all M responses satisfies α -differential privacy

Error: By Hoeffding, with prob $\geq 1 - \delta/(2M)$,

empirical average of φ_i over S_i (before adding noise) is within $\tau/2$ of the true expectation With prob $\ge 1 - \delta/(2M)$, the Laplace noise has magnitude

$$O\left(\frac{1}{\alpha|S_i|}\ln\frac{2M}{\delta}\right) \leqslant \frac{\tau}{2}$$
 since $|S_i| \ge \frac{C}{\alpha\tau}\ln\frac{2M}{\delta}$ for some large C

Hence with prob $\geq 1 - \delta/M$, the *i*-th response \hat{P}_{φ_i} is within τ of the true expectation P_{φ_i} By union bound over all M queries, with prob $\geq 1 - \delta$

all responses are within τ of their true averages, and algorithm A succeeds

2. Geometric mechanism

When response of STAT(c, D) is integer-valued, geometric mechanism may be used **Geometric mechanism** adds noise that is a (symmetric) geometric random variable (Symmetric) geometric distribution with parameter $\alpha > 1$ has pmf $f(k) = \alpha^{-|k|}(\alpha - 1)/(\alpha + 1)$

Like the Laplace distribution, symmetric geometric distribution changes by (at most) the same multiplicative factor when shifted, i.e.

$$f(k+j)/f(k) = \alpha^{-|k-j|}/\alpha^{-|k|} \leq \alpha^{|j|}$$
 for any $j, k \in \mathbb{Z}$

In fact the distribution is defined so that this inequality is achieved as an equality for certain j, k

If symmetric geometric noise with parameter α is added to the output of an integer-valued function g. Then the mechanism satisfies ε -differential privacy where $e^{\varepsilon} = \alpha^{\Delta g}$ (exercise) Again Δg = maximum change to g's output when just one data point changes By the same calculations as the Laplace mechanism

In practice a response of STAT(c, D) may be required to bounded, say between 0 and b Can **truncate** the response to force it to lie in the desired range, without hurting privacy (exercise)

Spring 2021