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Notes 20: Differential privacy

1. Motivations

e.g. Robust De-anonymization of Large Sparse Datasets [Narayanan & Shmatikov ’08]
i.e. Breaking anonymity of Netflix Prize Dataset

e.g. Matching Known Patients to Health Records in Washington State Data [Sweeney ’13]
Breaking privacy with multiple overlapping datasets

e.g. Apple since ’16, Google’s RAPPOR, TensorFlow Privacy, etc, US 2020 Census

Suppose STAT in Statistical Query model answers average salary about a company
What if I query average salary of a company, and do so again right after you leave the company?

Randomized response [Warner 1965]
Suppose you are taking a survey on a sensitive topic (e.g. have you taken drug illegally)

Flip a fair coin, with prob 1/2, you answer Yes
With prob 1/2, you answer honestly

If p fraction of population belongs to “Yes” group, in expectation (1 + p)/2 fraction will answer Yes
Survey researcher can deduce p from (1 + p)/2
Even if you say Yes, you can plausibly deny

2. Definition

Dataset S = {x1, . . . , xm} ⊆ X and another dataset S′ differ in just one data point if
S′ is obtained from S by replacing xi with x′i ̸= xi for some 1 ⩽ i ⩽ m

A randomized algorithm A reads a dataset S and outputs y ∈ Y
Y is called the range of A
If A is a learning algorithm, then Y = hypothesis class H of A
But we also allow algorithms whose output isn’t a hypothesis, e.g. STAT(c,D)

Definition 1. Randomized algorithm A satisfies ε-differential privacy if for any two datasets S, S′

differing in just one data point, for any subset Y ′ ⊆ Y of outcomes of A,
P[A(S) ∈ Y ′]e−ε ⩽ P[A(S′) ∈ Y ′] ⩽ P[A(S) ∈ Y ′]eε

Since eε ≈ 1 + ε and e−ε ≈ 1− ε
Above definition requires P[A(S) ∈ Y ′]/P[A(S′) ∈ Y ′] to be close to 1

If Y (range of A) is discrete, it’s equivalent to requiring that for any outcome y ∈ Y of A,
P[A(S) = y]e−ε ⩽ P[A(S′) = y] ⩽ P[A(S) = y]eε

Original definition also covers the case where Y is continuous (e.g. Y = R)

3. Laplace mechanism

Suppose S consists of m points in [0, b] and we want to estimate their average
Changing one data point in S changes the average by at most b/m
Laplace mechanism outputs the true average plus noise that is a Laplace random variable
Laplace distribution Lap(µ, s) with mean µ and scale s has density f(x | µ, s) = 1
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)
Laplace mechanism

Output v = Lap(a, b/εm) where a is the true average

In other words, v = a+ x where x is the Laplace random variable Lap(0, b/εm)
Smaller ε requires larger b/εm i.e. more privacy requires larger noise
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Theorem 2. Laplace mechanism satisfies ε-differential privacy

Proof. Fix two datasets S and S′ differing in just one data point
If S has average a and S′ has average a′, then |a− a′| ⩽ b/m
Consider the ratio of densities pS(v)/pS′(v) of outputting v given S (vs S′)
Ratio is smallest when a′ = a+ b/m (the means are furthest apart) and v ⩾ a′
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Last inequality follows from dropping the denominator (which is at most 1) and taking v = a′

Likewise, ratio is largest when a′ = a+ b/m and v ⩽ a
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Last inequality follows from dropping the numerator (which is at most 1) and taking v = a
Required inequality for event Y ⊆ [0, b] follows by integrating over all v ∈ Y □

Proposition 3. With prob 1− δ, Laplace mechanism adds an error of magnitude at most b
εm ln 1

δ

Proof. For τ ⩾ 0

P[x ⩾ τ ] =
εm
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So P[x ⩾ τ ] = δ/2 when τ = b
εm ln 1

δ
Identical analysis works for P[x ⩽ −τ ] = δ/2 □

Generalization: To compute some real-valued function (e.g. statistics) g of dataset S
Let ∆g = maximum change to g’s output when just one data point changes
(General) Laplace mechanism outputs v = Lap(g(S),∆g/ε)
This mechanism satisfies ε-differential privacy, by the same proof

Composition: Suppose independent mechanisms A1, . . . , Ak answer k queries
Each satisfying ε-differential privacy
Then the vector of k responses A = (A1, . . . , Ak) satisfies kε-differential privacy, since

P[A(S′) = y] = P[A1(S
′) = y1] · · ·P[Ak(S

′) = yk] ⩽ eε P[A1(S) = y1] · · · eε P[Ak(S) = yk]

= ekε P[A(S) = y]

The other inequality is analogous
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