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Notes 20: Differential privacy

1. MOTIVATIONS

e.g. Robust De-anonymization of Large Sparse Datasets [Narayanan & Shmatikov '08]
i.e. Breaking anonymity of Netflix Prize Dataset

e.g. Matching Known Patients to Health Records in Washington State Data [Sweeney ’13]
Breaking privacy with multiple overlapping datasets

e.g. Apple since 16, Google’s RAPPOR, TensorFlow Privacy, etc, US 2020 Census

Suppose STAT in Statistical Query model answers average salary about a company
What if I query average salary of a company, and do so again right after you leave the company?

Randomized response [Warner 1965]
Suppose you are taking a survey on a sensitive topic (e.g. have you taken drug illegally)
Flip a fair coin, with prob 1/2, you answer Yes
With prob 1/2, you answer honestly
If p fraction of population belongs to “Yes” group, in expectation (1 + p)/2 fraction will answer Yes
Survey researcher can deduce p from (1 + p)/2
Even if you say Yes, you can plausibly deny

2. DEFINITION

Dataset S = {z1,...,2n} € X and another dataset S’ differ in just one data point if
S’ is obtained from S by replacing z; with ; # x; for some 1 < i< m
A randomized algorithm A reads a dataset S and outputs y € Y
Y is called the range of A
If A is a learning algorithm, then Y = hypothesis class H of A
But we also allow algorithms whose output isn’t a hypothesis, e.g. STAT (¢, D)

Definition 1. Randomized algorithm A satisfies e-differential privacy if for any two datasets S, S’
differing in just one data point, for any subset Y’ C Y of outcomes of A,

P[A(S) € Y'le ¢ < P[A(S') € Y] < P[A(S) € Y']e*
Sinceefx~1l+cande *~1—¢

Above definition requires P[A(S) € Y']/ P[A(S’) € Y] to be close to 1
If Y (range of A) is discrete, it’s equivalent to requiring that for any outcome y € Y of A,

P[A(S) = yle ® < P[A(S') = y] < P[A(S) = yle*

Original definition also covers the case where Y is continuous (e.g. Y = R)

3. LAPLACE MECHANISM

Suppose S consists of m points in [0, b] and we want to estimate their average
Changing one data point in S changes the average by at most b/m
Laplace mechanism outputs the true average plus noise that is a Laplace random variable

Laplace distribution Lap(u, s) with mean p and scale s has density f(x | u,s) = i exp (— |x7“|>

S

Laplace mechanism

( Output v = Lap(a, b/em) where a is the true average }

In other words, v = a + = where z is the Laplace random variable Lap(0,b/em)
Smaller e requires larger b/em i.e. more privacy requires larger noise
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Theorem 2. Laplace mechanism satisfies e-differential privacy

Proof. Fix two datasets S and S’ differing in just one data point
If S has average a and S’ has average d/, then |a — a'| < b/m
Consider the ratio of densities pg(v)/pg/(v) of outputting v given S (vs S’)

Ratio is smallest when a’ = a 4+ b/m (the means are furthest apart) and v > o

ps(’U) > (U } @, am) - P <_I;U/;;;) = exp(—E)
psiW) ~ f(vla+ g ch)  exp (—%)

Last inequality follows from dropping the denominator (which is at most 1) and taking v = o
Likewise, ratio is largest when a’ = a+b/m and v < a

ps(’U) < (U ‘ a, em) _ exp (_1;7;71’)‘) < exp(e)
psr(v) (v ‘ a+ m, Em) exp <_“+bb//#>

Last inequality follows from dropping the numerator (which is at most 1) and taking v = a
Required inequality for event Y C [0, b] follows by integrating over all v € Y’

Proposition 3. With prob 1 — 6, Laplace mechanism adds an error of magnitude at most _- ln 5

Proof. For 7 > 0

o0
1
Plo> 7= Gy [ et = g
So Plz > 7] = 6/2 when 7 = 2 In
Identlcal analysis works for Plz < —7] = §/2

Generalization: To compute some real-valued function (e.g. statistics) g of dataset S
Let Ag = maximum change to g’s output when just one data point changes

(General) Laplace mechanism outputs v = Lap(g(S), Ag/e)

This mechanism satisfies e-differential privacy, by the same proof

Composition:  Suppose independent mechanisms Aq, ..., Ax answer k queries
Each satisfying e-differential privacy
Then the vector of k responses A = (A, ..., Ag) satisfies ke-differential privacy, since
PIA(S") = y] = PlAL(S) = 1] - - PlAR(S) = yi] < e P[AL(S) = 3] -~ " P[Ak(S) = wi]
= " PIA(S) = 4]

The other inequality is analogous
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