CSCI4230 Computational Learning Theory Lecturer: Siu On Chan

The expectation becomes

Spring 2021 Based on Rocco Servedio's notes

Notes 19: Lower bound for Statistical Query model

We saw that if C is efficiently learnable from SQ's, then C is efficiently PAC-learnable (even with RCN) Question: If C is efficiently PAC-learnable, must C be efficiently learnable from SQ's? Answer: No, a counterexample is $C = \{\text{parity functions}\}$ over $X = \{0, 1\}^n$ Recall a parity function $c(x) = \bigoplus_{i \in S} x_i$ for some $S \subseteq \{1, \ldots, n\}$

e.g. $c(x) = x_1 \oplus x_2 \oplus x_4$ outputs the parity of the 1st, 2nd, 4th bits when $S = \{1, 2, 4\}$ $\mathcal{C} = \{\text{parity functions}\}$ is efficiently PAC-learnable using Gaussian elimination over \mathbb{F}_2

However, C is not efficiently learnable from SQ's Fix \mathcal{D} = uniform distribution over $X = \{+1, -1\}^n$ (note: switched from $\{0, 1\}$ to $\{+1, -1\}$) $\mathbb{E}_{\mathcal{D}}[f(x)g(x)]$ defines an **inner product** $\langle f, g \rangle$ between f and g, where $f, g: X \to \mathbb{R}$

An orthogonal basis is $\{\mathbb{1}_x \mid x \in \{+1, -1\}^n\}$ i.e. $\mathbb{1}_x(z) = 1$ if x = z and $\mathbb{1}_x(z) = 0$ if $x \neq z$ Orthogonal because $\langle \mathbb{1}_x, \mathbb{1}_y \rangle = \mathbb{E}_{z \in X}[\mathbb{1}_x(z)\mathbb{1}_y(z)] = 0$ whenever $x \neq y$

Better (orthonormal) basis: **Fourier basis** of parity functions $\{c_S \mid S \subseteq [n] = \{1, \ldots, n\}\}$ Here $c_S : X \to \{+1, -1\}$ is given by $c_S(x) = \prod_{i \in S} x_i$ e.g. $c_{\{1,2,4\}}(z) = z_1 z_2 z_4$ and $c_{\{1,2,4\}}(+1, -1, -1, -1, +1) = (+1)(-1)(-1) = 1$ c_{\emptyset} is the constant 1 function

We now show this basis is orthonormal, i.e. $\langle c_S, c_S \rangle = 1$ and $\langle c_S, c_T \rangle = 0$ for any $S \neq T$

Expand
$$\langle c_S, c_T \rangle = \underset{z \in \{+1, -1\}^n}{\mathbb{E}} [c_S(z)c_T(z)] = \underset{z \in \{+1, -1\}^n}{\mathbb{E}} \left[\prod_{i \in S} z_i \prod_{i \in T} z_i \right]$$

Rewrite the factors inside the expectation as $\prod_{i \in S} z_i \prod_{i \in T} z_i = \prod_{i \in S \triangle T} z_i$ (because $z_i \in \{+1, -1\}$) e.g. $S = \{1, 2, 3\}, T = \{3, 4\}, (z_1 z_2 z_3)(z_3 z_4) = z_1 z_2 z_3^2 z_4 = z_1 z_2 z_4$ when $z \in \{+1, -1\}^n$

$$\mathbb{E}_{z \in \{+1,-1\}^n} \left[\prod_{i \in S \bigtriangleup T} z_i \right] = \begin{cases} 1 & \text{if } S \bigtriangleup T = \emptyset \\ 0 & \text{if } S \bigtriangleup T \neq \emptyset \end{cases} \quad (z_i \text{ is } +1 \text{ and } -1 \text{ with equal prob for any } i \in S \bigtriangleup T) \end{cases}$$

Above inner product $\langle \cdot, \cdot \rangle$ induces (Euclidean) **norm** $||f|| = \sqrt{\langle f, f \rangle}$ Since every $f: X \to \mathbb{R}$ has unique expansion $f = \sum_{S \subseteq [n]} a_S c_S$ in Fourier basis,

$$||f||^{2} = \langle f, f \rangle = \left\langle \sum_{S \subseteq [n]} a_{S} c_{S}, \sum_{T \subseteq [n]} a_{T} c_{T} \right\rangle = \sum_{S, T \subseteq [n]} a_{S} a_{T} \langle c_{S}, c_{T} \rangle = \sum_{S \subseteq [n]} a_{S}^{2} \qquad (\text{Parseval theorem})$$

Last equality uses orthonormality of Fourier basis Coefficient $a_S = \langle f, c_S \rangle$ because $\langle f, c_S \rangle = \left\langle \sum_{T \subseteq [n]} a_T c_T, c_S \right\rangle = \sum_{T \subseteq [n]} a_T \langle c_T, c_S \rangle = a_S$

Theorem 1. Let \mathcal{D} be the uniform distribution over $X = \{+1, -1\}^n$. Any algorithm for learning $\mathcal{C} = \{\text{parity functions}\}$ to error $\varepsilon < 1/2$ from statistical queries of tolerance τ must query $\operatorname{STAT}(c, \mathcal{D})$ at least $(4|\mathcal{C}| - \gamma^{-2})\tau^2$ times, where $\gamma = \frac{1}{2} - \varepsilon$

Since $|\mathcal{C}| = 2^n, \tau \ge 1/\operatorname{poly}(n)$ and $\gamma \ge 1/\operatorname{poly}(n)$, Theorem implies $\#\operatorname{queries} \ge \exp(\Omega(n))$

Proof. Let $c_S \in \mathcal{C}$ be the target concept, and $\varphi_1, \ldots, \varphi_T$ all the query predicates to $\operatorname{STAT}(c_S, \mathcal{D})$ Expand each predicate, say $\varphi : X \times \{+1, -1\} \to \{0, 1\}$, as $\varphi(x, y) = f(x) + g(x)y$ Intuitively, only 2nd term g(x)y depends on label y and reveals information about c_S Each query corresponds to estimating

$$P_{\varphi} = \mathbb{E}_{z \in \{+1,-1\}^n} [\varphi(x, c_S(x))] = \mathbb{E}_{z \in \{+1,-1\}^n} [f(x) + g(x)c_S(x)] = \mathbb{E}_{z \in \{+1,-1\}^n} [f(z)] + \langle g, c_S \rangle$$

Suppose STAT (c_S, \mathcal{D}) always answers every statistical query (φ, τ) with response $\hat{P}_{\varphi} = \mathbb{E}_z[f(z)]$ In other words, the response says that $|P_{\varphi} - \hat{P}_{\varphi}| = |\langle g, c_S \rangle| \leq \tau$

After T queries, algorithm outputs hypothesis $h: X \to \{+1, -1\}$

Will show that some $c_S \in \mathcal{C}$ consistent with all answers has $\operatorname{err}_{\mathcal{D}}(h, c) > \varepsilon$ Which $c_S \in \mathcal{C}$ are ruled out when algorithm knows $|\langle g, c_S \rangle| \leq \tau$? Let $A = \{S \subseteq [n] \mid |\langle g, c_S \rangle| > \tau\}$

Claim 2. $|A| \leq ||g||^2 / \tau^2$

Proof. Let $g_A = \sum_{S \in A} \langle g, c_S \rangle c_S$ (projection of g to span of those c_S with large inner product) By Parseval, $\|g_A\|^2 = \sum_{S \in A} \langle g, c_S \rangle^2 \leqslant \sum_{S \subseteq [n]} \langle g, c_S \rangle^2 = \|g\|^2$ On the other hand, $\|g_A\|^2 = \sum_{S \in A} \langle g, c_S \rangle^2 \geqslant |A|\tau^2$ by definition of A

$$\begin{split} \|g\|^2 &= \mathbb{E}_{z \in \{+1,-1\}^n}[g(z)^2] \leqslant 1/4 \qquad \text{because } |g(x)| = |(\varphi(x,1) - \varphi(x,-1))/2| \leqslant 1/2 \\ \text{By Claim, at most } 1/4\tau^2 \text{ many } c_S \in \mathcal{C} \text{ are ruled out by a single response } |\langle g, c_S \rangle| \leqslant \tau \\ \text{After } T \text{ queries, at most } T/4\tau^2 \text{ many parity functions are ruled out} \end{split}$$

How many $c_S \in \mathcal{C}$ has $\operatorname{err}_{\mathcal{D}}(h, c_S) \leq \varepsilon$?

$$\operatorname{err}_{\mathcal{D}}(h, c_S) = \underset{x \in \mathcal{D}}{\mathbb{P}}[h(x) \neq c_S(x)] = \frac{1 - \mathbb{E}_{x \in \mathcal{D}}[h(x)c_S(x)]}{2} = \frac{1 - \langle h, c_S \rangle}{2}$$

Define advantage $\gamma = \frac{1}{2} - \varepsilon$, then $\operatorname{err}_{\mathcal{D}}(h, c_S) \leq \varepsilon \iff \langle h, c_S \rangle \geq 2\gamma$ Again need to bound number of $c_S \in \mathcal{C}$ with large inner product with some function h $\|h\|^2 = 1$ because |h(x)| = 1 for all $x \in X$

By calculations in Claim, at most $1/4\gamma^2$ many $c_S \in \mathcal{C}$ have $\operatorname{err}_{\mathcal{D}}(h, c_S) \leqslant \varepsilon$

If $\frac{T}{4\tau^2} + \frac{1}{4\gamma^2} < |\mathcal{C}|$, some $c_S \in \mathcal{C}$ consistent with all responses has $\operatorname{err}_{\mathcal{D}}(h, c) > \varepsilon$ Algorithm needs $\frac{T}{4\tau^2} + \frac{1}{4\gamma^2} \ge |\mathcal{C}| \implies T \ge (4|\mathcal{C}| - \gamma^{-2})\tau^2$